Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Wollesen | 4373 | 80.42% | 1 | 3.03% |
Mauro Carvalho Chehab | 420 | 7.72% | 11 | 33.33% |
Aristeu Sergio Rozanski Filho | 293 | 5.39% | 2 | 6.06% |
Joe Perches | 201 | 3.70% | 4 | 12.12% |
Dave Jiang | 83 | 1.53% | 3 | 9.09% |
Doug Thompson | 24 | 0.44% | 2 | 6.06% |
Dan Carpenter | 22 | 0.40% | 1 | 3.03% |
Jingoo Han | 6 | 0.11% | 1 | 3.03% |
Jérémy Lefaure | 5 | 0.09% | 2 | 6.06% |
Hitoshi Mitake | 4 | 0.07% | 1 | 3.03% |
Tamas Vincze | 3 | 0.06% | 1 | 3.03% |
Mariusz Kozlowski | 1 | 0.02% | 1 | 3.03% |
Keith Mannthey | 1 | 0.02% | 1 | 3.03% |
Michal Marek | 1 | 0.02% | 1 | 3.03% |
Lucas De Marchi | 1 | 0.02% | 1 | 3.03% |
Total | 5438 | 33 |
/* * Intel 5000(P/V/X) class Memory Controllers kernel module * * This file may be distributed under the terms of the * GNU General Public License. * * Written by Douglas Thompson Linux Networx (http://lnxi.com) * norsk5@xmission.com * * This module is based on the following document: * * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet * http://developer.intel.com/design/chipsets/datashts/313070.htm * */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/slab.h> #include <linux/edac.h> #include <asm/mmzone.h> #include "edac_module.h" /* * Alter this version for the I5000 module when modifications are made */ #define I5000_REVISION " Ver: 2.0.12" #define EDAC_MOD_STR "i5000_edac" #define i5000_printk(level, fmt, arg...) \ edac_printk(level, "i5000", fmt, ##arg) #define i5000_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg) #ifndef PCI_DEVICE_ID_INTEL_FBD_0 #define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5 #endif #ifndef PCI_DEVICE_ID_INTEL_FBD_1 #define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6 #endif /* Device 16, * Function 0: System Address * Function 1: Memory Branch Map, Control, Errors Register * Function 2: FSB Error Registers * * All 3 functions of Device 16 (0,1,2) share the SAME DID */ #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0 /* OFFSETS for Function 0 */ /* OFFSETS for Function 1 */ #define AMBASE 0x48 #define MAXCH 0x56 #define MAXDIMMPERCH 0x57 #define TOLM 0x6C #define REDMEMB 0x7C #define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF) #define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF) #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00) #define MIR0 0x80 #define MIR1 0x84 #define MIR2 0x88 #define AMIR0 0x8C #define AMIR1 0x90 #define AMIR2 0x94 #define FERR_FAT_FBD 0x98 #define NERR_FAT_FBD 0x9C #define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3) #define FERR_FAT_FBDCHAN 0x30000000 #define FERR_FAT_M3ERR 0x00000004 #define FERR_FAT_M2ERR 0x00000002 #define FERR_FAT_M1ERR 0x00000001 #define FERR_FAT_MASK (FERR_FAT_M1ERR | \ FERR_FAT_M2ERR | \ FERR_FAT_M3ERR) #define FERR_NF_FBD 0xA0 /* Thermal and SPD or BFD errors */ #define FERR_NF_M28ERR 0x01000000 #define FERR_NF_M27ERR 0x00800000 #define FERR_NF_M26ERR 0x00400000 #define FERR_NF_M25ERR 0x00200000 #define FERR_NF_M24ERR 0x00100000 #define FERR_NF_M23ERR 0x00080000 #define FERR_NF_M22ERR 0x00040000 #define FERR_NF_M21ERR 0x00020000 /* Correctable errors */ #define FERR_NF_M20ERR 0x00010000 #define FERR_NF_M19ERR 0x00008000 #define FERR_NF_M18ERR 0x00004000 #define FERR_NF_M17ERR 0x00002000 /* Non-Retry or redundant Retry errors */ #define FERR_NF_M16ERR 0x00001000 #define FERR_NF_M15ERR 0x00000800 #define FERR_NF_M14ERR 0x00000400 #define FERR_NF_M13ERR 0x00000200 /* Uncorrectable errors */ #define FERR_NF_M12ERR 0x00000100 #define FERR_NF_M11ERR 0x00000080 #define FERR_NF_M10ERR 0x00000040 #define FERR_NF_M9ERR 0x00000020 #define FERR_NF_M8ERR 0x00000010 #define FERR_NF_M7ERR 0x00000008 #define FERR_NF_M6ERR 0x00000004 #define FERR_NF_M5ERR 0x00000002 #define FERR_NF_M4ERR 0x00000001 #define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \ FERR_NF_M11ERR | \ FERR_NF_M10ERR | \ FERR_NF_M9ERR | \ FERR_NF_M8ERR | \ FERR_NF_M7ERR | \ FERR_NF_M6ERR | \ FERR_NF_M5ERR | \ FERR_NF_M4ERR) #define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \ FERR_NF_M19ERR | \ FERR_NF_M18ERR | \ FERR_NF_M17ERR) #define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \ FERR_NF_M28ERR) #define FERR_NF_THERMAL (FERR_NF_M26ERR | \ FERR_NF_M25ERR | \ FERR_NF_M24ERR | \ FERR_NF_M23ERR) #define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR) #define FERR_NF_NORTH_CRC (FERR_NF_M21ERR) #define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \ FERR_NF_M14ERR | \ FERR_NF_M15ERR) #define NERR_NF_FBD 0xA4 #define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \ FERR_NF_CORRECTABLE | \ FERR_NF_DIMM_SPARE | \ FERR_NF_THERMAL | \ FERR_NF_SPD_PROTOCOL | \ FERR_NF_NORTH_CRC | \ FERR_NF_NON_RETRY) #define EMASK_FBD 0xA8 #define EMASK_FBD_M28ERR 0x08000000 #define EMASK_FBD_M27ERR 0x04000000 #define EMASK_FBD_M26ERR 0x02000000 #define EMASK_FBD_M25ERR 0x01000000 #define EMASK_FBD_M24ERR 0x00800000 #define EMASK_FBD_M23ERR 0x00400000 #define EMASK_FBD_M22ERR 0x00200000 #define EMASK_FBD_M21ERR 0x00100000 #define EMASK_FBD_M20ERR 0x00080000 #define EMASK_FBD_M19ERR 0x00040000 #define EMASK_FBD_M18ERR 0x00020000 #define EMASK_FBD_M17ERR 0x00010000 #define EMASK_FBD_M15ERR 0x00004000 #define EMASK_FBD_M14ERR 0x00002000 #define EMASK_FBD_M13ERR 0x00001000 #define EMASK_FBD_M12ERR 0x00000800 #define EMASK_FBD_M11ERR 0x00000400 #define EMASK_FBD_M10ERR 0x00000200 #define EMASK_FBD_M9ERR 0x00000100 #define EMASK_FBD_M8ERR 0x00000080 #define EMASK_FBD_M7ERR 0x00000040 #define EMASK_FBD_M6ERR 0x00000020 #define EMASK_FBD_M5ERR 0x00000010 #define EMASK_FBD_M4ERR 0x00000008 #define EMASK_FBD_M3ERR 0x00000004 #define EMASK_FBD_M2ERR 0x00000002 #define EMASK_FBD_M1ERR 0x00000001 #define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \ EMASK_FBD_M2ERR | \ EMASK_FBD_M3ERR) #define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \ EMASK_FBD_M5ERR | \ EMASK_FBD_M6ERR | \ EMASK_FBD_M7ERR | \ EMASK_FBD_M8ERR | \ EMASK_FBD_M9ERR | \ EMASK_FBD_M10ERR | \ EMASK_FBD_M11ERR | \ EMASK_FBD_M12ERR) #define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \ EMASK_FBD_M18ERR | \ EMASK_FBD_M19ERR | \ EMASK_FBD_M20ERR) #define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \ EMASK_FBD_M28ERR) #define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \ EMASK_FBD_M25ERR | \ EMASK_FBD_M24ERR | \ EMASK_FBD_M23ERR) #define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR) #define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR) #define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \ EMASK_FBD_M14ERR | \ EMASK_FBD_M13ERR) #define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \ ENABLE_EMASK_FBD_NORTH_CRC | \ ENABLE_EMASK_FBD_SPD_PROTOCOL | \ ENABLE_EMASK_FBD_THERMALS | \ ENABLE_EMASK_FBD_DIMM_SPARE | \ ENABLE_EMASK_FBD_FATAL_ERRORS | \ ENABLE_EMASK_FBD_CORRECTABLE | \ ENABLE_EMASK_FBD_UNCORRECTABLE) #define ERR0_FBD 0xAC #define ERR1_FBD 0xB0 #define ERR2_FBD 0xB4 #define MCERR_FBD 0xB8 #define NRECMEMA 0xBE #define NREC_BANK(x) (((x)>>12) & 0x7) #define NREC_RDWR(x) (((x)>>11) & 1) #define NREC_RANK(x) (((x)>>8) & 0x7) #define NRECMEMB 0xC0 #define NREC_CAS(x) (((x)>>16) & 0xFFF) #define NREC_RAS(x) ((x) & 0x7FFF) #define NRECFGLOG 0xC4 #define NREEECFBDA 0xC8 #define NREEECFBDB 0xCC #define NREEECFBDC 0xD0 #define NREEECFBDD 0xD4 #define NREEECFBDE 0xD8 #define REDMEMA 0xDC #define RECMEMA 0xE2 #define REC_BANK(x) (((x)>>12) & 0x7) #define REC_RDWR(x) (((x)>>11) & 1) #define REC_RANK(x) (((x)>>8) & 0x7) #define RECMEMB 0xE4 #define REC_CAS(x) (((x)>>16) & 0xFFFFFF) #define REC_RAS(x) ((x) & 0x7FFF) #define RECFGLOG 0xE8 #define RECFBDA 0xEC #define RECFBDB 0xF0 #define RECFBDC 0xF4 #define RECFBDD 0xF8 #define RECFBDE 0xFC /* OFFSETS for Function 2 */ /* * Device 21, * Function 0: Memory Map Branch 0 * * Device 22, * Function 0: Memory Map Branch 1 */ #define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5 #define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6 #define AMB_PRESENT_0 0x64 #define AMB_PRESENT_1 0x66 #define MTR0 0x80 #define MTR1 0x84 #define MTR2 0x88 #define MTR3 0x8C #define NUM_MTRS 4 #define CHANNELS_PER_BRANCH 2 #define MAX_BRANCHES 2 /* Defines to extract the various fields from the * MTRx - Memory Technology Registers */ #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8)) #define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4) #define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4) #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2) #define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1) #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1) #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) /* enables the report of miscellaneous messages as CE errors - default off */ static int misc_messages; /* Enumeration of supported devices */ enum i5000_chips { I5000P = 0, I5000V = 1, /* future */ I5000X = 2 /* future */ }; /* Device name and register DID (Device ID) */ struct i5000_dev_info { const char *ctl_name; /* name for this device */ u16 fsb_mapping_errors; /* DID for the branchmap,control */ }; /* Table of devices attributes supported by this driver */ static const struct i5000_dev_info i5000_devs[] = { [I5000P] = { .ctl_name = "I5000", .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16, }, }; struct i5000_dimm_info { int megabytes; /* size, 0 means not present */ int dual_rank; }; #define MAX_CHANNELS 6 /* max possible channels */ #define MAX_CSROWS (8*2) /* max possible csrows per channel */ /* driver private data structure */ struct i5000_pvt { struct pci_dev *system_address; /* 16.0 */ struct pci_dev *branchmap_werrors; /* 16.1 */ struct pci_dev *fsb_error_regs; /* 16.2 */ struct pci_dev *branch_0; /* 21.0 */ struct pci_dev *branch_1; /* 22.0 */ u16 tolm; /* top of low memory */ union { u64 ambase; /* AMB BAR */ struct { u32 ambase_bottom; u32 ambase_top; } u __packed; }; u16 mir0, mir1, mir2; u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */ u16 b0_ambpresent0; /* Branch 0, Channel 0 */ u16 b0_ambpresent1; /* Brnach 0, Channel 1 */ u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */ u16 b1_ambpresent0; /* Branch 1, Channel 8 */ u16 b1_ambpresent1; /* Branch 1, Channel 1 */ /* DIMM information matrix, allocating architecture maximums */ struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS]; /* Actual values for this controller */ int maxch; /* Max channels */ int maxdimmperch; /* Max DIMMs per channel */ }; /* I5000 MCH error information retrieved from Hardware */ struct i5000_error_info { /* These registers are always read from the MC */ u32 ferr_fat_fbd; /* First Errors Fatal */ u32 nerr_fat_fbd; /* Next Errors Fatal */ u32 ferr_nf_fbd; /* First Errors Non-Fatal */ u32 nerr_nf_fbd; /* Next Errors Non-Fatal */ /* These registers are input ONLY if there was a Recoverable Error */ u32 redmemb; /* Recoverable Mem Data Error log B */ u16 recmema; /* Recoverable Mem Error log A */ u32 recmemb; /* Recoverable Mem Error log B */ /* These registers are input ONLY if there was a * Non-Recoverable Error */ u16 nrecmema; /* Non-Recoverable Mem log A */ u32 nrecmemb; /* Non-Recoverable Mem log B */ }; static struct edac_pci_ctl_info *i5000_pci; /* * i5000_get_error_info Retrieve the hardware error information from * the hardware and cache it in the 'info' * structure */ static void i5000_get_error_info(struct mem_ctl_info *mci, struct i5000_error_info *info) { struct i5000_pvt *pvt; u32 value; pvt = mci->pvt_info; /* read in the 1st FATAL error register */ pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value); /* Mask only the bits that the doc says are valid */ value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK); /* If there is an error, then read in the */ /* NEXT FATAL error register and the Memory Error Log Register A */ if (value & FERR_FAT_MASK) { info->ferr_fat_fbd = value; /* harvest the various error data we need */ pci_read_config_dword(pvt->branchmap_werrors, NERR_FAT_FBD, &info->nerr_fat_fbd); pci_read_config_word(pvt->branchmap_werrors, NRECMEMA, &info->nrecmema); pci_read_config_dword(pvt->branchmap_werrors, NRECMEMB, &info->nrecmemb); /* Clear the error bits, by writing them back */ pci_write_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, value); } else { info->ferr_fat_fbd = 0; info->nerr_fat_fbd = 0; info->nrecmema = 0; info->nrecmemb = 0; } /* read in the 1st NON-FATAL error register */ pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value); /* If there is an error, then read in the 1st NON-FATAL error * register as well */ if (value & FERR_NF_MASK) { info->ferr_nf_fbd = value; /* harvest the various error data we need */ pci_read_config_dword(pvt->branchmap_werrors, NERR_NF_FBD, &info->nerr_nf_fbd); pci_read_config_word(pvt->branchmap_werrors, RECMEMA, &info->recmema); pci_read_config_dword(pvt->branchmap_werrors, RECMEMB, &info->recmemb); pci_read_config_dword(pvt->branchmap_werrors, REDMEMB, &info->redmemb); /* Clear the error bits, by writing them back */ pci_write_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, value); } else { info->ferr_nf_fbd = 0; info->nerr_nf_fbd = 0; info->recmema = 0; info->recmemb = 0; info->redmemb = 0; } } /* * i5000_process_fatal_error_info(struct mem_ctl_info *mci, * struct i5000_error_info *info, * int handle_errors); * * handle the Intel FATAL errors, if any */ static void i5000_process_fatal_error_info(struct mem_ctl_info *mci, struct i5000_error_info *info, int handle_errors) { char msg[EDAC_MC_LABEL_LEN + 1 + 160]; char *specific = NULL; u32 allErrors; int channel; int bank; int rank; int rdwr; int ras, cas; /* mask off the Error bits that are possible */ allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK); if (!allErrors) return; /* if no error, return now */ channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd); /* Use the NON-Recoverable macros to extract data */ bank = NREC_BANK(info->nrecmema); rank = NREC_RANK(info->nrecmema); rdwr = NREC_RDWR(info->nrecmema); ras = NREC_RAS(info->nrecmemb); cas = NREC_CAS(info->nrecmemb); edac_dbg(0, "\t\tCSROW= %d Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", rank, channel, bank, rdwr ? "Write" : "Read", ras, cas); /* Only 1 bit will be on */ switch (allErrors) { case FERR_FAT_M1ERR: specific = "Alert on non-redundant retry or fast " "reset timeout"; break; case FERR_FAT_M2ERR: specific = "Northbound CRC error on non-redundant " "retry"; break; case FERR_FAT_M3ERR: { static int done; /* * This error is generated to inform that the intelligent * throttling is disabled and the temperature passed the * specified middle point. Since this is something the BIOS * should take care of, we'll warn only once to avoid * worthlessly flooding the log. */ if (done) return; done++; specific = ">Tmid Thermal event with intelligent " "throttling disabled"; } break; } /* Form out message */ snprintf(msg, sizeof(msg), "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)", bank, ras, cas, allErrors, specific); /* Call the helper to output message */ edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0, channel >> 1, channel & 1, rank, rdwr ? "Write error" : "Read error", msg); } /* * i5000_process_fatal_error_info(struct mem_ctl_info *mci, * struct i5000_error_info *info, * int handle_errors); * * handle the Intel NON-FATAL errors, if any */ static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci, struct i5000_error_info *info, int handle_errors) { char msg[EDAC_MC_LABEL_LEN + 1 + 170]; char *specific = NULL; u32 allErrors; u32 ue_errors; u32 ce_errors; u32 misc_errors; int branch; int channel; int bank; int rank; int rdwr; int ras, cas; /* mask off the Error bits that are possible */ allErrors = (info->ferr_nf_fbd & FERR_NF_MASK); if (!allErrors) return; /* if no error, return now */ /* ONLY ONE of the possible error bits will be set, as per the docs */ ue_errors = allErrors & FERR_NF_UNCORRECTABLE; if (ue_errors) { edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors); branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); /* * According with i5000 datasheet, bit 28 has no significance * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD */ channel = branch & 2; bank = NREC_BANK(info->nrecmema); rank = NREC_RANK(info->nrecmema); rdwr = NREC_RDWR(info->nrecmema); ras = NREC_RAS(info->nrecmemb); cas = NREC_CAS(info->nrecmemb); edac_dbg(0, "\t\tCSROW= %d Channels= %d,%d (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", rank, channel, channel + 1, branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas); switch (ue_errors) { case FERR_NF_M12ERR: specific = "Non-Aliased Uncorrectable Patrol Data ECC"; break; case FERR_NF_M11ERR: specific = "Non-Aliased Uncorrectable Spare-Copy " "Data ECC"; break; case FERR_NF_M10ERR: specific = "Non-Aliased Uncorrectable Mirrored Demand " "Data ECC"; break; case FERR_NF_M9ERR: specific = "Non-Aliased Uncorrectable Non-Mirrored " "Demand Data ECC"; break; case FERR_NF_M8ERR: specific = "Aliased Uncorrectable Patrol Data ECC"; break; case FERR_NF_M7ERR: specific = "Aliased Uncorrectable Spare-Copy Data ECC"; break; case FERR_NF_M6ERR: specific = "Aliased Uncorrectable Mirrored Demand " "Data ECC"; break; case FERR_NF_M5ERR: specific = "Aliased Uncorrectable Non-Mirrored Demand " "Data ECC"; break; case FERR_NF_M4ERR: specific = "Uncorrectable Data ECC on Replay"; break; } /* Form out message */ snprintf(msg, sizeof(msg), "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)", rank, bank, ras, cas, ue_errors, specific); /* Call the helper to output message */ edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, channel >> 1, -1, rank, rdwr ? "Write error" : "Read error", msg); } /* Check correctable errors */ ce_errors = allErrors & FERR_NF_CORRECTABLE; if (ce_errors) { edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors); branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); channel = 0; if (REC_ECC_LOCATOR_ODD(info->redmemb)) channel = 1; /* Convert channel to be based from zero, instead of * from branch base of 0 */ channel += branch; bank = REC_BANK(info->recmema); rank = REC_RANK(info->recmema); rdwr = REC_RDWR(info->recmema); ras = REC_RAS(info->recmemb); cas = REC_CAS(info->recmemb); edac_dbg(0, "\t\tCSROW= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", rank, channel, branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas); switch (ce_errors) { case FERR_NF_M17ERR: specific = "Correctable Non-Mirrored Demand Data ECC"; break; case FERR_NF_M18ERR: specific = "Correctable Mirrored Demand Data ECC"; break; case FERR_NF_M19ERR: specific = "Correctable Spare-Copy Data ECC"; break; case FERR_NF_M20ERR: specific = "Correctable Patrol Data ECC"; break; } /* Form out message */ snprintf(msg, sizeof(msg), "Rank=%d Bank=%d RDWR=%s RAS=%d " "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas, ce_errors, specific); /* Call the helper to output message */ edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, channel >> 1, channel % 2, rank, rdwr ? "Write error" : "Read error", msg); } if (!misc_messages) return; misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC | FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE); if (misc_errors) { switch (misc_errors) { case FERR_NF_M13ERR: specific = "Non-Retry or Redundant Retry FBD Memory " "Alert or Redundant Fast Reset Timeout"; break; case FERR_NF_M14ERR: specific = "Non-Retry or Redundant Retry FBD " "Configuration Alert"; break; case FERR_NF_M15ERR: specific = "Non-Retry or Redundant Retry FBD " "Northbound CRC error on read data"; break; case FERR_NF_M21ERR: specific = "FBD Northbound CRC error on " "FBD Sync Status"; break; case FERR_NF_M22ERR: specific = "SPD protocol error"; break; case FERR_NF_M27ERR: specific = "DIMM-spare copy started"; break; case FERR_NF_M28ERR: specific = "DIMM-spare copy completed"; break; } branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); /* Form out message */ snprintf(msg, sizeof(msg), "Err=%#x (%s)", misc_errors, specific); /* Call the helper to output message */ edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, branch >> 1, -1, -1, "Misc