Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gilad Ben-Yossef | 1067 | 100.00% | 1 | 100.00% |
Total | 1067 | 1 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2012-2018 ARM Limited or its affiliates. */ #include <crypto/ctr.h> #include "cc_driver.h" #include "cc_ivgen.h" #include "cc_request_mgr.h" #include "cc_sram_mgr.h" #include "cc_buffer_mgr.h" /* The max. size of pool *MUST* be <= SRAM total size */ #define CC_IVPOOL_SIZE 1024 /* The first 32B fraction of pool are dedicated to the * next encryption "key" & "IV" for pool regeneration */ #define CC_IVPOOL_META_SIZE (CC_AES_IV_SIZE + AES_KEYSIZE_128) #define CC_IVPOOL_GEN_SEQ_LEN 4 /** * struct cc_ivgen_ctx -IV pool generation context * @pool: the start address of the iv-pool resides in internal RAM * @ctr_key_dma: address of pool's encryption key material in internal RAM * @ctr_iv_dma: address of pool's counter iv in internal RAM * @next_iv_ofs: the offset to the next available IV in pool * @pool_meta: virt. address of the initial enc. key/IV * @pool_meta_dma: phys. address of the initial enc. key/IV */ struct cc_ivgen_ctx { cc_sram_addr_t pool; cc_sram_addr_t ctr_key; cc_sram_addr_t ctr_iv; u32 next_iv_ofs; u8 *pool_meta; dma_addr_t pool_meta_dma; }; /*! * Generates CC_IVPOOL_SIZE of random bytes by * encrypting 0's using AES128-CTR. * * \param ivgen iv-pool context * \param iv_seq IN/OUT array to the descriptors sequence * \param iv_seq_len IN/OUT pointer to the sequence length */ static int cc_gen_iv_pool(struct cc_ivgen_ctx *ivgen_ctx, struct cc_hw_desc iv_seq[], unsigned int *iv_seq_len) { unsigned int idx = *iv_seq_len; if ((*iv_seq_len + CC_IVPOOL_GEN_SEQ_LEN) > CC_IVPOOL_SEQ_LEN) { /* The sequence will be longer than allowed */ return -EINVAL; } /* Setup key */ hw_desc_init(&iv_seq[idx]); set_din_sram(&iv_seq[idx], ivgen_ctx->ctr_key, AES_KEYSIZE_128); set_setup_mode(&iv_seq[idx], SETUP_LOAD_KEY0); set_cipher_config0(&iv_seq[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_flow_mode(&iv_seq[idx], S_DIN_to_AES); set_key_size_aes(&iv_seq[idx], CC_AES_128_BIT_KEY_SIZE); set_cipher_mode(&iv_seq[idx], DRV_CIPHER_CTR); idx++; /* Setup cipher state */ hw_desc_init(&iv_seq[idx]); set_din_sram(&iv_seq[idx], ivgen_ctx->ctr_iv, CC_AES_IV_SIZE); set_cipher_config0(&iv_seq[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_flow_mode(&iv_seq[idx], S_DIN_to_AES); set_setup_mode(&iv_seq[idx], SETUP_LOAD_STATE1); set_key_size_aes(&iv_seq[idx], CC_AES_128_BIT_KEY_SIZE); set_cipher_mode(&iv_seq[idx], DRV_CIPHER_CTR); idx++; /* Perform dummy encrypt to skip first block */ hw_desc_init(&iv_seq[idx]); set_din_const(&iv_seq[idx], 0, CC_AES_IV_SIZE); set_dout_sram(&iv_seq[idx], ivgen_ctx->pool, CC_AES_IV_SIZE); set_flow_mode(&iv_seq[idx], DIN_AES_DOUT); idx++; /* Generate IV pool */ hw_desc_init(&iv_seq[idx]); set_din_const(&iv_seq[idx], 0, CC_IVPOOL_SIZE); set_dout_sram(&iv_seq[idx], ivgen_ctx->pool, CC_IVPOOL_SIZE); set_flow_mode(&iv_seq[idx], DIN_AES_DOUT); idx++; *iv_seq_len = idx; /* Update sequence length */ /* queue ordering assures pool readiness */ ivgen_ctx->next_iv_ofs = CC_IVPOOL_META_SIZE; return 0; } /*! * Generates the initial pool in SRAM. * This function should be invoked when resuming driver. * * \param drvdata * * \return int Zero for success, negative value otherwise. */ int cc_init_iv_sram(struct cc_drvdata *drvdata) { struct cc_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle; struct cc_hw_desc iv_seq[CC_IVPOOL_SEQ_LEN]; unsigned int iv_seq_len = 0; int rc; /* Generate initial enc. key/iv */ get_random_bytes(ivgen_ctx->pool_meta, CC_IVPOOL_META_SIZE); /* The first 32B reserved for the enc. Key/IV */ ivgen_ctx->ctr_key = ivgen_ctx->pool; ivgen_ctx->ctr_iv = ivgen_ctx->pool + AES_KEYSIZE_128; /* Copy initial enc. key and IV to SRAM at a single descriptor */ hw_desc_init(&iv_seq[iv_seq_len]); set_din_type(&iv_seq[iv_seq_len], DMA_DLLI, ivgen_ctx->pool_meta_dma, CC_IVPOOL_META_SIZE, NS_BIT); set_dout_sram(&iv_seq[iv_seq_len], ivgen_ctx->pool, CC_IVPOOL_META_SIZE); set_flow_mode(&iv_seq[iv_seq_len], BYPASS); iv_seq_len++; /* Generate