Contributors: 7
Author Tokens Token Proportion Commits Commit Proportion
Tony Luck 9869 98.71% 3 23.08%
Qiuxu Zhuo 72 0.72% 4 30.77%
Toshi Kani 35 0.35% 1 7.69%
Borislav Petkov 18 0.18% 2 15.38%
Gustavo A. R. Silva 2 0.02% 1 7.69%
Peter Zijlstra 1 0.01% 1 7.69%
Colin Ian King 1 0.01% 1 7.69%
Total 9998 13


/*
 * Driver for Pondicherry2 memory controller.
 *
 * Copyright (c) 2016, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * [Derived from sb_edac.c]
 *
 * Translation of system physical addresses to DIMM addresses
 * is a two stage process:
 *
 * First the Pondicherry 2 memory controller handles slice and channel interleaving
 * in "sys2pmi()". This is (almost) completley common between platforms.
 *
 * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
 * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/mce.h>

#include "edac_mc.h"
#include "edac_module.h"
#include "pnd2_edac.h"

#define EDAC_MOD_STR		"pnd2_edac"

#define APL_NUM_CHANNELS	4
#define DNV_NUM_CHANNELS	2
#define DNV_MAX_DIMMS		2 /* Max DIMMs per channel */

enum type {
	APL,
	DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
};

struct dram_addr {
	int chan;
	int dimm;
	int rank;
	int bank;
	int row;
	int col;
};

struct pnd2_pvt {
	int dimm_geom[APL_NUM_CHANNELS];
	u64 tolm, tohm;
};

/*
 * System address space is divided into multiple regions with
 * different interleave rules in each. The as0/as1 regions
 * have no interleaving at all. The as2 region is interleaved
 * between two channels. The mot region is magic and may overlap
 * other regions, with its interleave rules taking precedence.
 * Addresses not in any of these regions are interleaved across
 * all four channels.
 */
static struct region {
	u64	base;
	u64	limit;
	u8	enabled;
} mot, as0, as1, as2;

static struct dunit_ops {
	char *name;
	enum type type;
	int pmiaddr_shift;
	int pmiidx_shift;
	int channels;
	int dimms_per_channel;
	int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name);
	int (*get_registers)(void);
	int (*check_ecc)(void);
	void (*mk_region)(char *name, struct region *rp, void *asym);
	void (*get_dimm_config)(struct mem_ctl_info *mci);
	int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
				   struct dram_addr *daddr, char *msg);
} *ops;

static struct mem_ctl_info *pnd2_mci;

#define PND2_MSG_SIZE	256

/* Debug macros */
#define pnd2_printk(level, fmt, arg...)			\
	edac_printk(level, "pnd2", fmt, ##arg)

#define pnd2_mc_printk(mci, level, fmt, arg...)	\
	edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)

#define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
#define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
#define SELECTOR_DISABLED (-1)
#define _4GB (1ul << 32)

#define PMI_ADDRESS_WIDTH	31
#define PND_MAX_PHYS_BIT	39

#define APL_ASYMSHIFT		28
#define DNV_ASYMSHIFT		31
#define CH_HASH_MASK_LSB	6
#define SLICE_HASH_MASK_LSB	6
#define MOT_SLC_INTLV_BIT	12
#define LOG2_PMI_ADDR_GRANULARITY	5
#define MOT_SHIFT	24

#define GET_BITFIELD(v, lo, hi)	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
#define U64_LSHIFT(val, s)	((u64)(val) << (s))

/*
 * On Apollo Lake we access memory controller registers via a
 * side-band mailbox style interface in a hidden PCI device
 * configuration space.
 */
static struct pci_bus	*p2sb_bus;
#define P2SB_DEVFN	PCI_DEVFN(0xd, 0)
#define P2SB_ADDR_OFF	0xd0
#define P2SB_DATA_OFF	0xd4
#define P2SB_STAT_OFF	0xd8
#define P2SB_ROUT_OFF	0xda
#define P2SB_EADD_OFF	0xdc
#define P2SB_HIDE_OFF	0xe1

