Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gilad Ben-Yossef | 12943 | 96.19% | 3 | 42.86% |
Yael Chemla | 464 | 3.45% | 3 | 42.86% |
Hadar Gat | 48 | 0.36% | 1 | 14.29% |
Total | 13455 | 7 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2012-2018 ARM Limited or its affiliates. */ #include <linux/kernel.h> #include <linux/module.h> #include <crypto/algapi.h> #include <crypto/hash.h> #include <crypto/md5.h> #include <crypto/sm3.h> #include <crypto/internal/hash.h> #include "cc_driver.h" #include "cc_request_mgr.h" #include "cc_buffer_mgr.h" #include "cc_hash.h" #include "cc_sram_mgr.h" #define CC_MAX_HASH_SEQ_LEN 12 #define CC_MAX_OPAD_KEYS_SIZE CC_MAX_HASH_BLCK_SIZE #define CC_SM3_HASH_LEN_SIZE 8 struct cc_hash_handle { cc_sram_addr_t digest_len_sram_addr; /* const value in SRAM*/ cc_sram_addr_t larval_digest_sram_addr; /* const value in SRAM */ struct list_head hash_list; }; static const u32 digest_len_init[] = { 0x00000040, 0x00000000, 0x00000000, 0x00000000 }; static const u32 md5_init[] = { SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 }; static const u32 sha1_init[] = { SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 }; static const u32 sha224_init[] = { SHA224_H7, SHA224_H6, SHA224_H5, SHA224_H4, SHA224_H3, SHA224_H2, SHA224_H1, SHA224_H0 }; static const u32 sha256_init[] = { SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4, SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 }; static const u32 digest_len_sha512_init[] = { 0x00000080, 0x00000000, 0x00000000, 0x00000000 }; static u64 sha384_init[] = { SHA384_H7, SHA384_H6, SHA384_H5, SHA384_H4, SHA384_H3, SHA384_H2, SHA384_H1, SHA384_H0 }; static u64 sha512_init[] = { SHA512_H7, SHA512_H6, SHA512_H5, SHA512_H4, SHA512_H3, SHA512_H2, SHA512_H1, SHA512_H0 }; static const u32 sm3_init[] = { SM3_IVH, SM3_IVG, SM3_IVF, SM3_IVE, SM3_IVD, SM3_IVC, SM3_IVB, SM3_IVA }; static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[], unsigned int *seq_size); static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[], unsigned int *seq_size); static const void *cc_larval_digest(struct device *dev, u32 mode); struct cc_hash_alg { struct list_head entry; int hash_mode; int hw_mode; int inter_digestsize; struct cc_drvdata *drvdata; struct ahash_alg ahash_alg; }; struct hash_key_req_ctx { u32 keylen; dma_addr_t key_dma_addr; }; /* hash per-session context */ struct cc_hash_ctx { struct cc_drvdata *drvdata; /* holds the origin digest; the digest after "setkey" if HMAC,* * the initial digest if HASH. */ u8 digest_buff[CC_MAX_HASH_DIGEST_SIZE] ____cacheline_aligned; u8 opad_tmp_keys_buff[CC_MAX_OPAD_KEYS_SIZE] ____cacheline_aligned; dma_addr_t opad_tmp_keys_dma_addr ____cacheline_aligned; dma_addr_t digest_buff_dma_addr; /* use for hmac with key large then mode block size */ struct hash_key_req_ctx key_params; int hash_mode; int hw_mode; int inter_digestsize; unsigned int hash_len; struct completion setkey_comp; bool is_hmac; }; static void cc_set_desc(struct ahash_req_ctx *areq_ctx, struct cc_hash_ctx *ctx, unsigned int flow_mode, struct cc_hw_desc desc[], bool is_not_last_data, unsigned int *seq_size); static void cc_set_endianity(u32 mode, struct cc_hw_desc *desc) { if (mode == DRV_HASH_MD5 || mode == DRV_HASH_SHA384 || mode == DRV_HASH_SHA512) { set_bytes_swap(desc, 1); } else { set_cipher_config0(desc, HASH_DIGEST_RESULT_LITTLE_ENDIAN); } } static int cc_map_result(struct device *dev, struct ahash_req_ctx *state, unsigned int digestsize) { state->digest_result_dma_addr = dma_map_single(dev, state->digest_result_buff, digestsize, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, state->digest_result_dma_addr)) { dev_err(dev, "Mapping digest result buffer %u B for DMA failed\n", digestsize); return -ENOMEM; } dev_dbg(dev, "Mapped digest result buffer %u B at va=%pK to dma=%pad\n", digestsize, state->digest_result_buff, &state->digest_result_dma_addr); return 0; } static void cc_init_req(struct device *dev, struct ahash_req_ctx *state, struct cc_hash_ctx *ctx) { bool is_hmac = ctx->is_hmac; memset(state, 0, sizeof(*state)); if (is_hmac) { if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC && ctx->hw_mode != DRV_CIPHER_CMAC) { dma_sync_single_for_cpu(dev, ctx->digest_buff_dma_addr, ctx->inter_digestsize, DMA_BIDIRECTIONAL); memcpy(state->digest_buff, ctx->digest_buff, ctx->inter_digestsize); if (ctx->hash_mode == DRV_HASH_SHA512 || ctx->hash_mode == DRV_HASH_SHA384) memcpy(state->digest_bytes_len, digest_len_sha512_init, ctx->hash_len); else memcpy(state->digest_bytes_len, digest_len_init, ctx->hash_len); } if (ctx->hash_mode != DRV_HASH_NULL) { dma_sync_single_for_cpu(dev, ctx->opad_tmp_keys_dma_addr, ctx->inter_digestsize, DMA_BIDIRECTIONAL); memcpy(state->opad_digest_buff, ctx->opad_tmp_keys_buff, ctx->inter_digestsize); } } else { /*hash*/ /* Copy the initial digests if hash flow. */ const void *larval = cc_larval_digest(dev, ctx->hash_mode); memcpy(state->digest_buff, larval, ctx->inter_digestsize); } } static int cc_map_req(struct device *dev, struct ahash_req_ctx *state, struct cc_hash_ctx *ctx) { bool is_hmac = ctx->is_hmac; state->digest_buff_dma_addr = dma_map_single(dev, state->digest_buff, ctx->inter_digestsize, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, state->digest_buff_dma_addr)) { dev_err(dev, "Mapping digest len %d B at va=%pK for DMA failed\n", ctx->inter_digestsize, state->digest_buff); return -EINVAL; } dev_dbg(dev, "Mapped digest %d B at va=%pK to dma=%pad\n", ctx->inter_digestsize, state->digest_buff, &state->digest_buff_dma_addr); if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC) { state->digest_bytes_len_dma_addr = dma_map_single(dev, state->digest_bytes_len, HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, state->digest_bytes_len_dma_addr)) { dev_err(dev, "Mapping digest len %u B at va=%pK for DMA failed\n", HASH_MAX_LEN_SIZE, state->digest_bytes_len); goto unmap_digest_buf; } dev_dbg(dev, "Mapped digest len %u B at va=%pK to dma=%pad\n", HASH_MAX_LEN_SIZE, state->digest_bytes_len, &state->digest_bytes_len_dma_addr); } if (is_hmac && ctx->hash_mode != DRV_HASH_NULL) { state->opad_digest_dma_addr = dma_map_single(dev, state->opad_digest_buff, ctx->inter_digestsize, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, state->opad_digest_dma_addr)) { dev_err(dev, "Mapping opad digest %d B at va=%pK for DMA failed\n", ctx->inter_digestsize, state->opad_digest_buff); goto unmap_digest_len; } dev_dbg(dev, "Mapped opad digest %d B at va=%pK to dma=%pad\n", ctx->inter_digestsize, state->opad_digest_buff, &state->opad_digest_dma_addr); } return 0; unmap_digest_len: if (state->digest_bytes_len_dma_addr) { dma_unmap_single(dev, state->digest_bytes_len_dma_addr, HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL); state->digest_bytes_len_dma_addr = 0; } unmap_digest_buf: if (state->digest_buff_dma_addr) { dma_unmap_single(dev, state->digest_buff_dma_addr, ctx->inter_digestsize, DMA_BIDIRECTIONAL); state->digest_buff_dma_addr = 0; } return -EINVAL; } static void cc_unmap_req(struct device *dev, struct ahash_req_ctx *state, struct cc_hash_ctx *ctx) { if (state->digest_buff_dma_addr) { dma_unmap_single(dev, state->digest_buff_dma_addr, ctx->inter_digestsize, DMA_BIDIRECTIONAL); dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n", &state->digest_buff_dma_addr); state->digest_buff_dma_addr = 0; } if (state->digest_bytes_len_dma_addr) { dma_unmap_single(dev, state->digest_bytes_len_dma_addr, HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL); dev_dbg(dev, "Unmapped digest-bytes-len buffer: digest_bytes_len_dma_addr=%pad\n", &state->digest_bytes_len_dma_addr); state->digest_bytes_len_dma_addr = 0; } if (state->opad_digest_dma_addr) { dma_unmap_single(dev, state->opad_digest_dma_addr, ctx->inter_digestsize, DMA_BIDIRECTIONAL); dev_dbg(dev, "Unmapped opad-digest: opad_digest_dma_addr=%pad\n", &state->opad_digest_dma_addr); state->opad_digest_dma_addr = 0; } } static void cc_unmap_result(struct device *dev, struct ahash_req_ctx *state, unsigned int digestsize, u8 *result) { if (state->digest_result_dma_addr) { dma_unmap_single(dev, state->digest_result_dma_addr, digestsize, DMA_BIDIRECTIONAL); dev_dbg(dev, "unmpa digest result buffer va (%pK) pa (%pad) len %u\n", state->digest_result_buff, &state->digest_result_dma_addr, digestsize); memcpy(result, state->digest_result_buff, digestsize); } state->digest_result_dma_addr = 0; } static void cc_update_complete(struct device *dev, void *cc_req, int err) { struct ahash_request *req = (struct ahash_request *)cc_req; struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); dev_dbg(dev, "req=%pK\n", req); cc_unmap_hash_request(dev, state, req->src, false); cc_unmap_req(dev, state, ctx); req->base.complete(&req->base, err); } static void cc_digest_complete(struct device *dev, void *cc_req, int err) { struct ahash_request *req = (struct ahash_request *)cc_req; struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); u32 digestsize = crypto_ahash_digestsize(tfm); dev_dbg(dev, "req=%pK\n", req); cc_unmap_hash_request(dev, state, req->src, false); cc_unmap_result(dev, state, digestsize, req->result); cc_unmap_req(dev, state, ctx); req->base.complete(&req->base, err); } static void cc_hash_complete(struct device *dev, void *cc_req, int err) { struct ahash_request *req = (struct ahash_request *)cc_req; struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); u32 digestsize = crypto_ahash_digestsize(tfm); dev_dbg(dev, "req=%pK\n", req); cc_unmap_hash_request(dev, state, req->src, false); cc_unmap_result(dev, state, digestsize, req->result); cc_unmap_req(dev, state, ctx); req->base.complete(&req->base, err); } static int cc_fin_result(struct cc_hw_desc *desc, struct ahash_request *req, int idx) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); u32 digestsize = crypto_ahash_digestsize(tfm); /* Get final MAC result */ hw_desc_init(&desc[idx]); set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode); /* TODO */ set_dout_dlli(&desc[idx], state->digest_result_dma_addr, digestsize, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED); cc_set_endianity(ctx->hash_mode, &desc[idx]); idx++; return idx; } static int cc_fin_hmac(struct cc_hw_desc *desc, struct ahash_request *req, int idx) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); u32 digestsize = crypto_ahash_digestsize(tfm); /* store the hash digest result in the context */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, digestsize, NS_BIT, 0); set_flow_mode(&desc[idx], S_HASH_to_DOUT); cc_set_endianity(ctx->hash_mode, &desc[idx]); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); idx++; /* Loading hash opad xor key state */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_din_type(&desc[idx], DMA_DLLI, state->opad_digest_dma_addr, ctx->inter_digestsize, NS_BIT); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; /* Load the hash current length */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, ctx->hash_mode), ctx->hash_len); set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; /* Memory Barrier: wait for IPAD/OPAD axi write to complete */ hw_desc_init(&desc[idx]); set_din_no_dma(&desc[idx], 0, 0xfffff0); set_dout_no_dma(&desc[idx], 0, 0, 1); idx++; /* Perform HASH update */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, digestsize, NS_BIT); set_flow_mode(&desc[idx], DIN_HASH); idx++; return idx; } static int cc_hash_digest(struct ahash_request *req) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); u32 digestsize = crypto_ahash_digestsize(tfm); struct scatterlist *src = req->src; unsigned int nbytes = req->nbytes; u8 *result = req->result; struct device *dev = drvdata_to_dev(ctx->drvdata); bool is_hmac = ctx->is_hmac; struct cc_crypto_req cc_req = {}; struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN]; cc_sram_addr_t larval_digest_addr = cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode); int idx = 0; int rc = 0; gfp_t flags = cc_gfp_flags(&req->base); dev_dbg(dev, "===== %s-digest (%d) ====\n", is_hmac ? "hmac" : "hash", nbytes); cc_init_req(dev, state, ctx); if (cc_map_req(dev, state, ctx)) { dev_err(dev, "map_ahash_source() failed\n"); return -ENOMEM; } if (cc_map_result(dev, state, digestsize)) { dev_err(dev, "map_ahash_digest() failed\n"); cc_unmap_req(dev, state, ctx); return -ENOMEM; } if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, 1, flags)) { dev_err(dev, "map_ahash_request_final() failed\n"); cc_unmap_result(dev, state, digestsize, result); cc_unmap_req(dev, state, ctx); return -ENOMEM; } /* Setup request structure */ cc_req.user_cb = cc_digest_complete; cc_req.user_arg = req; /* If HMAC then load hash IPAD xor key, if HASH then load initial * digest */ hw_desc_init(&desc[idx]); set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode); if (is_hmac) { set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT); } else { set_din_sram(&desc[idx], larval_digest_addr, ctx->inter_digestsize); } set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; /* Load the hash current length */ hw_desc_init(&desc[idx]); set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode); if (is_hmac) { set_din_type(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr, ctx->hash_len, NS_BIT); } else { set_din_const(&desc[idx], 0, ctx->hash_len); if (nbytes) set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED); else set_cipher_do(&desc[idx], DO_PAD); } set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx); if (is_hmac) { /* HW last hash block padding (aka. "DO_PAD") */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, ctx->hash_len, NS_BIT, 0); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE1); set_cipher_do(&desc[idx], DO_PAD); idx++; idx = cc_fin_hmac(desc, req, idx); } idx = cc_fin_result(desc, req, idx); rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base); if (rc != -EINPROGRESS && rc != -EBUSY) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); cc_unmap_hash_request(dev, state, src, true); cc_unmap_result(dev, state, digestsize, result); cc_unmap_req(dev, state, ctx); } return rc; } static int cc_restore_hash(struct cc_hw_desc *desc, struct cc_hash_ctx *ctx, struct ahash_req_ctx *state, unsigned int idx) { /* Restore hash digest */ hw_desc_init(&desc[idx]); set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode); set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; /* Restore hash current length */ hw_desc_init(&desc[idx]); set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode); set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED); set_din_type(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr, ctx->hash_len, NS_BIT); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx); return idx; } static int cc_hash_update(struct ahash_request *req) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base); struct