Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ranganathan Desikan | 2119 | 79.93% | 1 | 4.17% |
Mauro Carvalho Chehab | 244 | 9.20% | 12 | 50.00% |
Arvind R | 197 | 7.43% | 5 | 20.83% |
Joe Perches | 42 | 1.58% | 1 | 4.17% |
Hitoshi Mitake | 23 | 0.87% | 1 | 4.17% |
Arvind Yadav | 17 | 0.64% | 1 | 4.17% |
Jingoo Han | 6 | 0.23% | 1 | 4.17% |
Yue haibing | 2 | 0.08% | 1 | 4.17% |
Alexandre Belloni | 1 | 0.04% | 1 | 4.17% |
Total | 2651 | 24 |
/* * Intel 82975X Memory Controller kernel module * (C) 2007 aCarLab (India) Pvt. Ltd. (http://acarlab.com) * (C) 2007 jetzbroadband (http://jetzbroadband.com) * This file may be distributed under the terms of the * GNU General Public License. * * Written by Arvind R. * Copied from i82875p_edac.c source: */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/edac.h> #include "edac_module.h" #define EDAC_MOD_STR "i82975x_edac" #define i82975x_printk(level, fmt, arg...) \ edac_printk(level, "i82975x", fmt, ##arg) #define i82975x_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "i82975x", fmt, ##arg) #ifndef PCI_DEVICE_ID_INTEL_82975_0 #define PCI_DEVICE_ID_INTEL_82975_0 0x277c #endif /* PCI_DEVICE_ID_INTEL_82975_0 */ #define I82975X_NR_DIMMS 8 #define I82975X_NR_CSROWS(nr_chans) (I82975X_NR_DIMMS / (nr_chans)) /* Intel 82975X register addresses - device 0 function 0 - DRAM Controller */ #define I82975X_EAP 0x58 /* Dram Error Address Pointer (32b) * * 31:7 128 byte cache-line address * 6:1 reserved * 0 0: CH0; 1: CH1 */ #define I82975X_DERRSYN 0x5c /* Dram Error SYNdrome (8b) * * 7:0 DRAM ECC Syndrome */ #define I82975X_DES 0x5d /* Dram ERRor DeSTination (8b) * 0h: Processor Memory Reads * 1h:7h reserved * More - See Page 65 of Intel DocSheet. */ #define I82975X_ERRSTS 0xc8 /* Error Status Register (16b) * * 15:12 reserved * 11 Thermal Sensor Event * 10 reserved * 9 non-DRAM lock error (ndlock) * 8 Refresh Timeout * 7:2 reserved * 1 ECC UE (multibit DRAM error) * 0 ECC CE (singlebit DRAM error) */ /* Error Reporting is supported by 3 mechanisms: 1. DMI SERR generation ( ERRCMD ) 2. SMI DMI generation ( SMICMD ) 3. SCI DMI generation ( SCICMD ) NOTE: Only ONE of the three must be enabled */ #define I82975X_ERRCMD 0xca /* Error Command (16b) * * 15:12 reserved * 11 Thermal Sensor Event * 10 reserved * 9 non-DRAM lock error (ndlock) * 8 Refresh Timeout * 7:2 reserved * 1 ECC UE (multibit DRAM error) * 0 ECC CE (singlebit DRAM error) */ #define I82975X_SMICMD 0xcc /* Error Command (16b) * * 15:2 reserved * 1 ECC UE (multibit DRAM error) * 0 ECC CE (singlebit DRAM error) */ #define I82975X_SCICMD 0xce /* Error Command (16b) * * 15:2 reserved * 1 ECC UE (multibit DRAM error) * 0 ECC CE (singlebit DRAM error) */ #define I82975X_XEAP 0xfc /* Extended Dram Error Address Pointer (8b) * * 7:1 reserved * 0 Bit32 of the Dram Error Address */ #define I82975X_MCHBAR 0x44 /* * * 31:14 Base Addr of 16K memory-mapped * configuration space * 13:1 reserved * 0 mem-mapped config space enable */ /* NOTE: Following addresses have to indexed using MCHBAR offset (44h, 32b) */ /* Intel 82975x memory mapped register space */ #define I82975X_DRB_SHIFT 25 /* fixed 32MiB grain */ #define I82975X_DRB 0x100 /* DRAM Row Boundary (8b x 8) * * 7 set to 1 in highest DRB of * channel if 4GB in ch. * 6:2 upper boundary of rank in * 32MB grains * 1:0 set to 0 */ #define I82975X_DRB_CH0R0 0x100 #define I82975X_DRB_CH0R1 0x101 #define