error", msg); } } /* * i5000_process_error_info Process the error info that is * in the 'info' structure, previously retrieved from hardware */ static void i5000_process_error_info(struct mem_ctl_info *mci, struct i5000_error_info *info, int handle_errors) { /* First handle any fatal errors that occurred */ i5000_process_fatal_error_info(mci, info, handle_errors); /* now handle any non-fatal errors that occurred */ i5000_process_nonfatal_error_info(mci, info, handle_errors); } /* * i5000_clear_error Retrieve any error from the hardware * but do NOT process that error. * Used for 'clearing' out of previous errors * Called by the Core module. */ static void i5000_clear_error(struct mem_ctl_info *mci) { struct i5000_error_info info; i5000_get_error_info(mci, &info); } /* * i5000_check_error Retrieve and process errors reported by the * hardware. Called by the Core module. */ static void i5000_check_error(struct mem_ctl_info *mci) { struct i5000_error_info info; edac_dbg(4, "MC%d\n", mci->mc_idx); i5000_get_error_info(mci, &info); i5000_process_error_info(mci, &info, 1); } /* * i5000_get_devices Find and perform 'get' operation on the MCH's * device/functions we want to reference for this driver * * Need to 'get' device 16 func 1 and func 2 */ static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx) { //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx]; struct i5000_pvt *pvt; struct pci_dev *pdev; pvt = mci->pvt_info; /* Attempt to 'get' the MCH register we want */ pdev = NULL; while (1) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); /* End of list, leave */ if (pdev == NULL) { i5000_printk(KERN_ERR, "'system address,Process Bus' " "device not found:" "vendor 0x%x device 0x%x FUNC 1 " "(broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16); return 1; } /* Scan for device 16 func 1 */ if (PCI_FUNC(pdev->devfn) == 1) break; } pvt->branchmap_werrors = pdev; /* Attempt to 'get' the MCH register we want */ pdev = NULL; while (1) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); if (pdev == NULL) { i5000_printk(KERN_ERR, "MC: 'branchmap,control,errors' " "device not found:" "vendor 0x%x device 0x%x Func 2 " "(broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16); pci_dev_put(pvt->branchmap_werrors); return 1; } /* Scan for device 16 func 1 */ if (PCI_FUNC(pdev->devfn) == 2) break; } pvt->fsb_error_regs = pdev; edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n", pci_name(pvt->system_address), pvt->system_address->vendor, pvt->system_address->device); edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", pci_name(pvt->branchmap_werrors), pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device); edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n", pci_name(pvt->fsb_error_regs), pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device); pdev = NULL; pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0, pdev); if (pdev == NULL) { i5000_printk(KERN_ERR, "MC: 'BRANCH 0' device not found:" "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0); pci_dev_put(pvt->branchmap_werrors); pci_dev_put(pvt->fsb_error_regs); return 1; } pvt->branch_0 = pdev; /* If this device claims to have more than 2 channels then * fetch Branch 1's information */ if (pvt->maxch >= CHANNELS_PER_BRANCH) { pdev = NULL; pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_1, pdev); if (pdev == NULL) { i5000_printk(KERN_ERR, "MC: 'BRANCH 1' device not found:" "vendor 0x%x device 0x%x Func 0 " "(broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_1); pci_dev_put(pvt->branchmap_werrors); pci_dev_put(pvt->fsb_error_regs); pci_dev_put(pvt->branch_0); return 1; } pvt->branch_1 = pdev; } return 0; } /* * i5000_put_devices 'put' all the devices that we have * reserved via 'get' */ static void i5000_put_devices(struct mem_ctl_info *mci) { struct i5000_pvt *pvt; pvt = mci->pvt_info; pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */ pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */ pci_dev_put(pvt->branch_0); /* DEV 21 */ /* Only if more than 2 channels do we release the second branch */ if (pvt->maxch >= CHANNELS_PER_BRANCH) pci_dev_put(pvt->branch_1); /* DEV 22 */ } /* * determine_amb_resent * * the information is contained in NUM_MTRS different registers * determineing which of the NUM_MTRS requires knowing * which channel is in question * * 2 branches, each with 2 channels * b0_ambpresent0 for channel '0' * b0_ambpresent1 for channel '1' * b1_ambpresent0 for channel '2' * b1_ambpresent1 for channel '3' */ static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel) { int amb_present; if (channel < CHANNELS_PER_BRANCH) { if (channel & 0x1) amb_present = pvt->b0_ambpresent1; else amb_present = pvt->b0_ambpresent0; } else { if (channel & 0x1) amb_present = pvt->b1_ambpresent1; else amb_present = pvt->b1_ambpresent0; } return amb_present; } /* * determine_mtr(pvt, csrow, channel) * * return the proper MTR register as determine by the csrow and channel desired */ static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel) { int