#define P2SB_BUSY	1

#define P2SB_READ(size, off, ptr) \
	pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr)
#define P2SB_WRITE(size, off, val) \
	pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val)

static bool p2sb_is_busy(u16 *status)
{
	P2SB_READ(word, P2SB_STAT_OFF, status);

	return !!(*status & P2SB_BUSY);
}

static int _apl_rd_reg(int port, int off, int op, u32 *data)
{
	int retries = 0xff, ret;
	u16 status;
	u8 hidden;

	/* Unhide the P2SB device, if it's hidden */
	P2SB_READ(byte, P2SB_HIDE_OFF, &hidden);
	if (hidden)
		P2SB_WRITE(byte, P2SB_HIDE_OFF, 0);

	if (p2sb_is_busy(&status)) {
		ret = -EAGAIN;
		goto out;
	}

	P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off);
	P2SB_WRITE(dword, P2SB_DATA_OFF, 0);
	P2SB_WRITE(dword, P2SB_EADD_OFF, 0);
	P2SB_WRITE(word, P2SB_ROUT_OFF, 0);
	P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY);

	while (p2sb_is_busy(&status)) {
		if (retries-- == 0) {
			ret = -EBUSY;
			goto out;
		}
	}

	P2SB_READ(dword, P2SB_DATA_OFF, data);
	ret = (status >> 1) & 0x3;
out:
	/* Hide the P2SB device, if it was hidden before */
	if (hidden)
		P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden);

	return ret;
}

static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
{
	int ret = 0;

	edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op);
	switch (sz) {
	case 8:
		ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4));
		/* fall through */
	case 4:
		ret |= _apl_rd_reg(port, off, op, (u32 *)data);
		pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name,
					sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret);
		break;
	}

	return ret;
}

static u64 get_mem_ctrl_hub_base_addr(void)
{
	struct b_cr_mchbar_lo_pci lo;
	struct b_cr_mchbar_hi_pci hi;
	struct pci_dev *pdev;

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
	if (pdev) {
		pci_read_config_dword(pdev, 0x48, (u32 *)&lo);
		pci_read_config_dword(pdev, 0x4c, (u32 *)&hi);
		pci_dev_put(pdev);
	} else {
		return 0;
	}

	if (!lo.enable) {
		edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
		return 0;
	}

	return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15);
}

static u64 get_sideband_reg_base_addr(void)
{
	struct pci_dev *pdev;
	u32 hi, lo;
	u8 hidden;

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL);
	if (pdev) {
		/* Unhide the P2SB device, if it's hidden */
		pci_read_config_byte(pdev, 0xe1, &hidden);
		if (hidden)
			pci_write_config_byte(pdev, 0xe1, 0);

		pci_read_config_dword(pdev, 0x10, &lo);
		pci_read_config_dword(pdev, 0x14, &hi);
		lo &= 0xfffffff0;

		/* Hide the P2SB device, if it was hidden before */
		if (hidden)
			pci_write_config_byte(pdev, 0xe1, hidden);

		pci_dev_put(pdev);
		return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0));
	} else {
		return 0xfd000000;
	}
}

static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
{
	struct pci_dev *pdev;
	char *base;
	u64 addr;

	if (op == 4) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
		if (!pdev)
			return -ENODEV;

		pci_read_config_dword(pdev, off, data);
		pci_dev_put(pdev);
	} else {
		/* MMIO via memory controller hub base address */
		if (op == 0 && port == 0x4c) {
			addr = get_mem_ctrl_hub_base_addr();
			if (!addr)
				return -ENODEV;
		} else {
			/* MMIO via sideband register base address */
			addr = get_sideband_reg_base_addr();
			if (!addr)
				return -ENODEV;
			addr += (port << 16);
		}

		base = ioremap((resource_size_t)addr, 0x10000);
		if (!base)
			return -ENODEV;

		if (sz == 8)
			*(u32 *)(data + 4) = *(u32 *)(base + off + 4);
		*(u32 *)data = *(u32 *)(base + off);

		iounmap(base);
	}

	edac_dbg(2, "Read %s=%.8x_%.8x\n", name,
			(sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data);

	return 0;
}

#define RD_REGP(regp, regname, port)	\
	ops->rd_reg(port,					\
		regname##_offset,				\
		regname##_r_opcode,				\
		regp, sizeof(struct regname),	\
		#regname)