I82975X_DRB_CH0R2 0x102 #define I82975X_DRB_CH0R3 0x103 #define I82975X_DRB_CH1R0 0x180 #define I82975X_DRB_CH1R1 0x181 #define I82975X_DRB_CH1R2 0x182 #define I82975X_DRB_CH1R3 0x183 #define I82975X_DRA 0x108 /* DRAM Row Attribute (4b x 8) * defines the PAGE SIZE to be used * for the rank * 7 reserved * 6:4 row attr of odd rank, i.e. 1 * 3 reserved * 2:0 row attr of even rank, i.e. 0 * * 000 = unpopulated * 001 = reserved * 010 = 4KiB * 011 = 8KiB * 100 = 16KiB * others = reserved */ #define I82975X_DRA_CH0R01 0x108 #define I82975X_DRA_CH0R23 0x109 #define I82975X_DRA_CH1R01 0x188 #define I82975X_DRA_CH1R23 0x189 #define I82975X_BNKARC 0x10e /* Type of device in each rank - Bank Arch (16b) * * 15:8 reserved * 7:6 Rank 3 architecture * 5:4 Rank 2 architecture * 3:2 Rank 1 architecture * 1:0 Rank 0 architecture * * 00 => 4 banks * 01 => 8 banks */ #define I82975X_C0BNKARC 0x10e #define I82975X_C1BNKARC 0x18e #define I82975X_DRC 0x120 /* DRAM Controller Mode0 (32b) * * 31:30 reserved * 29 init complete * 28:11 reserved, according to Intel * 22:21 number of channels * 00=1 01=2 in 82875 * seems to be ECC mode * bits in 82975 in Asus * P5W * 19:18 Data Integ Mode * 00=none 01=ECC in 82875 * 10:8 refresh mode * 7 reserved * 6:4 mode select * 3:2 reserved * 1:0 DRAM type 10=Second Revision * DDR2 SDRAM * 00, 01, 11 reserved */ #define I82975X_DRC_CH0M0 0x120 #define I82975X_DRC_CH1M0 0x1A0 #define I82975X_DRC_M1 0x124 /* DRAM Controller Mode1 (32b) * 31 0=Standard Address Map * 1=Enhanced Address Map * 30:0 reserved */ #define I82975X_DRC_CH0M1 0x124 #define I82975X_DRC_CH1M1 0x1A4 enum i82975x_chips { I82975X = 0, }; struct i82975x_pvt { void __iomem *mch_window; }; struct i82975x_dev_info { const char *ctl_name; }; struct i82975x_error_info { u16 errsts; u32 eap; u8 des; u8 derrsyn; u16 errsts2; u8 chan; /* the channel is bit 0 of EAP */ u8 xeap; /* extended eap bit */ }; static const struct i82975x_dev_info i82975x_devs[] = { [I82975X] = { .ctl_name = "i82975x" }, }; static struct pci_dev *mci_pdev; /* init dev: in case that AGP code has * already registered driver */ static int i82975x_registered = 1; static void i82975x_get_error_info(struct mem_ctl_info *mci, struct i82975x_error_info *info) { struct pci_dev *pdev; pdev = to_pci_dev(mci->pdev); /* * This is a mess because there is no atomic way to read all the * registers at once and the registers can transition from CE being * overwritten by UE. */ pci_read_config_word(pdev, I82975X_ERRSTS, &info->errsts); pci_read_config_dword(pdev, I82975X_EAP, &info->eap); pci_read_config_byte(pdev, I82975X_XEAP, &info->xeap); pci_read_config_byte(pdev, I82975X_DES, &info->des); pci_read_config_byte(pdev, I82975X_DERRSYN, &info->derrsyn); pci_read_config_word(pdev, I82975X_ERRSTS, &info->errsts2); pci_write_bits16(pdev, I82975X_ERRSTS, 0x0003, 0x0003); /* * If the error is the same then we can for both reads then * the first set of reads is valid. If there is a change then * there is a CE no info and the second set of reads is valid * and should be UE info. */ if (!(info->errsts2 & 0x0003)) return; if ((info->errsts ^ info->errsts2) & 0x0003) { pci_read_config_dword(pdev, I82975X_EAP, &info->eap); pci_read_config_byte(pdev, I82975X_XEAP, &info->xeap); pci_read_config_byte(pdev, I82975X_DES, &info->des); pci_read_config_byte(pdev, I82975X_DERRSYN, &info->derrsyn); } } static int i82975x_process_error_info(struct mem_ctl_info *mci, struct i82975x_error_info *info, int handle_errors) { int row, chan; unsigned long offst, page; if (!