mtr; if (channel < CHANNELS_PER_BRANCH) mtr = pvt->b0_mtr[slot]; else mtr = pvt->b1_mtr[slot]; return mtr; } /* */ static void decode_mtr(int slot_row, u16 mtr) { int ans; ans = MTR_DIMMS_PRESENT(mtr); edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n", slot_row, mtr, ans ? "" : "NOT "); if (!ans) return; edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); edac_dbg(2, "\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single"); edac_dbg(2, "\t\tNUMROW: %s\n", MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : "reserved"); edac_dbg(2, "\t\tNUMCOL: %s\n", MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : "reserved"); } static void handle_channel(struct i5000_pvt *pvt, int slot, int channel, struct i5000_dimm_info *dinfo) { int mtr; int amb_present_reg; int addrBits; mtr = determine_mtr(pvt, slot, channel); if (MTR_DIMMS_PRESENT(mtr)) { amb_present_reg = determine_amb_present_reg(pvt, channel); /* Determine if there is a DIMM present in this DIMM slot */ if (amb_present_reg) { dinfo->dual_rank = MTR_DIMM_RANK(mtr); /* Start with the number of bits for a Bank * on the DRAM */ addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr); /* Add the number of ROW bits */ addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); /* add the number of COLUMN bits */ addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); /* Dual-rank memories have twice the size */ if (dinfo->dual_rank) addrBits++; addrBits += 6; /* add 64 bits per DIMM */ addrBits -= 20; /* divide by 2^^20 */ addrBits -= 3; /* 8 bits per bytes */ dinfo->megabytes = 1 << addrBits; } } } /* * calculate_dimm_size * * also will output a DIMM matrix map, if debug is enabled, for viewing * how the DIMMs are populated */ static void calculate_dimm_size(struct i5000_pvt *pvt) { struct i5000_dimm_info *dinfo; int slot, channel, branch; char *p, *mem_buffer; int space, n; /* ================= Generate some debug output ================= */ space = PAGE_SIZE; mem_buffer = p = kmalloc(space, GFP_KERNEL); if (p == NULL) { i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n", __FILE__, __func__); return; } /* Scan all the actual slots * and calculate the information for each DIMM * Start with the highest slot first, to display it first * and work toward the 0th slot */ for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) { /* on an odd slot, first output a 'boundary' marker, * then reset the message buffer */ if (slot & 0x1) { n = snprintf(p, space, "--------------------------" "--------------------------------"); p += n; space -= n; edac_dbg(2, "%s\n", mem_buffer); p = mem_buffer; space = PAGE_SIZE; } n = snprintf(p, space, "slot %2d ", slot); p += n; space -= n; for (channel = 0; channel < pvt->maxch; channel++) { dinfo = &pvt->dimm_info[slot][channel]; handle_channel(pvt, slot, channel, dinfo); if (dinfo->megabytes) n = snprintf(p, space, "%4d MB %dR| ", dinfo->megabytes, dinfo->dual_rank + 1); else n = snprintf(p, space, "%4d MB | ", 0); p += n; space -= n; } p += n; space -= n; edac_dbg(2, "%s\n", mem_buffer); p = mem_buffer; space = PAGE_SIZE; } /* Output the last bottom 'boundary' marker */ n = snprintf(p, space, "--------------------------" "--------------------------------"); p += n; space -= n; edac_dbg(2, "%s\n", mem_buffer); p = mem_buffer; space = PAGE_SIZE; /* now output the 'channel' labels */ n = snprintf(p, space, " "); p += n; space -= n; for (channel = 0; channel < pvt->maxch; channel++) { n = snprintf(p, space, "channel %d | ", channel); p += n; space -= n; } edac_dbg(2, "%s\n", mem_buffer); p = mem_buffer; space = PAGE_SIZE; n = snprintf(p, space, " "); p += n; for (branch = 0; branch < MAX_BRANCHES; branch++) { n = snprintf(p, space, " branch %d | ", branch); p += n; space -= n; } /* output the last message and free buffer */ edac_dbg(2, "%s\n", mem_buffer); kfree(mem_buffer); } /* * i5000_get_mc_regs read in the necessary registers and * cache locally * * Fills in the private data members */ static void i5000_get_mc_regs(struct mem_ctl_info *mci) { struct i5000_pvt *pvt; u32 actual_tolm; u16 limit; int slot_row; int way0, way1; pvt = mci->pvt_info; pci_read_config_dword(pvt->system_address, AMBASE, &pvt->u.ambase_bottom); pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), &pvt->u.ambase_top); edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n", (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); /* Get the Branch Map regs */ pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm); pvt->tolm >>= 12; edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm, pvt->tolm); actual_tolm = pvt->tolm << 28; edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm); pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0); pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1); pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2); /* Get the MIR[0-2] regs */ limit = (pvt->mir0 >> 4) & 0x0FFF; way0 = pvt->mir0 & 0x1; way1 = pvt->mir0 & 0x2; edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0); limit = (pvt->mir1 >> 4) & 0x0FFF; way0 = pvt->mir1 & 0x1; way1 = pvt->mir1 & 0x2; edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0); limit = (pvt->mir2 >> 4) & 0x0FFF; way0 = pvt->mir2 & 0x1; way1 = pvt->mir2 & 0x2; edac_dbg(2, "MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0); /* Get the MTR[0-3] regs */ for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { int where = MTR0 + (slot_row * sizeof(u32)); pci_read_config_word(pvt->branch_0, where, &pvt->b0_mtr[slot_row]); edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n", slot_row, where, pvt->b0_mtr[slot_row]); if (pvt->maxch >= CHANNELS_PER_BRANCH) { pci_read_config_word(pvt->branch_1, where, &pvt->b1_mtr[slot_row]); edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n", slot_row, where, pvt->b1_mtr[slot_row]); } else { pvt->b1_mtr[slot_row] = 0; } } /* Read and dump branch 0's MTRs */ edac_dbg(2, "Memory Technology Registers:\n"); edac_dbg(2, " Branch 0:\n"); for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { decode_mtr(slot_row, pvt->b0_mtr[slot_row]); } pci_read_config_word(pvt->branch_0, AMB_PRESENT_0, &pvt->b0_ambpresent0); edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0); pci_read_config_word(pvt->branch_0, AMB_PRESENT_1, &pvt->b0_ambpresent1); edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1); /* Only if we have 2 branchs (4 channels) */ if (pvt->maxch < CHANNELS_PER_BRANCH) { pvt->b1_ambpresent0 = 0; pvt->b1_ambpresent1 = 0; } else { /* Read and dump branch 1's MTRs */ edac_dbg(2, " Branch 1:\n"); for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { decode_mtr(slot_row, pvt->b1_mtr[slot_row]); } pci_read_config_word(pvt->branch_1, AMB_PRESENT_0, &pvt->b1_ambpresent0); edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n", pvt->b1_ambpresent0); pci_read_config_word(pvt->branch_1, AMB_PRESENT_1, &pvt->b1_ambpresent1); edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n", pvt->b1_ambpresent1); } /* Go and determine the size of each DIMM and place in an * orderly matrix */ calculate_dimm_size(pvt); } /* * i5000_init_csrows Initialize the 'csrows' table within * the mci control structure with the * addressing of memory. * * return: * 0 success * 1 no actual memory found on this MC */ static int i5000_init_csrows(struct mem_ctl_info *mci) { struct i5000_pvt *pvt; struct dimm_info *dimm; int empty; int max_csrows; int mtr; int csrow_megs; int channel; int slot; pvt = mci->pvt_info; max_csrows = pvt->maxdimmperch * 2; empty = 1; /* Assume NO memory */ /* * FIXME: The memory layout used to map slot/channel into the * real memory architecture is weird: branch+slot are "csrows" * and channel is channel. That required an extra array (dimm_info) * to map the dimms. A good cleanup would be to remove this array, * and do a loop here with branch, channel, slot */ for (slot = 0; slot < max_csrows; slot++) { for (channel = 0; channel < pvt->maxch; channel++) { mtr = determine_mtr(pvt, slot, channel); if (!MTR_DIMMS_PRESENT(mtr)) continue; dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, channel / MAX_BRANCHES, channel % MAX_BRANCHES, slot); csrow_megs = pvt->dimm_info[slot][channel].megabytes; dimm->grain = 8; /* Assume DDR2 for now */ dimm->mtype = MEM_FB_DDR2; /* ask what device type on this row */ if (MTR_DRAM_WIDTH(mtr) == 8) dimm->dtype = DEV_X8; else dimm->dtype = DEV_X4; dimm->edac_mode = EDAC_S8ECD8ED; dimm->nr_pages = csrow_megs << 8; } empty = 0; } return empty; } /* * i5000_enable_error_reporting * Turn on the memory reporting features of the hardware */ static void i5000_enable_error_reporting(struct mem_ctl_info *mci) { struct i5000_pvt *pvt; u32 fbd_error_mask; pvt = mci->pvt_info; /* Read the FBD Error Mask Register */ pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD, &fbd_error_mask); /* Enable with a '0' */ fbd_error_mask &= ~(ENABLE_EMASK_ALL); pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD, fbd_error_mask); } /* * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels) * * ask the device how many channels are present and how many CSROWS * as well */ static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev, int *num_dimms_per_channel, int *num_channels) { u8 value; /* Need to retrieve just how many channels and dimms per channel are * supported on this memory controller */ pci_read_config_byte(pdev, MAXDIMMPERCH, &value); *num_dimms_per_channel = (int)value; pci_read_config_byte(pdev, MAXCH, &value); *num_channels = (int)value; } /* * i5000_probe1 Probe for ONE instance of device to see if it is * present. * return: * 0 for FOUND a device * < 0 for error code */ static int i5000_probe1(struct pci_dev *pdev, int dev_idx) { struct mem_ctl_info *mci; struct edac_mc_layer layers[3]; struct i5000_pvt *pvt; int num_channels; int num_dimms_per_channel; edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); /* We only are looking for func 0 of the set */ if (PCI_FUNC(pdev->devfn) != 0) return -ENODEV; /* Ask the devices for the number of CSROWS and CHANNELS so * that we can calculate the memory