scatterlist *src = req->src; unsigned int nbytes = req->nbytes; struct device *dev = drvdata_to_dev(ctx->drvdata); struct cc_crypto_req cc_req = {}; struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN]; u32 idx = 0; int rc; gfp_t flags = cc_gfp_flags(&req->base); dev_dbg(dev, "===== %s-update (%d) ====\n", ctx->is_hmac ? "hmac" : "hash", nbytes); if (nbytes == 0) { /* no real updates required */ return 0; } rc = cc_map_hash_request_update(ctx->drvdata, state, src, nbytes, block_size, flags); if (rc) { if (rc == 1) { dev_dbg(dev, " data size not require HW update %x\n", nbytes); /* No hardware updates are required */ return 0; } dev_err(dev, "map_ahash_request_update() failed\n"); return -ENOMEM; } if (cc_map_req(dev, state, ctx)) { dev_err(dev, "map_ahash_source() failed\n"); cc_unmap_hash_request(dev, state, src, true); return -EINVAL; } /* Setup request structure */ cc_req.user_cb = cc_update_complete; cc_req.user_arg = req; idx = cc_restore_hash(desc, ctx, state, idx); /* store the hash digest result in context */ hw_desc_init(&desc[idx]); set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode); set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT, 0); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); idx++; /* store current hash length in context */ hw_desc_init(&desc[idx]); set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode); set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr, ctx->hash_len, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE1); idx++; rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base); if (rc != -EINPROGRESS && rc != -EBUSY) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); cc_unmap_hash_request(dev, state, src, true); cc_unmap_req(dev, state, ctx); } return rc; } static int cc_do_finup(struct ahash_request *req, bool update) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); u32 digestsize = crypto_ahash_digestsize(tfm); struct scatterlist *src = req->src; unsigned int nbytes = req->nbytes; u8 *result = req->result; struct device *dev = drvdata_to_dev(ctx->drvdata); bool is_hmac = ctx->is_hmac; struct cc_crypto_req cc_req = {}; struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN]; unsigned int idx = 0; int rc; gfp_t flags = cc_gfp_flags(&req->base); dev_dbg(dev, "===== %s-%s (%d) ====\n", is_hmac ? "hmac" : "hash", update ? "finup" : "final", nbytes); if (cc_map_req(dev, state, ctx)) { dev_err(dev, "map_ahash_source() failed\n"); return -EINVAL; } if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, update, flags)) { dev_err(dev, "map_ahash_request_final() failed\n"); cc_unmap_req(dev, state, ctx); return -ENOMEM; } if (cc_map_result(dev, state, digestsize)) { dev_err(dev, "map_ahash_digest() failed\n"); cc_unmap_hash_request(dev, state, src, true); cc_unmap_req(dev, state, ctx); return -ENOMEM; } /* Setup request structure */ cc_req.user_cb = cc_hash_complete; cc_req.user_arg = req; idx = cc_restore_hash(desc, ctx, state, idx); /* Pad the hash */ hw_desc_init(&desc[idx]); set_cipher_do(&desc[idx], DO_PAD); set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode); set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr, ctx->hash_len, NS_BIT, 0); set_setup_mode(&desc[idx], SETUP_WRITE_STATE1); set_flow_mode(&desc[idx], S_HASH_to_DOUT); idx++; if (is_hmac) idx = cc_fin_hmac(desc, req, idx); idx = cc_fin_result(desc, req, idx); rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base); if (rc != -EINPROGRESS && rc != -EBUSY) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); cc_unmap_hash_request(dev, state, src, true); cc_unmap_result(dev, state, digestsize, result); cc_unmap_req(dev, state, ctx); } return rc; } static int cc_hash_finup(struct ahash_request *req) { return cc_do_finup(req, true); } static int cc_hash_final(struct ahash_request *req) { return cc_do_finup(req, false); } static int cc_hash_init(struct ahash_request *req) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "===== init (%d) ====\n", req->nbytes); cc_init_req(dev, state, ctx); return 0; } static int cc_hash_setkey(struct crypto_ahash *ahash, const u8 *key, unsigned int keylen) { unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST }; struct cc_crypto_req cc_req = {}; struct cc_hash_ctx *ctx = NULL; int blocksize = 0; int digestsize = 0; int i, idx = 0, rc = 0; struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN]; cc_sram_addr_t larval_addr; struct device *dev; ctx = crypto_ahash_ctx(ahash); dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "start keylen: %d", keylen); blocksize = crypto_tfm_alg_blocksize(&ahash->base); digestsize = crypto_ahash_digestsize(ahash); larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode); /* The keylen value distinguishes HASH in case keylen is ZERO bytes, * any NON-ZERO value utilizes HMAC flow */ ctx->key_params.keylen = keylen; ctx->key_params.key_dma_addr = 0; ctx->is_hmac = true; if (keylen) { ctx->key_params.key_dma_addr = dma_map_single(dev, (void *)key, keylen, DMA_TO_DEVICE); if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) { dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n", key, keylen); return -ENOMEM; } dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n", &ctx->key_params.key_dma_addr, ctx->key_params.keylen); if (keylen > blocksize) { /* Load hash initial state */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_din_sram(&desc[idx], larval_addr, ctx->inter_digestsize); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; /* Load the hash current length*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_din_const(&desc[idx], 0, ctx->hash_len); set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, ctx->key_params.key_dma_addr, keylen, NS_BIT); set_flow_mode(&desc[idx], DIN_HASH); idx++; /* Get hashed key */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr, digestsize, NS_BIT, 0); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED); cc_set_endianity(ctx->hash_mode, &desc[idx]); idx++; hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0, (blocksize - digestsize)); set_flow_mode(&desc[idx], BYPASS); set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr + digestsize), (blocksize - digestsize), NS_BIT, 0); idx++; } else { hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, ctx->key_params.key_dma_addr, keylen, NS_BIT); set_flow_mode(&desc[idx], BYPASS); set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr, keylen, NS_BIT, 0); idx++; if ((blocksize - keylen)) { hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0, (blocksize - keylen)); set_flow_mode(&desc[idx], BYPASS); set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr + keylen), (blocksize - keylen), NS_BIT, 0); idx++; } } } else { hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0, blocksize); set_flow_mode(&desc[idx], BYPASS); set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr), blocksize, NS_BIT, 0); idx++; } rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx); if (rc) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); goto out; } /* calc derived HMAC key */ for (idx = 0, i = 0; i < 2; i++) { /* Load hash initial state */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_din_sram(&desc[idx], larval_addr, ctx->inter_digestsize); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; /* Load the hash current length*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_din_const(&desc[idx], 