#define RD_REG(regp, regname)			\
	ops->rd_reg(regname ## _port,		\
		regname##_offset,				\
		regname##_r_opcode,				\
		regp, sizeof(struct regname),	\
		#regname)

static u64 top_lm, top_hm;
static bool two_slices;
static bool two_channels; /* Both PMI channels in one slice enabled */

static u8 sym_chan_mask;
static u8 asym_chan_mask;
static u8 chan_mask;

static int slice_selector = -1;
static int chan_selector = -1;
static u64 slice_hash_mask;
static u64 chan_hash_mask;

static void mk_region(char *name, struct region *rp, u64 base, u64 limit)
{
	rp->enabled = 1;
	rp->base = base;
	rp->limit = limit;
	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit);
}

static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask)
{
	if (mask == 0) {
		pr_info(FW_BUG "MOT mask cannot be zero\n");
		return;
	}
	if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) {
		pr_info(FW_BUG "MOT mask not power of two\n");
		return;
	}
	if (base & ~mask) {
		pr_info(FW_BUG "MOT region base/mask alignment error\n");
		return;
	}
	rp->base = base;
	rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0);
	rp->enabled = 1;
	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit);
}

static bool in_region(struct region *rp, u64 addr)
{
	if (!rp->enabled)
		return false;

	return rp->base <= addr && addr <= rp->limit;
}

static int gen_sym_mask(struct b_cr_slice_channel_hash *p)
{
	int mask = 0;

	if (!p->slice_0_mem_disabled)
		mask |= p->sym_slice0_channel_enabled;

	if (!p->slice_1_disabled)
		mask |= p->sym_slice1_channel_enabled << 2;

	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
		mask &= 0x5;

	return mask;
}

static int gen_asym_mask(struct b_cr_slice_channel_hash *p,
			 struct b_cr_asym_mem_region0_mchbar *as0,
			 struct b_cr_asym_mem_region1_mchbar *as1,
			 struct b_cr_asym_2way_mem_region_mchbar *as2way)
{
	const int intlv[] = { 0x5, 0xA, 0x3, 0xC };
	int mask = 0;

	if (as2way->asym_2way_interleave_enable)
		mask = intlv[as2way->asym_2way_intlv_mode];
	if (as0->slice0_asym_enable)
		mask |= (1 << as0->slice0_asym_channel_select);
	if (as1->slice1_asym_enable)
		mask |= (4 << as1->slice1_asym_channel_select);
	if (p->slice_0_mem_disabled)
		mask &= 0xc;
	if (p->slice_1_disabled)
		mask &= 0x3;
	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
		mask &= 0x5;

	return mask;
}

static struct b_cr_tolud_pci tolud;
static struct b_cr_touud_lo_pci touud_lo;
static struct b_cr_touud_hi_pci touud_hi;
static struct b_cr_asym_mem_region0_mchbar asym0;
static struct b_cr_asym_mem_region1_mchbar asym1;
static struct b_cr_asym_2way_mem_region_mchbar asym_2way;
static struct b_cr_mot_out_base_mchbar mot_base;
static struct b_cr_mot_out_mask_mchbar mot_mask;
static struct b_cr_slice_channel_hash chash;

/* Apollo Lake dunit */
/*
 * Validated on board with just two DIMMs in the [0] and [2] positions
 * in this array. Other port number matches documentation, but caution
 * advised.
 */
static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 };
static struct d_cr_drp0 drp0[APL_NUM_CHANNELS];