(info->errsts2 & 0x0003)) return 0; if (!handle_errors) return 1; if ((info->errsts ^ info->errsts2) & 0x0003) { edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, -1, -1, -1, "UE overwrote CE", ""); info->errsts = info->errsts2; } page = (unsigned long) info->eap; page >>= 1; if (info->xeap & 1) page |= 0x80000000; page >>= (PAGE_SHIFT - 1); row = edac_mc_find_csrow_by_page(mci, page); if (row == -1) { i82975x_mc_printk(mci, KERN_ERR, "error processing EAP:\n" "\tXEAP=%u\n" "\t EAP=0x%08x\n" "\tPAGE=0x%08x\n", (info->xeap & 1) ? 1 : 0, info->eap, (unsigned int) page); return 0; } chan = (mci->csrows[row]->nr_channels == 1) ? 0 : info->eap & 1; offst = info->eap & ((1 << PAGE_SHIFT) - (1 << mci->csrows[row]->channels[chan]->dimm->grain)); if (info->errsts & 0x0002) edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, page, offst, 0, row, -1, -1, "i82975x UE", ""); else edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, page, offst, info->derrsyn, row, chan ? chan : 0, -1, "i82975x CE", ""); return 1; } static void i82975x_check(struct mem_ctl_info *mci) { struct i82975x_error_info info; edac_dbg(1, "MC%d\n", mci->mc_idx); i82975x_get_error_info(mci, &info); i82975x_process_error_info(mci, &info, 1); } /* Return 1 if dual channel mode is active. Else return 0. */ static int dual_channel_active(void __iomem *mch_window) { /* * We treat interleaved-symmetric configuration as dual-channel - EAP's * bit-0 giving the channel of the error location. * * All other configurations are treated as single channel - the EAP's * bit-0 will resolve ok in symmetric area of mixed * (symmetric/asymmetric) configurations */ u8 drb[4][2]; int row; int dualch; for (dualch = 1, row = 0; dualch && (row < 4); row++) { drb[row][0] = readb(mch_window + I82975X_DRB + row); drb[row][1] = readb(mch_window + I82975X_DRB + row + 0x80); dualch = dualch && (drb[row][0] == drb[row][1]); } return dualch; } static void i82975x_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev, void __iomem *mch_window) { struct csrow_info *csrow; unsigned long last_cumul_size; u8 value; u32 cumul_size, nr_pages; int index, chan; struct dimm_info *dimm; last_cumul_size = 0; /* * 82875 comment: * The dram row boundary (DRB) reg values are boundary address * for each DRAM row with a granularity of 32 or 64MB (single/dual * channel operation). DRB regs are cumulative; therefore DRB7 will * contain the total memory contained in all rows. * */ for (index = 0; index < mci->nr_csrows; index++) { csrow = mci->csrows[index]; value = readb(mch_window + I82975X_DRB + index + ((index >= 4) ? 0x80 : 0)); cumul_size = value; cumul_size <<= (I82975X_DRB_SHIFT - PAGE_SHIFT); /* * Adjust cumul_size w.r.t number of channels * */ if (csrow->nr_channels > 1) cumul_size <<= 1; edac_dbg(3, "(%d) cumul_size 0x%x\n", index, cumul_size); nr_pages = cumul_size - last_cumul_size; if (!nr_pages) continue; /* * Initialise dram labels * index values: * [0-7] for single-channel; i.e. csrow->nr_channels = 1 * [0-3] for dual-channel; i.e. csrow->nr_channels = 2 */ for (chan = 0; chan < csrow->nr_channels; chan++) { dimm = mci->csrows[index]->channels[chan]->dimm; dimm->nr_pages = nr_pages / csrow->nr_channels; snprintf(csrow->channels[chan]->dimm->label, EDAC_MC_LABEL_LEN, "DIMM %c%d", (chan == 0) ? 