0, ctx->hash_len); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; /* Prepare ipad key */ hw_desc_init(&desc[idx]); set_xor_val(&desc[idx], hmac_pad_const[i]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE1); idx++; /* Perform HASH update */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr, blocksize, NS_BIT); set_cipher_mode(&desc[idx], ctx->hw_mode); set_xor_active(&desc[idx]); set_flow_mode(&desc[idx], DIN_HASH); idx++; /* Get the IPAD/OPAD xor key (Note, IPAD is the initial digest * of the first HASH "update" state) */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); if (i > 0) /* Not first iteration */ set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr, ctx->inter_digestsize, NS_BIT, 0); else /* First iteration */ set_dout_dlli(&desc[idx], ctx->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT, 0); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); idx++; } rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx); out: if (rc) crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN); if (ctx->key_params.key_dma_addr) { dma_unmap_single(dev, ctx->key_params.key_dma_addr, ctx->key_params.keylen, DMA_TO_DEVICE); dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n", &ctx->key_params.key_dma_addr, ctx->key_params.keylen); } return rc; } static int cc_xcbc_setkey(struct crypto_ahash *ahash, const u8 *key, unsigned int keylen) { struct cc_crypto_req cc_req = {}; struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct device *dev = drvdata_to_dev(ctx->drvdata); int rc = 0; unsigned int idx = 0; struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN]; dev_dbg(dev, "===== setkey (%d) ====\n", keylen); switch (keylen) { case AES_KEYSIZE_128: case AES_KEYSIZE_192: case AES_KEYSIZE_256: break; default: return -EINVAL; } ctx->key_params.keylen = keylen; ctx->key_params.key_dma_addr = dma_map_single(dev, (void *)key, keylen, DMA_TO_DEVICE); if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) { dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n", key, keylen); return -ENOMEM; } dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n", &ctx->key_params.key_dma_addr, ctx->key_params.keylen); ctx->is_hmac = true; /* 1. Load the AES key */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, ctx->key_params.key_dma_addr, keylen, NS_BIT); set_cipher_mode(&desc[idx], DRV_CIPHER_ECB); set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT); set_key_size_aes(&desc[idx], keylen); set_flow_mode(&desc[idx], S_DIN_to_AES); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0x01010101, CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], DIN_AES_DOUT); set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET), CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0); idx++; hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0x02020202, CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], DIN_AES_DOUT); set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET), CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0); idx++; hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0x03030303, CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], DIN_AES_DOUT); set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET), CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0); idx++; rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx); if (rc) crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN); dma_unmap_single(dev, ctx->key_params.key_dma_addr, ctx->key_params.keylen, DMA_TO_DEVICE); dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n", &ctx->key_params.key_dma_addr, ctx->key_params.keylen); return rc; } static int cc_cmac_setkey(struct crypto_ahash *ahash, const u8 *key, unsigned int keylen) { struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct device *dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "===== setkey (%d) ====\n", keylen); ctx->is_hmac = true; switch (keylen) { case AES_KEYSIZE_128: case AES_KEYSIZE_192: case AES_KEYSIZE_256: break; default: return -EINVAL; } ctx->key_params.keylen = keylen; /* STAT_PHASE_1: Copy key to ctx */ dma_sync_single_for_cpu(dev, ctx->opad_tmp_keys_dma_addr, keylen, DMA_TO_DEVICE); memcpy(ctx->opad_tmp_keys_buff, key, keylen); if (keylen == 24) { memset(ctx->opad_tmp_keys_buff + 24, 0, CC_AES_KEY_SIZE_MAX - 24); } dma_sync_single_for_device(dev, ctx->opad_tmp_keys_dma_addr, keylen, DMA_TO_DEVICE); ctx->key_params.keylen = keylen; return 0; } static void cc_free_ctx(struct cc_hash_ctx *ctx) { struct device *dev = drvdata_to_dev(ctx->drvdata); if (ctx->digest_buff_dma_addr) { dma_unmap_single(dev, ctx->digest_buff_dma_addr, sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL); dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n", &ctx->digest_buff_dma_addr); ctx->digest_buff_dma_addr = 0; } if (ctx->opad_tmp_keys_dma_addr) { dma_unmap_single(dev, ctx->opad_tmp_keys_dma_addr, sizeof(ctx->opad_tmp_keys_buff), DMA_BIDIRECTIONAL); dev_dbg(dev, "Unmapped opad-digest: opad_tmp_keys_dma_addr=%pad\n", &ctx->opad_tmp_keys_dma_addr); ctx->opad_tmp_keys_dma_addr = 0; } ctx->key_params.keylen = 0; } static int cc_alloc_ctx(struct cc_hash_ctx *ctx) { struct device *dev = drvdata_to_dev(ctx->drvdata); ctx->key_params.keylen = 0; ctx->digest_buff_dma_addr = dma_map_single(dev, (void *)ctx->digest_buff, sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, ctx->digest_buff_dma_addr)) { dev_err(dev, "Mapping digest len %zu B at va=%pK for DMA failed\n", sizeof(ctx->digest_buff), ctx->digest_buff); goto fail; } dev_dbg(dev, "Mapped digest %zu B at va=%pK to dma=%pad\n", sizeof(ctx->digest_buff), ctx->digest_buff, &ctx->digest_buff_dma_addr); ctx->opad_tmp_keys_dma_addr = dma_map_single(dev, (void *)ctx->opad_tmp_keys_buff, sizeof(ctx->opad_tmp_keys_buff), DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, ctx->opad_tmp_keys_dma_addr)) { dev_err(dev, "Mapping opad digest %zu B at va=%pK for DMA failed\n", sizeof(ctx->opad_tmp_keys_buff), ctx->opad_tmp_keys_buff); goto fail; } dev_dbg(dev, "Mapped opad_tmp_keys %zu B at va=%pK to dma=%pad\n", sizeof(ctx->opad_tmp_keys_buff), ctx->opad_tmp_keys_buff, &ctx->opad_tmp_keys_dma_addr); ctx->is_hmac = false; return 0; fail: cc_free_ctx(ctx); return -ENOMEM; } static int cc_get_hash_len(struct crypto_tfm *tfm) { struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm); if (ctx->hash_mode == DRV_HASH_SM3) return CC_SM3_HASH_LEN_SIZE; else return cc_get_default_hash_len(ctx->drvdata); } static int cc_cra_init(struct crypto_tfm *tfm) { struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm); struct hash_alg_common *hash_alg_common = container_of(tfm->__crt_alg, struct hash_alg_common, base); struct ahash_alg *ahash_alg = container_of(hash_alg_common, struct ahash_alg, halg); struct cc_hash_alg *cc_alg = container_of(ahash_alg, struct cc_hash_alg, ahash_alg); crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct ahash_req_ctx)); ctx->hash_mode = cc_alg->hash_mode; ctx->hw_mode = cc_alg->hw_mode; ctx->inter_digestsize = cc_alg->inter_digestsize; ctx->drvdata = cc_alg->drvdata; ctx->hash_len = cc_get_hash_len(tfm); return cc_alloc_ctx(ctx); } static void cc_cra_exit(struct crypto_tfm *tfm) { struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "cc_cra_exit"); cc_free_ctx(ctx); } static int cc_mac_update(struct ahash_request *req) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base); struct cc_crypto_req cc_req = {}; struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN]; int rc; u32 idx = 0; gfp_t flags = cc_gfp_flags(&req->base); if (req->nbytes == 0) { /* no real updates required */ return 0; } state->xcbc_count++; rc = cc_map_hash_request_update(ctx->drvdata, state, req->src, req->nbytes, block_size, flags); if (rc) { if (rc == 1) { dev_dbg(dev, " data size not require HW update %x\n", req->nbytes); /* No hardware updates are required */ return 0; } dev_err(dev, "map_ahash_request_update() failed\n"); return -ENOMEM; } if (cc_map_req(dev, state, ctx)) { dev_err(dev, "map_ahash_source() failed\n"); return -EINVAL; } if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) cc_setup_xcbc(req, desc, &idx); else cc_setup_cmac(req, desc, &idx); cc_set_desc(state, ctx, DIN_AES_DOUT, desc, true, &idx); /* store the hash digest result in context */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, ctx->inter_digestsize, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); set_flow_mode(&desc[idx], S_AES_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); idx++; /* Setup request structure */ cc_req.user_cb = (void *)cc_update_complete; cc_req.user_arg = (void *)req; rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base); if (rc != -EINPROGRESS && rc != -EBUSY) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); cc_unmap_hash_request(dev, state, req->src, true); cc_unmap_req(dev, state, ctx); } return rc; } static int cc_mac_final(struct ahash_request *req) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); struct cc_crypto_req cc_req = {}; struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN]; int idx = 0; int rc = 0; u32 key_size, key_len; u32 digestsize = crypto_ahash_digestsize(tfm); gfp_t flags = cc_gfp_flags(&req->base); u32 rem_cnt = *cc_hash_buf_cnt(state); if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) { key_size = CC_AES_128_BIT_KEY_SIZE; key_len = CC_AES_128_BIT_KEY_SIZE; } else { key_size = (ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE : ctx->key_params.keylen; key_len = ctx->key_params.keylen; } dev_dbg(dev, "===== final xcbc reminder (%d) ====\n", rem_cnt); if (cc_map_req(dev, state, ctx)) { dev_err(dev, "map_ahash_source() failed\n"); return -EINVAL; } if (cc_map_hash_request_final(ctx->drvdata, state, req->src, req->nbytes, 0, flags)) { dev_err(dev, "map_ahash_request_final() failed\n"); cc_unmap_req(dev, state, ctx); return -ENOMEM; } if (cc_map_result(dev, state, digestsize)) { dev_err(dev, "map_ahash_digest() failed\n"); cc_unmap_hash_request(dev, state, req->src, true); cc_unmap_req(dev, state, ctx); return -ENOMEM; } /* Setup request structure */ cc_req.user_cb = (void *)cc_hash_complete; cc_req.user_arg = (void *)req; if (state->xcbc_count && rem_cnt == 0) { /* Load key for ECB decryption */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_ECB); set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_DECRYPT); set_din_type(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET), key_size, NS_BIT); set_key_size_aes(&desc[idx], key_len); set_flow_mode(&desc[idx], S_DIN_to_AES); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; /* Initiate decryption of block state to previous * block_state-XOR-M[n] */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT); set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT, 0); set_flow_mode(&desc[idx], DIN_AES_DOUT); idx++; /* Memory Barrier: wait for axi write to complete */ hw_desc_init(&desc[idx]); set_din_no_dma(&desc[idx], 0, 0xfffff0); set_dout_no_dma(&desc[idx], 0, 0, 1); idx++; } if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) cc_setup_xcbc(req, desc, &idx); else cc_setup_cmac(req, desc, &idx); if (state->xcbc_count == 0) { hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_key_size_aes(&desc[idx], key_len); set_cmac_size0_mode(&desc[idx]); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; } else if (rem_cnt > 0) { cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx); } else { hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0x00, CC_AES_BLOCK_SIZE); set_flow_mode(&desc[idx], DIN_AES_DOUT); idx++; } /* Get final MAC result */ hw_desc_init(&desc[idx]); /* TODO */ set_dout_dlli(&desc[idx], state->digest_result_dma_addr, digestsize, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); set_flow_mode(&desc[idx], S_AES_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_cipher_mode(&desc[idx], ctx->hw_mode); idx++; rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base); if (rc != -EINPROGRESS && rc != -EBUSY) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); cc_unmap_hash_request(dev, state, req->src, true); cc_unmap_result(dev, state, digestsize, req->result); cc_unmap_req(dev, state, ctx); } return rc; } static int cc_mac_finup(struct ahash_request *req) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); struct cc_crypto_req cc_req = {}; struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN]; int idx = 0; int rc = 0; u32 key_len = 0; u32 digestsize = crypto_ahash_digestsize(tfm); gfp_t flags = cc_gfp_flags(&req->base); dev_dbg(dev, "===== finup xcbc(%d) ====\n", req->nbytes); if (state->xcbc_count > 0 && req->nbytes == 0) { dev_dbg(dev, "No data to update. Call to fdx_mac_final\n"); return cc_mac_final(req); } if (cc_map_req(dev, state, ctx)) { dev_err(dev, "map_ahash_source() failed\n"); return -EINVAL; } if (cc_map_hash_request_final(ctx->drvdata, state, req->src, req->nbytes, 1, flags)) { dev_err(dev, "map_ahash_request_final() failed\n"); cc_unmap_req(dev, state, ctx); return -ENOMEM; } if (cc_map_result(dev, state, digestsize)) { dev_err(dev, "map_ahash_digest() failed\n"); cc_unmap_hash_request(dev, state, req->src, true); cc_unmap_req(dev, state, ctx); return -ENOMEM; } /* Setup request structure */ cc_req.user_cb = (void *)cc_hash_complete; cc_req.user_arg = (void *)req; if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) { key_len = CC_AES_128_BIT_KEY_SIZE; cc_setup_xcbc(req, desc, &idx); } else { key_len = ctx->key_params.keylen; cc_setup_cmac(req, desc, &idx); } if (req->nbytes == 0) { hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_key_size_aes(&desc[idx], key_len); set_cmac_size0_mode(&desc[idx]); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; } else { cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx); } /* Get final MAC result */ hw_desc_init(&desc[idx]); /* TODO */ set_dout_dlli(&desc[idx], state->digest_result_dma_addr, digestsize, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); set_flow_mode(&desc[idx], S_AES_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_cipher_mode(&desc[idx], ctx->hw_mode); idx++; rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base); if (rc != -EINPROGRESS && rc != -EBUSY) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); cc_unmap_hash_request(dev, state, req->src, true); cc_unmap_result(dev, state, digestsize, req->result); cc_unmap_req(dev, state, ctx); } return rc; } static int cc_mac_digest(struct ahash_request *req) { struct ahash_req_ctx *state = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); u32 digestsize = crypto_ahash_digestsize(tfm); struct cc_crypto_req cc_req = {}; struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN]; u32 key_len; unsigned int idx = 0; int rc; gfp_t flags = cc_gfp_flags(&req->base); dev_dbg(dev, "===== -digest mac (%d) ====\n", req->nbytes); cc_init_req(dev, state, ctx); if (cc_map_req(dev, state, ctx)) { dev_err(dev, "map_ahash_source() failed\n"); return -ENOMEM; } if (cc_map_result(dev, state, digestsize)) { dev_err(dev, "map_ahash_digest() failed\n"); cc_unmap_req(dev, state, ctx); return -ENOMEM; } if (cc_map_hash_request_final(ctx->drvdata, state, req->src, req->nbytes, 1, flags)) { dev_err(dev, "map_ahash_request_final() failed\n"); cc_unmap_req(dev, state, ctx); return -ENOMEM; } /* Setup request structure */ cc_req.user_cb = (void *)cc_digest_complete; cc_req.user_arg = (void *)req; if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) { key_len = CC_AES_128_BIT_KEY_SIZE; cc_setup_xcbc(req, desc, &idx); } else { key_len = ctx->key_params.keylen; cc_setup_cmac(req, desc, &idx); } if (req->nbytes == 0) { hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], ctx->hw_mode); set_key_size_aes(&desc[idx], key_len); set_cmac_size0_mode(&desc[idx]); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; } else { cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx); } /* Get final MAC result */ hw_desc_init(&desc[idx]); set_dout_dlli(&desc[idx], state->digest_result_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); set_flow_mode(&desc[idx], S_AES_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_cipher_mode(&desc[idx], ctx->hw_mode); idx++; rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base); if (rc != -EINPROGRESS && rc != -EBUSY) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); cc_unmap_hash_request(dev, state, req->src, true); cc_unmap_result(dev, state, digestsize, req->result); cc_unmap_req(dev, state, ctx); } return rc; } static int cc_hash_export(struct ahash_request *req, void *out) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct ahash_req_ctx *state = ahash_request_ctx(req); u8 *curr_buff = cc_hash_buf(state); u32 curr_buff_cnt = *cc_hash_buf_cnt(state); const u32 tmp = CC_EXPORT_MAGIC; memcpy(out, &tmp, sizeof(u32)); out += sizeof(u32); memcpy(out, state->digest_buff, ctx->inter_digestsize); out += ctx->inter_digestsize; memcpy(out, state->digest_bytes_len, ctx->hash_len); out += ctx->hash_len; memcpy(out, &curr_buff_cnt, sizeof(u32)); out += sizeof(u32); memcpy(out, curr_buff, curr_buff_cnt); return 0; } static int cc_hash_import(struct ahash_request *req, const void *in) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct device *dev = drvdata_to_dev(ctx->drvdata); struct ahash_req_ctx *state = ahash_request_ctx(req); u32 tmp; memcpy(&tmp, in, sizeof(u32)); if (tmp != CC_EXPORT_MAGIC) return -EINVAL; in += sizeof(u32); cc_init_req(dev, state, ctx); memcpy(state->digest_buff, in, ctx->inter_digestsize); in += ctx->inter_digestsize; memcpy(state->digest_bytes_len, in, ctx->hash_len); in += ctx->hash_len; /* Sanity check the data as much as possible */ memcpy(&tmp, in, sizeof(u32)); if (tmp > CC_MAX_HASH_BLCK_SIZE) return -EINVAL; in += sizeof(u32); state->buf_cnt[0] = tmp; memcpy(state->buffers[0], in, tmp); return 0; } struct cc_hash_template { char name[CRYPTO_MAX_ALG_NAME]; char driver_name[CRYPTO_MAX_ALG_NAME]; char mac_name[CRYPTO_MAX_ALG_NAME]; char mac_driver_name[CRYPTO_MAX_ALG_NAME]; unsigned int blocksize; bool is_mac; bool synchronize; struct ahash_alg template_ahash; int hash_mode; int hw_mode; int inter_digestsize; struct cc_drvdata *drvdata; u32 min_hw_rev; enum cc_std_body std_body; }; #define CC_STATE_SIZE(_x) \ ((_x) + HASH_MAX_LEN_SIZE + CC_MAX_HASH_BLCK_SIZE + (2 * sizeof(u32))) /* hash descriptors */ static struct cc_hash_template driver_hash[] = { //Asynchronize hash template { .name = "sha1", .driver_name = "sha1-ccree", .mac_name = "hmac(sha1)", .mac_driver_name = "hmac-sha1-ccree", .blocksize = SHA1_BLOCK_SIZE, .is_mac = true, .synchronize = false, .template_ahash = { .init = cc_hash_init, .update = cc_hash_update, .final = cc_hash_final, .finup = cc_hash_finup, .digest = cc_hash_digest, .export = cc_hash_export, .import = cc_hash_import, .setkey = cc_hash_setkey, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = CC_STATE_SIZE(SHA1_DIGEST_SIZE), }, }, .hash_mode = DRV_HASH_SHA1, .hw_mode = DRV_HASH_HW_SHA1, .inter_digestsize = SHA1_DIGEST_SIZE, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "sha256", .driver_name = "sha256-ccree", .mac_name = "hmac(sha256)", .mac_driver_name = "hmac-sha256-ccree", .blocksize = SHA256_BLOCK_SIZE, .is_mac = true, .template_ahash = { .init = cc_hash_init, .update = cc_hash_update, .final = cc_hash_final, .finup = cc_hash_finup, .digest = cc_hash_digest, .export = cc_hash_export, .import = cc_hash_import, .setkey = cc_hash_setkey, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = CC_STATE_SIZE(SHA256_DIGEST_SIZE) }, }, .hash_mode = DRV_HASH_SHA256, .hw_mode = DRV_HASH_HW_SHA256, .inter_digestsize = SHA256_DIGEST_SIZE, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "sha224", .driver_name = "sha224-ccree", .mac_name = "hmac(sha224)", .mac_driver_name = "hmac-sha224-ccree", .blocksize = SHA224_BLOCK_SIZE, .is_mac = true, .template_ahash = { .init = cc_hash_init, .update = cc_hash_update, .final = cc_hash_final, .finup = cc_hash_finup, .digest = cc_hash_digest, .export = cc_hash_export, .import = cc_hash_import, .setkey = cc_hash_setkey, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = CC_STATE_SIZE(SHA224_DIGEST_SIZE), }, }, .hash_mode = DRV_HASH_SHA224, .hw_mode = DRV_HASH_HW_SHA256, .inter_digestsize = SHA256_DIGEST_SIZE, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "sha384", .driver_name = "sha384-ccree", .mac_name = "hmac(sha384)", .mac_driver_name = "hmac-sha384-ccree", .blocksize = SHA384_BLOCK_SIZE, .is_mac = true, .template_ahash = { .init = cc_hash_init, .update = cc_hash_update, .final = cc_hash_final, .finup = cc_hash_finup, .digest = cc_hash_digest, .export = cc_hash_export, .import = cc_hash_import, .setkey = cc_hash_setkey, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = CC_STATE_SIZE(SHA384_DIGEST_SIZE), }, }, .hash_mode = DRV_HASH_SHA384, .hw_mode = DRV_HASH_HW_SHA512, .inter_digestsize = SHA512_DIGEST_SIZE, .min_hw_rev = CC_HW_REV_712, .std_body = CC_STD_NIST, }, { .name = "sha512", .driver_name = "sha512-ccree", .mac_name = "hmac(sha512)", .mac_driver_name = "hmac-sha512-ccree", .blocksize = SHA512_BLOCK_SIZE, .is_mac = true, .template_ahash = { .init = cc_hash_init, .update = cc_hash_update, .final = cc_hash_final, .finup = cc_hash_finup, .digest = cc_hash_digest, .export = cc_hash_export, .import = cc_hash_import, .setkey = cc_hash_setkey, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = CC_STATE_SIZE(SHA512_DIGEST_SIZE), }, }, .hash_mode = DRV_HASH_SHA512, .hw_mode = DRV_HASH_HW_SHA512, .inter_digestsize = SHA512_DIGEST_SIZE, .min_hw_rev = CC_HW_REV_712, .std_body = CC_STD_NIST, }, { .name = "md5", .driver_name = "md5-ccree", .mac_name = "hmac(md5)", .mac_driver_name = "hmac-md5-ccree", .blocksize = MD5_HMAC_BLOCK_SIZE, .is_mac = true, .template_ahash = { .init = cc_hash_init, .update = cc_hash_update, .final = cc_hash_final, .finup = cc_hash_finup, .digest = cc_hash_digest, .export = cc_hash_export, .import = cc_hash_import, .setkey = cc_hash_setkey, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = CC_STATE_SIZE(MD5_DIGEST_SIZE), }, }, .hash_mode = DRV_HASH_MD5, .hw_mode = DRV_HASH_HW_MD5, .inter_digestsize = MD5_DIGEST_SIZE, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "sm3", .driver_name = "sm3-ccree", .blocksize = SM3_BLOCK_SIZE, .is_mac = false, .template_ahash = { .init = cc_hash_init, .update = cc_hash_update, .final = cc_hash_final, .finup = cc_hash_finup, .digest = cc_hash_digest, .export = cc_hash_export, .import = cc_hash_import, .setkey = cc_hash_setkey, .halg = { .digestsize = SM3_DIGEST_SIZE, .statesize = CC_STATE_SIZE(SM3_DIGEST_SIZE), }, }, .hash_mode = DRV_HASH_SM3, .hw_mode = DRV_HASH_HW_SM3, .inter_digestsize = SM3_DIGEST_SIZE, .min_hw_rev = CC_HW_REV_713, .std_body = CC_STD_OSCCA, }, { .mac_name = "xcbc(aes)", .mac_driver_name = "xcbc-aes-ccree", .blocksize = AES_BLOCK_SIZE, .is_mac = true, .template_ahash = { .init = cc_hash_init, .update = cc_mac_update, .final = cc_mac_final, .finup = cc_mac_finup, .digest = cc_mac_digest, .setkey = cc_xcbc_setkey, .export = cc_hash_export, .import = cc_hash_import, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = CC_STATE_SIZE(AES_BLOCK_SIZE), }, }, .hash_mode = DRV_HASH_NULL, .hw_mode = DRV_CIPHER_XCBC_MAC, .inter_digestsize = AES_BLOCK_SIZE, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .mac_name = "cmac(aes)", .mac_driver_name = "cmac-aes-ccree", .blocksize = AES_BLOCK_SIZE, .is_mac = true, .template_ahash = { .init = cc_hash_init, .update = cc_mac_update, .final = cc_mac_final, .finup = cc_mac_finup, .digest = cc_mac_digest, .setkey = cc_cmac_setkey, .export = cc_hash_export, .import = cc_hash_import, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = CC_STATE_SIZE(AES_BLOCK_SIZE), }, }, .hash_mode = DRV_HASH_NULL, .hw_mode = DRV_CIPHER_CMAC, .inter_digestsize = AES_BLOCK_SIZE, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, }; static struct cc_hash_alg *cc_alloc_hash_alg(struct cc_hash_template *template, struct device *dev, bool keyed) { struct cc_hash_alg *t_crypto_alg; struct crypto_alg *alg; struct ahash_alg *halg; t_crypto_alg = kzalloc(sizeof(*t_crypto_alg), GFP_KERNEL); if (!t_crypto_alg) return ERR_PTR(-ENOMEM); t_crypto_alg->ahash_alg = template->template_ahash; halg = &t_crypto_alg->ahash_alg; alg = &halg->halg.base; if (keyed) { snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->mac_name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->mac_driver_name); } else { halg->setkey = NULL; snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->driver_name); } alg->cra_module = THIS_MODULE; alg->cra_ctxsize = sizeof(struct cc_hash_ctx); alg->cra_priority = CC_CRA_PRIO; alg->cra_blocksize = template->blocksize; alg->cra_alignmask = 0; alg->cra_exit = cc_cra_exit; alg->cra_init = cc_cra_init; alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY; t_crypto_alg->hash_mode = template->hash_mode; t_crypto_alg->hw_mode = template->hw_mode; t_crypto_alg->inter_digestsize = template->inter_digestsize; return t_crypto_alg; } int cc_init_hash_sram(struct cc_drvdata *drvdata) { struct cc_hash_handle *hash_handle = drvdata->hash_handle; cc_sram_addr_t sram_buff_ofs = hash_handle->digest_len_sram_addr; unsigned int larval_seq_len = 0; struct cc_hw_desc larval_seq[CC_DIGEST_SIZE_MAX / sizeof(u32)]; bool large_sha_supported = (drvdata->hw_rev >= CC_HW_REV_712); bool sm3_supported = (drvdata->hw_rev >= CC_HW_REV_713); int rc = 0; /* Copy-to-sram digest-len */ cc_set_sram_desc(digest_len_init, sram_buff_ofs, ARRAY_SIZE(digest_len_init), larval_seq, &larval_seq_len); rc = send_request_init(drvdata, larval_seq, larval_seq_len); if (rc) goto init_digest_const_err; sram_buff_ofs += sizeof(digest_len_init); larval_seq_len = 0; if (large_sha_supported) { /* Copy-to-sram digest-len for sha384/512 */ cc_set_sram_desc(digest_len_sha512_init, sram_buff_ofs, ARRAY_SIZE(digest_len_sha512_init), larval_seq, &larval_seq_len); rc = send_request_init(drvdata, larval_seq, larval_seq_len); if (rc) goto init_digest_const_err; sram_buff_ofs += sizeof(digest_len_sha512_init); larval_seq_len = 0; } /* The initial digests offset */ hash_handle->larval_digest_sram_addr = sram_buff_ofs; /* Copy-to-sram initial SHA* digests */ cc_set_sram_desc(md5_init, sram_buff_ofs, ARRAY_SIZE(md5_init), larval_seq, &larval_seq_len); rc = send_request_init(drvdata, larval_seq, larval_seq_len); if (rc) goto init_digest_const_err; sram_buff_ofs += sizeof(md5_init); larval_seq_len = 0; cc_set_sram_desc(sha1_init, sram_buff_ofs, ARRAY_SIZE(sha1_init), larval_seq, &larval_seq_len); rc = send_request_init(drvdata, larval_seq, larval_seq_len); if (rc) goto init_digest_const_err; sram_buff_ofs += sizeof(sha1_init); larval_seq_len = 0; cc_set_sram_desc(sha224_init, sram_buff_ofs, ARRAY_SIZE(sha224_init), larval_seq, &larval_seq_len); rc = send_request_init(drvdata, larval_seq, larval_seq_len); if (rc) goto init_digest_const_err; sram_buff_ofs += sizeof(sha224_init); larval_seq_len = 0; cc_set_sram_desc(sha256_init, sram_buff_ofs, ARRAY_SIZE(sha256_init), larval_seq, &larval_seq_len); rc = send_request_init(drvdata, larval_seq, larval_seq_len); if (rc) goto init_digest_const_err; sram_buff_ofs += sizeof(sha256_init); larval_seq_len = 0; if (sm3_supported) { cc_set_sram_desc(sm3_init, sram_buff_ofs, ARRAY_SIZE(sm3_init), larval_seq, &larval_seq_len); rc = send_request_init(drvdata, larval_seq, larval_seq_len); if (rc) goto init_digest_const_err; sram_buff_ofs += sizeof(sm3_init); larval_seq_len = 0; } if (large_sha_supported) { cc_set_sram_desc((u32 *)sha384_init, sram_buff_ofs, (ARRAY_SIZE(sha384_init) * 2), larval_seq, &larval_seq_len); rc = send_request_init(drvdata, larval_seq, larval_seq_len); if (rc) goto init_digest_const_err; sram_buff_ofs += sizeof(sha384_init); larval_seq_len = 0; cc_set_sram_desc((u32 *)sha512_init, sram_buff_ofs, (ARRAY_SIZE(sha512_init) * 2), larval_seq, &larval_seq_len); rc = send_request_init(drvdata, larval_seq, larval_seq_len); if (rc) goto init_digest_const_err; } init_digest_const_err: return rc; } static void __init cc_swap_dwords(u32 *buf, unsigned long size) { int i; u32 tmp; for (i = 0; i < size; i += 2) { tmp = buf[i]; buf[i] = buf[i + 1]; buf[i + 1] = tmp; } } /* * Due to the way the HW works we need to swap every * double word in the SHA384 and SHA512 larval hashes */ void __init cc_hash_global_init(void) { cc_swap_dwords((u32 *)&sha384_init, (ARRAY_SIZE(sha384_init) * 2)); cc_swap_dwords((u32 *)&sha512_init, (ARRAY_SIZE(sha512_init) * 2)); } int cc_hash_alloc(struct cc_drvdata *drvdata) { struct cc_hash_handle *hash_handle; cc_sram_addr_t sram_buff; u32 sram_size_to_alloc; struct device *dev = drvdata_to_dev(drvdata); int rc = 0; int alg; hash_handle = kzalloc(sizeof(*hash_handle), GFP_KERNEL); if (!hash_handle) return -ENOMEM; INIT_LIST_HEAD(&hash_handle->hash_list); drvdata->hash_handle = hash_handle; sram_size_to_alloc = sizeof(digest_len_init) + sizeof(md5_init) + sizeof(sha1_init) + sizeof(sha224_init) + sizeof(sha256_init); if (drvdata->hw_rev >= CC_HW_REV_713) sram_size_to_alloc += sizeof(sm3_init); if (drvdata->hw_rev >= CC_HW_REV_712) sram_size_to_alloc += sizeof(digest_len_sha512_init) + sizeof(sha384_init) + sizeof(sha512_init); sram_buff = cc_sram_alloc(drvdata, sram_size_to_alloc); if (sram_buff == NULL_SRAM_ADDR) { dev_err(dev, "SRAM pool exhausted\n"); rc = -ENOMEM; goto fail; } /* The initial digest-len offset */ hash_handle->digest_len_sram_addr = sram_buff; /*must be set before the alg registration as it is being used there*/ rc = cc_init_hash_sram(drvdata); if (rc) { dev_err(dev, "Init digest CONST failed (rc=%d)\n", rc); goto fail; } /* ahash registration */ for (alg = 0; alg < ARRAY_SIZE(driver_hash); alg++) { struct cc_hash_alg *t_alg; int hw_mode = driver_hash[alg].hw_mode; /* Check that the HW revision and variants are suitable */ if ((driver_hash[alg].min_hw_rev > drvdata->hw_rev) || !