/* Denverton dunit */
static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 };
static struct d_cr_dsch dsch;
static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS];
static struct d_cr_drp drp[DNV_NUM_CHANNELS];
static struct d_cr_dmap dmap[DNV_NUM_CHANNELS];
static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS];
static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS];
static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS];
static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS];
static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS];

static void apl_mk_region(char *name, struct region *rp, void *asym)
{
	struct b_cr_asym_mem_region0_mchbar *a = asym;

	mk_region(name, rp,
			  U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT),
			  U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) +
			  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
}

static void dnv_mk_region(char *name, struct region *rp, void *asym)
{
	struct b_cr_asym_mem_region_denverton *a = asym;

	mk_region(name, rp,
			  U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT),
			  U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) +
			  GENMASK_ULL(DNV_ASYMSHIFT - 1, 0));
}

static int apl_get_registers(void)
{
	int ret = -ENODEV;
	int i;

	if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar))
		return -ENODEV;

	/*
	 * RD_REGP() will fail for unpopulated or non-existent
	 * DIMM slots. Return success if we find at least one DIMM.
	 */
	for (i = 0; i < APL_NUM_CHANNELS; i++)
		if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i]))
			ret = 0;

	return ret;
}

static int dnv_get_registers(void)
{
	int i;

	if (RD_REG(&dsch, d_cr_dsch))
		return -ENODEV;

	for (i = 0; i < DNV_NUM_CHANNELS; i++)
		if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) ||
			RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) ||
			RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) ||
			RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) ||
			RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) ||
			RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) ||
			RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) ||
			RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i]))
			return -ENODEV;

	return 0;
}

/*
 * Read all the h/w config registers once here (they don't
 * change at run time. Figure out which address ranges have
 * which interleave characteristics.
 */
static int get_registers(void)
{
	const int intlv[] = { 10, 11, 12, 12 };

	if (RD_REG(&tolud, b_cr_tolud_pci) ||
		RD_REG(&touud_lo, b_cr_touud_lo_pci) ||
		RD_REG(&touud_hi, b_cr_touud_hi_pci) ||
		RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) ||
		RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) ||
		RD_REG(&mot_base, b_cr_mot_out_base_mchbar) ||
		RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) ||
		RD_REG(&chash, b_cr_slice_channel_hash))
		return -ENODEV;

	if (ops->get_registers())
		return -ENODEV;

	if (ops->type == DNV) {
		/* PMI channel idx (always 0) for asymmetric region */
		asym0.slice0_asym_channel_select = 0;
		asym1.slice1_asym_channel_select = 0;
		/* PMI channel bitmap (always 1) for symmetric region */
		chash.sym_slice0_channel_enabled = 0x1;
		chash.sym_slice1_channel_enabled = 0x1;
	}

	if (asym0.slice0_asym_enable)
		ops->mk_region("as0", &as0, &asym0);

	if (asym1.slice1_asym_enable)
		ops->mk_region("as1", &as1, &asym1);

	if (asym_2way.asym_2way_interleave_enable) {
		mk_region("as2way", &as2,
				  U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT),
				  U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) +
				  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
	}

	if (mot_base.imr_en) {
		mk_region_mask("mot", &mot,
					   U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT),
					   U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT));
	}

	top_lm = U64_LSHIFT(tolud.tolud, 20);
	top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20);

	two_slices = !chash.slice_1_disabled &&
				 !chash.slice_0_mem_disabled &&
				 (chash.sym_slice0_channel_enabled != 0) &&
				 (chash.sym_slice1_channel_enabled != 0);
	two_channels = !chash.ch_1_disabled &&
				 !chash.enable_pmi_dual_data_mode &&
				 ((chash.sym_slice0_channel_enabled == 3) ||
				 (chash.sym_slice1_channel_enabled == 3));

	sym_chan_mask = gen_sym_mask(&chash);
	asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way);
	chan_mask = sym_chan_mask | asym_chan_mask;