'A' : 'B', index); dimm->grain = 1 << 7; /* 128Byte cache-line resolution */ /* ECC is possible on i92975x ONLY with DEV_X8. */ dimm->dtype = DEV_X8; dimm->mtype = MEM_DDR2; /* I82975x supports only DDR2 */ dimm->edac_mode = EDAC_SECDED; /* only supported */ } csrow->first_page = last_cumul_size; csrow->last_page = cumul_size - 1; last_cumul_size = cumul_size; } } /* #define i82975x_DEBUG_IOMEM */ #ifdef i82975x_DEBUG_IOMEM static void i82975x_print_dram_timings(void __iomem *mch_window) { /* * The register meanings are from Intel specs; * (shows 13-5-5-5 for 800-DDR2) * Asus P5W Bios reports 15-5-4-4 * What's your religion? */ static const int caslats[4] = { 5, 4, 3, 6 }; u32 dtreg[2]; dtreg[0] = readl(mch_window + 0x114); dtreg[1] = readl(mch_window + 0x194); i82975x_printk(KERN_INFO, "DRAM Timings : Ch0 Ch1\n" " RAS Active Min = %d %d\n" " CAS latency = %d %d\n" " RAS to CAS = %d %d\n" " RAS precharge = %d %d\n", (dtreg[0] >> 19 ) & 0x0f, (dtreg[1] >> 19) & 0x0f, caslats[(dtreg[0] >> 8) & 0x03], caslats[(dtreg[1] >> 8) & 0x03], ((dtreg[0] >> 4) & 0x07) + 2, ((dtreg[1] >> 4) & 0x07) + 2, (dtreg[0] & 0x07) + 2, (dtreg[1] & 0x07) + 2 ); } #endif static int i82975x_probe1(struct pci_dev *pdev, int dev_idx) { int rc = -ENODEV; struct mem_ctl_info *mci; struct edac_mc_layer layers[2]; struct i82975x_pvt *pvt; void __iomem *mch_window; u32 mchbar; u32 drc[2]; struct i82975x_error_info discard; int chans; #ifdef i82975x_DEBUG_IOMEM u8 c0drb[4]; u8 c1drb[4]; #endif edac_dbg(0, "\n"); pci_read_config_dword(pdev, I82975X_MCHBAR, &mchbar); if (!(mchbar & 1)) { edac_dbg(3, "failed, MCHBAR disabled!\n"); goto fail0; } mchbar &= 0xffffc000; /* bits 31:14 used for 16K window */ mch_window = ioremap_nocache(mchbar, 0x1000); if (!mch_window) { edac_dbg(3, "error ioremapping MCHBAR!\n"); goto fail0; } #ifdef i82975x_DEBUG_IOMEM i82975x_printk(KERN_INFO, "MCHBAR real = %0x, remapped = %p\n", mchbar, mch_window); c0drb[0] = readb(mch_window + I82975X_DRB_CH0R0); c0drb[1] = readb(mch_window + I82975X_DRB_CH0R1); c0drb[2] = readb(mch_window + I82975X_DRB_CH0R2); c0drb[3] = readb(mch_window + I82975X_DRB_CH0R3); c1drb[0] = readb(mch_window + I82975X_DRB_CH1R0); c1drb[1] = readb(mch_window + I82975X_DRB_CH1R1); c1drb[2] = readb(mch_window + I82975X_DRB_CH1R2); c1drb[3] = readb(mch_window + I82975X_DRB_CH1R3); i82975x_printk(KERN_INFO, "DRBCH0R0 = 0x%02x\n", c0drb[0]); i82975x_printk(KERN_INFO, "DRBCH0R1 = 0x%02x\n", c0drb[1]); i82975x_printk(KERN_INFO, "DRBCH0R2 = 0x%02x\n", c0drb[2]); i82975x_printk(KERN_INFO, "DRBCH0R3 = 0x%02x\n", c0drb[3]); i82975x_printk(KERN_INFO, "DRBCH1R0 = 0x%02x\n", c1drb[0]); i82975x_printk(KERN_INFO, "DRBCH1R1 = 0x%02x\n", c1drb[1]); i82975x_printk(KERN_INFO, "DRBCH1R2 = 0x%02x\n", c1drb[2]); i82975x_printk(KERN_INFO, "DRBCH1R3 = 0x%02x\n", c1drb[3]); #endif drc[0] = readl(mch_window + I82975X_DRC_CH0M0); drc[1] = readl(mch_window + I82975X_DRC_CH1M0); #ifdef i82975x_DEBUG_IOMEM i82975x_printk(KERN_INFO, "DRC_CH0 = %0x, %s\n", drc[0], ((drc[0] >> 21) & 3) == 1 ? "ECC enabled" : "ECC disabled"); i82975x_printk(KERN_INFO, "DRC_CH1 = %0x, %s\n", drc[1], ((drc[1] >> 21) & 3) == 1 ? "ECC enabled" : "ECC disabled"); i82975x_printk(KERN_INFO, "C0 BNKARC = %0x\n", readw(mch_window + I82975X_C0BNKARC)); i82975x_printk(KERN_INFO, "C1 BNKARC = %0x\n", readw(mch_window + I82975X_C1BNKARC)); i82975x_print_dram_timings(mch_window); goto fail1; #endif if (!