(drvdata->std_bodies & driver_hash[alg].std_body)) continue; if (driver_hash[alg].is_mac) { /* register hmac version */ t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, true); if (IS_ERR(t_alg)) { rc = PTR_ERR(t_alg); dev_err(dev, "%s alg allocation failed\n", driver_hash[alg].driver_name); goto fail; } t_alg->drvdata = drvdata; rc = crypto_register_ahash(&t_alg->ahash_alg); if (rc) { dev_err(dev, "%s alg registration failed\n", driver_hash[alg].driver_name); kfree(t_alg); goto fail; } else { list_add_tail(&t_alg->entry, &hash_handle->hash_list); } } if (hw_mode == DRV_CIPHER_XCBC_MAC || hw_mode == DRV_CIPHER_CMAC) continue; /* register hash version */ t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, false); if (IS_ERR(t_alg)) { rc = PTR_ERR(t_alg); dev_err(dev, "%s alg allocation failed\n", driver_hash[alg].driver_name); goto fail; } t_alg->drvdata = drvdata; rc = crypto_register_ahash(&t_alg->ahash_alg); if (rc) { dev_err(dev, "%s alg registration failed\n", driver_hash[alg].driver_name); kfree(t_alg); goto fail; } else { list_add_tail(&t_alg->entry, &hash_handle->hash_list); } } return 0; fail: kfree(drvdata->hash_handle); drvdata->hash_handle = NULL; return rc; } int cc_hash_free(struct cc_drvdata *drvdata) { struct cc_hash_alg *t_hash_alg, *hash_n; struct cc_hash_handle *hash_handle = drvdata->hash_handle; if (hash_handle) { list_for_each_entry_safe(t_hash_alg, hash_n, &hash_handle->hash_list, entry) { crypto_unregister_ahash(&t_hash_alg->ahash_alg); list_del(&t_hash_alg->entry); kfree(t_hash_alg); } kfree(hash_handle); drvdata->hash_handle = NULL; } return 0; } static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[], unsigned int *seq_size) { unsigned int idx = *seq_size; struct ahash_req_ctx *state = ahash_request_ctx(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); /* Setup XCBC MAC K1 */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET), CC_AES_128_BIT_KEY_SIZE, NS_BIT); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); set_hash_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC, ctx->hash_mode); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; /* Setup XCBC MAC K2 */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET), CC_AES_128_BIT_KEY_SIZE, NS_BIT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE1); set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; /* Setup XCBC MAC K3 */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET), CC_AES_128_BIT_KEY_SIZE, NS_BIT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE2); set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; /* Loading MAC state */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; *seq_size = idx; } static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[], unsigned int *seq_size) { unsigned int idx = *seq_size; struct ahash_req_ctx *state = ahash_request_ctx(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm); /* Setup CMAC Key */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr, ((ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE : ctx->key_params.keylen), NS_BIT); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], ctx->key_params.keylen); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; /* Load MAC state */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], ctx->key_params.keylen); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; *seq_size = idx; } static void cc_set_desc(struct ahash_req_ctx *areq_ctx, struct cc_hash_ctx *ctx, unsigned int flow_mode, struct cc_hw_desc desc[], bool is_not_last_data, unsigned int *seq_size) { unsigned int idx = *seq_size; struct device *dev = drvdata_to_dev(ctx->drvdata); if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_DLLI) { hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq_ctx->curr_sg), areq_ctx->curr_sg->length, NS_BIT); set_flow_mode(&desc[idx], flow_mode); idx++; } else { if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) { dev_dbg(dev, " NULL mode\n"); /* nothing to build */ return; } /* bypass */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, areq_ctx->mlli_params.mlli_dma_addr, areq_ctx->mlli_params.mlli_len, NS_BIT); set_dout_sram(&desc[idx], ctx->drvdata->mlli_sram_addr, areq_ctx->mlli_params.mlli_len); set_flow_mode(&desc[idx], BYPASS); idx++; /* process */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_MLLI, ctx->drvdata->mlli_sram_addr, areq_ctx->mlli_nents, NS_BIT); set_flow_mode(&desc[idx], flow_mode); idx++; } if (is_not_last_data) set_din_not_last_indication(&desc[(idx - 1)]); /* return updated desc sequence size */ *seq_size = idx; } static const void *cc_larval_digest(struct device *dev, u32 mode) { switch (mode) { case DRV_HASH_MD5: return md5_init; case DRV_HASH_SHA1: return sha1_init; case DRV_HASH_SHA224: return sha224_init; case DRV_HASH_SHA256: return sha256_init; case DRV_HASH_SHA384: return sha384_init; case DRV_HASH_SHA512: return sha512_init; case DRV_HASH_SM3: return sm3_init; default: dev_err(dev, "Invalid hash mode (%d)\n", mode); return md5_init; } } /*! * Gets the address of the initial digest in SRAM * according to the given hash mode * * \param drvdata * \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256 * * \return u32 The address of the initial digest in SRAM */ cc_sram_addr_t cc_larval_digest_addr(void *drvdata, u32 mode) { struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata; struct cc_hash_handle *hash_handle = _drvdata->hash_handle; struct device *dev = drvdata_to_dev(_drvdata); bool sm3_supported = (_drvdata->hw_rev >= CC_HW_REV_713); cc_sram_addr_t addr; switch (mode) { case DRV_HASH_NULL: break; /*Ignore*/ case DRV_HASH_MD5: return (hash_handle->larval_digest_sram_addr); case DRV_HASH_SHA1: return (hash_handle->larval_digest_sram_addr + sizeof(md5_init)); case DRV_HASH_SHA224: return (hash_handle->larval_digest_sram_addr + sizeof(md5_init) + sizeof(sha1_init)); case DRV_HASH_SHA256: return (hash_handle->larval_digest_sram_addr + sizeof(md5_init) + sizeof(sha1_init) + sizeof(sha224_init)); case DRV_HASH_SM3: return (hash_handle->larval_digest_sram_addr + sizeof(md5_init) + sizeof(sha1_init) + sizeof(sha224_init) + sizeof(sha256_init)); case DRV_HASH_SHA384: addr = (hash_handle->larval_digest_sram_addr + sizeof(md5_init) + sizeof(sha1_init) + sizeof(sha224_init) + sizeof(sha256_init)); if (sm3_supported) addr += sizeof(sm3_init); return addr; case DRV_HASH_SHA512: addr = (hash_handle->larval_digest_sram_addr + sizeof(md5_init) + sizeof(sha1_init) + sizeof(sha224_init) + sizeof(sha256_init) + sizeof(sha384_init)); if (sm3_supported) addr += sizeof(sm3_init); return addr; default: dev_err(dev, "Invalid hash mode (%d)\n", mode); } /*This is valid wrong value to avoid kernel crash*/ return hash_handle->larval_digest_sram_addr; } cc_sram_addr_t cc_digest_len_addr(void *drvdata, u32 mode) { struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata; struct cc_hash_handle *hash_handle = _drvdata->hash_handle; cc_sram_addr_t digest_len_addr = hash_handle->digest_len_sram_addr; switch (mode) { case DRV_HASH_SHA1: case DRV_HASH_SHA224: case DRV_HASH_SHA256: case DRV_HASH_MD5: return digest_len_addr; #if (CC_DEV_SHA_MAX > 256) case DRV_HASH_SHA384: case DRV_HASH_SHA512: return digest_len_addr + sizeof(digest_len_init); #endif default: return digest_len_addr; /*to avoid kernel crash*/ } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1