	if (two_slices && !two_channels) {
		if (chash.hvm_mode)
			slice_selector = 29;
		else
			slice_selector = intlv[chash.interleave_mode];
	} else if (!two_slices && two_channels) {
		if (chash.hvm_mode)
			chan_selector = 29;
		else
			chan_selector = intlv[chash.interleave_mode];
	} else if (two_slices && two_channels) {
		if (chash.hvm_mode) {
			slice_selector = 29;
			chan_selector = 30;
		} else {
			slice_selector = intlv[chash.interleave_mode];
			chan_selector = intlv[chash.interleave_mode] + 1;
		}
	}

	if (two_slices) {
		if (!chash.hvm_mode)
			slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB;
		if (!two_channels)
			slice_hash_mask |= BIT_ULL(slice_selector);
	}

	if (two_channels) {
		if (!chash.hvm_mode)
			chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB;
		if (!two_slices)
			chan_hash_mask |= BIT_ULL(chan_selector);
	}

	return 0;
}

/* Get a contiguous memory address (remove the MMIO gap) */
static u64 remove_mmio_gap(u64 sys)
{
	return (sys < _4GB) ? sys : sys - (_4GB - top_lm);
}

/* Squeeze out one address bit, shift upper part down to fill gap */
static void remove_addr_bit(u64 *addr, int bitidx)
{
	u64	mask;

	if (bitidx == -1)
		return;

	mask = (1ull << bitidx) - 1;
	*addr = ((*addr >> 1) & ~mask) | (*addr & mask);
}

/* XOR all the bits from addr specified in mask */
static int hash_by_mask(u64 addr, u64 mask)
{
	u64 result = addr & mask;

	result = (result >> 32) ^ result;
	result = (result >> 16) ^ result;
	result = (result >> 8) ^ result;
	result = (result >> 4) ^ result;
	result = (result >> 2) ^ result;
	result = (result >> 1) ^ result;

	return (int)result & 1;
}

/*
 * First stage decode. Take the system address and figure out which
 * second stage will deal with it based on interleave modes.
 */
static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg)
{
	u64 contig_addr, contig_base, contig_offset, contig_base_adj;
	int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
						MOT_CHAN_INTLV_BIT_1SLC_2CH;
	int slice_intlv_bit_rm = SELECTOR_DISABLED;
	int chan_intlv_bit_rm = SELECTOR_DISABLED;
	/* Determine if address is in the MOT region. */
	bool mot_hit = in_region(&mot, addr);
	/* Calculate the number of symmetric regions enabled. */
	int sym_channels = hweight8(sym_chan_mask);

	/*
	 * The amount we need to shift the asym base can be determined by the
	 * number of enabled symmetric channels.
	 * NOTE: This can only work because symmetric memory is not supposed
	 * to do a 3-way interleave.
	 */
	int sym_chan_shift = sym_channels >> 1;

	/* Give up if address is out of range, or in MMIO gap */
	if (addr >= (1ul << PND_MAX_PHYS_BIT) ||
	   (addr >= top_lm && addr < _4GB) || addr >= top_hm) {
		snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr);
		return -EINVAL;
	}

	/* Get a contiguous memory address (remove the MMIO gap) */
	contig_addr = remove_mmio_gap(addr);

	if (in_region(&as0, addr)) {
		*pmiidx = asym0.slice0_asym_channel_select;

		contig_base = remove_mmio_gap(as0.base);
		contig_offset = contig_addr - contig_base;
		contig_base_adj = (contig_base >> sym_chan_shift) *
						  ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1);
		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
	} else if (in_region(&as1, addr)) {
		*pmiidx = 2u + asym1.slice1_asym_channel_select;

		contig_base = remove_mmio_gap(as1.base);
		contig_offset = contig_addr - contig_base;
		contig_base_adj = (contig_base >> sym_chan_shift) *
						  ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1);
		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
	} else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) {
		bool channel1;

		mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH;
		*pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1;
		channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) :
			hash_by_mask(contig_addr, chan_hash_mask);
		*pmiidx |= (u32)channel1;

		contig_base = remove_mmio_gap(as2.base);
		chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector;
		contig_offset = contig_addr - contig_base;
		remove_addr_bit(&contig_offset, chan_intlv_bit_rm);
		contig_addr = (contig_base >> sym_chan_shift) + contig_offset;
	} else {
		/* Otherwise we're in normal, boring symmetric mode. */
		*pmiidx = 0u;

		if (two_slices) {
			bool slice1;

			if (mot_hit) {
				slice_intlv_bit_rm = MOT_SLC_INTLV_BIT;
				slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1;
			} else {
				slice_intlv_bit_rm = slice_selector;
				slice1 = hash_by_mask(addr, slice_hash_mask);
			}