(((drc[0] >> 21) & 3) == 1 || ((drc[1] >> 21) & 3) == 1)) { i82975x_printk(KERN_INFO, "ECC disabled on both channels.\n"); goto fail1; } chans = dual_channel_active(mch_window) + 1; /* assuming only one controller, index thus is 0 */ layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = I82975X_NR_DIMMS; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = I82975X_NR_CSROWS(chans); layers[1].is_virt_csrow = false; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); if (!mci) { rc = -ENOMEM; goto fail1; } edac_dbg(3, "init mci\n"); mci->pdev = &pdev->dev; mci->mtype_cap = MEM_FLAG_DDR2; mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->mod_name = EDAC_MOD_STR; mci->ctl_name = i82975x_devs[dev_idx].ctl_name; mci->dev_name = pci_name(pdev); mci->edac_check = i82975x_check; mci->ctl_page_to_phys = NULL; edac_dbg(3, "init pvt\n"); pvt = (struct i82975x_pvt *) mci->pvt_info; pvt->mch_window = mch_window; i82975x_init_csrows(mci, pdev, mch_window); mci->scrub_mode = SCRUB_HW_SRC; i82975x_get_error_info(mci, &discard); /* clear counters */ /* finalize this instance of memory controller with edac core */ if (edac_mc_add_mc(mci)) { edac_dbg(3, "failed edac_mc_add_mc()\n"); goto fail2; } /* get this far and it's successful */ edac_dbg(3, "success\n"); return 0; fail2: edac_mc_free(mci); fail1: iounmap(mch_window); fail0: return rc; } /* returns count (>= 0), or negative on error */ static int i82975x_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int rc; edac_dbg(0, "\n"); if (pci_enable_device(pdev) < 0) return -EIO; rc = i82975x_probe1(pdev, ent->driver_data); if (mci_pdev == NULL) mci_pdev = pci_dev_get(pdev); return rc; } static void i82975x_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; struct i82975x_pvt *pvt; edac_dbg(0, "\n"); mci = edac_mc_del_mc(&pdev->dev); if (mci == NULL) return; pvt = mci->pvt_info; if (pvt->mch_window) iounmap( pvt->mch_window ); edac_mc_free(mci); } static const struct pci_device_id i82975x_pci_tbl[] = { { PCI_VEND_DEV(INTEL, 82975_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, I82975X }, { 0, } /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, i82975x_pci_tbl); static struct pci_driver i82975x_driver = { .name = EDAC_MOD_STR, .probe = i82975x_init_one, .remove = i82975x_remove_one, .id_table = i82975x_pci_tbl, }; static int __init i82975x_init(void) { int pci_rc; edac_dbg(3, "\n"); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); pci_rc = pci_register_driver(&i82975x_driver); if (pci_rc < 0) goto fail0; if (mci_pdev == NULL) { mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82975_0, NULL); if (!mci_pdev) { edac_dbg(0, "i82975x pci_get_device fail\n"); pci_rc = -ENODEV; goto fail1; } pci_rc = i82975x_init_one(mci_pdev, i82975x_pci_tbl); if (pci_rc < 0) { edac_dbg(0, "i82975x init fail\n"); pci_rc = -ENODEV; goto fail1; } } return 0; fail1: pci_unregister_driver(&i82975x_driver); fail0: pci_dev_put(mci_pdev); return pci_rc; } static void __exit i82975x_exit(void) { edac_dbg(3, "\n"); pci_unregister_driver(&i82975x_driver); if (!i82975x_registered) { i82975x_remove_one(mci_pdev); pci_dev_put(mci_pdev); } } module_init(i82975x_init); module_exit(i82975x_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arvind R. <arvino55@gmail.com>"); MODULE_DESCRIPTION("MC support for Intel 82975 memory hub controllers"); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1