initial pool */ rc = cc_gen_iv_pool(ivgen_ctx, iv_seq, &iv_seq_len); if (rc) return rc; /* Fire-and-forget */ return send_request_init(drvdata, iv_seq, iv_seq_len); } /*! * Free iv-pool and ivgen context. * * \param drvdata */ void cc_ivgen_fini(struct cc_drvdata *drvdata) { struct cc_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle; struct device *device = &drvdata->plat_dev->dev; if (!ivgen_ctx) return; if (ivgen_ctx->pool_meta) { memset(ivgen_ctx->pool_meta, 0, CC_IVPOOL_META_SIZE); dma_free_coherent(device, CC_IVPOOL_META_SIZE, ivgen_ctx->pool_meta, ivgen_ctx->pool_meta_dma); } ivgen_ctx->pool = NULL_SRAM_ADDR; /* release "this" context */ kfree(ivgen_ctx); } /*! * Allocates iv-pool and maps resources. * This function generates the first IV pool. * * \param drvdata Driver's private context * * \return int Zero for success, negative value otherwise. */ int cc_ivgen_init(struct cc_drvdata *drvdata) { struct cc_ivgen_ctx *ivgen_ctx; struct device *device = &drvdata->plat_dev->dev; int rc; /* Allocate "this" context */ ivgen_ctx = kzalloc(sizeof(*ivgen_ctx), GFP_KERNEL); if (!ivgen_ctx) return -ENOMEM; /* Allocate pool's header for initial enc. key/IV */ ivgen_ctx->pool_meta = dma_alloc_coherent(device, CC_IVPOOL_META_SIZE, &ivgen_ctx->pool_meta_dma, GFP_KERNEL); if (!ivgen_ctx->pool_meta) { dev_err(device, "Not enough memory to allocate DMA of pool_meta (%u B)\n", CC_IVPOOL_META_SIZE); rc = -ENOMEM; goto out; } /* Allocate IV pool in SRAM */ ivgen_ctx->pool = cc_sram_alloc(drvdata, CC_IVPOOL_SIZE); if (ivgen_ctx->pool == NULL_SRAM_ADDR) { dev_err(device, "SRAM pool exhausted\n"); rc = -ENOMEM; goto out; } drvdata->ivgen_handle = ivgen_ctx; return cc_init_iv_sram(drvdata); out: cc_ivgen_fini(drvdata); return rc; } /*! * Acquires 16 Bytes IV from the iv-pool * * \param drvdata Driver private context * \param iv_out_dma Array of physical IV out addresses * \param iv_out_dma_len Length of iv_out_dma array (additional elements * of iv_out_dma array are ignore) * \param iv_out_size May be 8 or 16 bytes long * \param iv_seq IN/OUT array to the descriptors sequence * \param iv_seq_len IN/OUT pointer to the sequence length * * \return int Zero for success, negative value otherwise. */ int cc_get_iv(struct cc_drvdata *drvdata, dma_addr_t iv_out_dma[], unsigned int iv_out_dma_len, unsigned int iv_out_size, struct cc_hw_desc iv_seq[], unsigned int *iv_seq_len) { struct cc_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle; unsigned int idx = *iv_seq_len; struct device *dev = drvdata_to_dev(drvdata); unsigned int t; if (iv_out_size != CC_AES_IV_SIZE && iv_out_size != CTR_RFC3686_IV_SIZE) { return -EINVAL; } if ((iv_out_dma_len + 1) > CC_IVPOOL_SEQ_LEN) { /* The sequence will be longer than allowed */ return -EINVAL; } /* check that number of generated IV is limited to max dma address * iv buffer size */ if (iv_out_dma_len > CC_MAX_IVGEN_DMA_ADDRESSES) { /* The sequence will be longer than allowed */ return -EINVAL; } for (t = 0; t < iv_out_dma_len; t++) { /* Acquire IV from pool */ hw_desc_init(&iv_seq[idx]); set_din_sram(&iv_seq[idx], (ivgen_ctx->pool + ivgen_ctx->next_iv_ofs), iv_out_size); set_dout_dlli(&iv_seq[idx], iv_out_dma[t], iv_out_size, NS_BIT, 0); set_flow_mode(&iv_seq[idx], BYPASS); idx++; } /* Bypass operation is proceeded by crypto sequence, hence must * assure bypass-write-transaction by a memory barrier */ hw_desc_init(&iv_seq[idx]); set_din_no_dma(&iv_seq[idx], 0, 0xfffff0); set_dout_no_dma(&iv_seq[idx], 0, 0, 1); idx++; *iv_seq_len = idx; /* update seq length */ /* Update iv index */ ivgen_ctx->next_iv_ofs += iv_out_size; if ((CC_IVPOOL_SIZE - ivgen_ctx->next_iv_ofs) < CC_AES_IV_SIZE) { dev_dbg(dev, "Pool exhausted, regenerating iv-pool\n"); /* pool is drained -regenerate it! */ return cc_gen_iv_pool(ivgen_ctx, iv_seq, iv_seq_len); } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1