			*pmiidx = (u32)slice1 << 1;
		}

		if (two_channels) {
			bool channel1;

			mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
							MOT_CHAN_INTLV_BIT_1SLC_2CH;

			if (mot_hit) {
				chan_intlv_bit_rm = mot_intlv_bit;
				channel1 = (addr >> mot_intlv_bit) & 1;
			} else {
				chan_intlv_bit_rm = chan_selector;
				channel1 = hash_by_mask(contig_addr, chan_hash_mask);
			}

			*pmiidx |= (u32)channel1;
		}
	}

	/* Remove the chan_selector bit first */
	remove_addr_bit(&contig_addr, chan_intlv_bit_rm);
	/* Remove the slice bit (we remove it second because it must be lower */
	remove_addr_bit(&contig_addr, slice_intlv_bit_rm);
	*pmiaddr = contig_addr;

	return 0;
}

/* Translate PMI address to memory (rank, row, bank, column) */
#define C(n) (0x10 | (n))	/* column */
#define B(n) (0x20 | (n))	/* bank */
#define R(n) (0x40 | (n))	/* row */
#define RS   (0x80)			/* rank */

/* addrdec values */
#define AMAP_1KB	0
#define AMAP_2KB	1
#define AMAP_4KB	2
#define AMAP_RSVD	3

/* dden values */
#define DEN_4Gb		0
#define DEN_8Gb		2

/* dwid values */
#define X8		0
#define X16		1

static struct dimm_geometry {
	u8	addrdec;
	u8	dden;
	u8	dwid;
	u8	rowbits, colbits;
	u16	bits[PMI_ADDRESS_WIDTH];
} dimms[] = {
	{
		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16,
		.rowbits = 15, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			0,     0,     0,     0
		}
	},
	{
		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8,
		.rowbits = 16, .colbits = 11,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
			R(10), C(7),  C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
			R(14), R(15), 0,     0
		}
	},
	{
		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16,
		.rowbits = 15, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			0,     0,     0,     0
		}
	},
	{
		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8,
		.rowbits = 16, .colbits = 11,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
			R(9),  R(10), C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
			R(14), R(15), 0,     0
		}
	},
	{
		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16,
		.rowbits = 15, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
			0,     0,     0,     0
		}
	},
	{
		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8,
		.rowbits = 16, .colbits = 11,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
			R(8),  R(9),  R(10), C(9),  R(11), RS,    C(11), R(12), R(13),
			R(14), R(15), 0,     0
		}
	}
};

static int bank_hash(u64 pmiaddr, int idx, int shft)
{
	int bhash = 0;

	switch (idx) {
	case 0:
		bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1;
		break;
	case 1:
		bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1;
		bhash ^= ((pmiaddr >> 22) & 1) << 1;
		break;
	case 2:
		bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2;
		break;
	}

	return bhash;
}

static int rank_hash(u64 pmiaddr)
{
	return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1;
}

/* Second stage decode. Compute rank, bank, row & column. */
static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
		       struct dram_addr *daddr, char *msg)
{
	struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx];
	struct pnd2_pvt *pvt = mci->pvt_info;
	int g = pvt->dimm_geom[pmiidx];
	struct dimm_geometry *d = &dimms[g];
	int column = 0, bank = 0, row = 0, rank = 0;
	int i, idx, type, skiprs = 0;

	for (i = 0; i < PMI_ADDRESS_WIDTH; i++) {
		int	bit = (pmiaddr >> i) & 1;

		if (i + skiprs >= PMI_ADDRESS_WIDTH) {
			snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n");
			return -EINVAL;
		}

		type = d->bits[i + skiprs] & ~0xf;
		idx = d->bits[i + skiprs] & 0xf;