resources, etc * * The Chipset will report what it can handle which will be greater * or equal to what the motherboard manufacturer will implement. * * As we don't have a motherboard identification routine to determine * actual number of slots/dimms per channel, we thus utilize the * resource as specified by the chipset. Thus, we might have * have more DIMMs per channel than actually on the mobo, but this * allows the driver to support up to the chipset max, without * some fancy mobo determination. */ i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel, &num_channels); edac_dbg(0, "MC: Number of Branches=2 Channels= %d DIMMS= %d\n", num_channels, num_dimms_per_channel); /* allocate a new MC control structure */ layers[0].type = EDAC_MC_LAYER_BRANCH; layers[0].size = MAX_BRANCHES; layers[0].is_virt_csrow = false; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = num_channels / MAX_BRANCHES; layers[1].is_virt_csrow = false; layers[2].type = EDAC_MC_LAYER_SLOT; layers[2].size = num_dimms_per_channel; layers[2].is_virt_csrow = true; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); if (mci == NULL) return -ENOMEM; edac_dbg(0, "MC: mci = %p\n", mci); mci->pdev = &pdev->dev; /* record ptr to the generic device */ pvt = mci->pvt_info; pvt->system_address = pdev; /* Record this device in our private */ pvt->maxch = num_channels; pvt->maxdimmperch = num_dimms_per_channel; /* 'get' the pci devices we want to reserve for our use */ if (i5000_get_devices(mci, dev_idx)) goto fail0; /* Time to get serious */ i5000_get_mc_regs(mci); /* retrieve the hardware registers */ mci->mc_idx = 0; mci->mtype_cap = MEM_FLAG_FB_DDR2; mci->edac_ctl_cap = EDAC_FLAG_NONE; mci->edac_cap = EDAC_FLAG_NONE; mci->mod_name = "i5000_edac.c"; mci->ctl_name = i5000_devs[dev_idx].ctl_name; mci->dev_name = pci_name(pdev); mci->ctl_page_to_phys = NULL; /* Set the function pointer to an actual operation function */ mci->edac_check = i5000_check_error; /* initialize the MC control structure 'csrows' table * with the mapping and control information */ if (i5000_init_csrows(mci)) { edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n"); mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */ } else { edac_dbg(1, "MC: Enable error reporting now\n"); i5000_enable_error_reporting(mci); } /* add this new MC control structure to EDAC's list of MCs */ if (edac_mc_add_mc(mci)) { edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); /* FIXME: perhaps some code should go here that disables error * reporting if we just enabled it */ goto fail1; } i5000_clear_error(mci); /* allocating generic PCI control info */ i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); if (!i5000_pci) { printk(KERN_WARNING "%s(): Unable to create PCI control\n", __func__); printk(KERN_WARNING "%s(): PCI error report via EDAC not setup\n", __func__); } return 0; /* Error exit unwinding stack */ fail1: i5000_put_devices(mci); fail0: edac_mc_free(mci); return -ENODEV; } /* * i5000_init_one constructor for one instance of device * * returns: * negative on error * count (>= 0) */ static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id) { int rc; edac_dbg(0, "MC:\n"); /* wake up device */ rc = pci_enable_device(pdev); if (rc) return rc; /* now probe and enable the device */ return i5000_probe1(pdev, id->driver_data); } /* * i5000_remove_one destructor for one instance of device * */ static void i5000_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; edac_dbg(0, "\n"); if (i5000_pci) edac_pci_release_generic_ctl(i5000_pci); if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) return; /* retrieve references to resources, and free those resources */ i5000_put_devices(mci); edac_mc_free(mci); } /* * pci_device_id table for which devices we are looking for * * The "E500P" device is the first device supported. */ static const struct pci_device_id i5000_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16), .driver_data = I5000P}, {0,} /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, i5000_pci_tbl); /* * i5000_driver pci_driver structure for this module * */ static struct pci_driver i5000_driver = { .name = KBUILD_BASENAME, .probe = i5000_init_one, .remove = i5000_remove_one, .id_table = i5000_pci_tbl, }; /* * i5000_init Module entry function * Try to initialize this module for its devices */ static int __init i5000_init(void) { int pci_rc; edac_dbg(2, "MC:\n"); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); pci_rc = pci_register_driver(&i5000_driver); return (pci_rc < 0) ? pci_rc : 0; } /* * i5000_exit() Module exit function * Unregister the driver */ static void __exit i5000_exit(void) { edac_dbg(2, "MC:\n"); pci_unregister_driver(&i5000_driver); } module_init(i5000_init); module_exit(i5000_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>"); MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - " I5000_REVISION); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); module_param(misc_messages, int, 0444); MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1