		/*
		 * On single rank DIMMs ignore the rank select bit
		 * and shift remainder of "bits[]" down one place.
		 */
		if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) {
			skiprs = 1;
			type = d->bits[i + skiprs] & ~0xf;
			idx = d->bits[i + skiprs] & 0xf;
		}

		switch (type) {
		case C(0):
			column |= (bit << idx);
			break;
		case B(0):
			bank |= (bit << idx);
			if (cr_drp0->bahen)
				bank ^= bank_hash(pmiaddr, idx, d->addrdec);
			break;
		case R(0):
			row |= (bit << idx);
			break;
		case RS:
			rank = bit;
			if (cr_drp0->rsien)
				rank ^= rank_hash(pmiaddr);
			break;
		default:
			if (bit) {
				snprintf(msg, PND2_MSG_SIZE, "Bad translation\n");
				return -EINVAL;
			}
			goto done;
		}
	}

done:
	daddr->col = column;
	daddr->bank = bank;
	daddr->row = row;
	daddr->rank = rank;
	daddr->dimm = 0;

	return 0;
}

/* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
#define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))

static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
					   struct dram_addr *daddr, char *msg)
{
	/* Rank 0 or 1 */
	daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0);
	/* Rank 2 or 3 */
	daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1);

	/*
	 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
	 * flip them if DIMM1 is larger than DIMM0.
	 */
	daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip;

	daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0);
	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1);
	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2);
	if (dsch.ddr4en)
		daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3);
	if (dmap1[pmiidx].bxor) {
		if (dsch.ddr4en) {
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0);
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1);
			if (dsch.chan_width == 0)
				/* 64/72 bit dram channel width */
				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
			else
				/* 32/40 bit dram channel width */
				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3);
		} else {
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0);
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1);
			if (dsch.chan_width == 0)
				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
			else
				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
		}
	}

	daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11);
	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12);
	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13);
	if (dmap4[pmiidx].row14 != 31)
		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14);
	if (dmap4[pmiidx].row15 != 31)
		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15);
	if (dmap4[pmiidx].row16 != 31)
		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16);
	if (dmap4[pmiidx].row17 != 31)
		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17);

	daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9);
	if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f)
		daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11);

	return 0;
}

static int check_channel(int ch)
{
	if (drp0[ch].dramtype != 0) {
		pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch);
		return 1;
	} else if (drp0[ch].eccen == 0) {
		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
		return 1;
	}
	return 0;
}

static int apl_check_ecc_active(void)
{
	int	i, ret = 0;

	/* Check dramtype and ECC mode for each present DIMM */
	for (i = 0; i < APL_NUM_CHANNELS; i++)
		if (chan_mask & BIT(i))
			ret += check_channel(i);
	return ret ? -EINVAL : 0;
}

#define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)

static int check_unit(int ch)
{
	struct d_cr_drp *d = &drp[ch];

	if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) {
		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
		return 1;
	}
	return 0;
}

static int dnv_check_ecc_active(void)
{
	int	i, ret = 0;

	for (i = 0; i < DNV_NUM_CHANNELS; i++)
		ret += check_unit(i);
	return ret ? -EINVAL : 0;
}

static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr,
								 struct dram_addr *daddr, char *msg)
{
	u64	pmiaddr;
	u32	pmiidx;
	int	ret;

	ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg);
	if (ret)
		return ret;

	pmiaddr >>= ops->pmiaddr_shift;
	/* pmi channel idx to dimm channel idx */
	pmiidx >>= ops->pmiidx_shift;
	daddr->chan = pmiidx;

	ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg);
	if (ret)
		return ret;

	edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
			 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col);

	return 0;
}

static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m,
				  struct dram_addr *daddr)
{
	enum hw_event_mc_err_type tp_event;
	char *optype, msg[PND2_MSG_SIZE];
	bool ripv = m->mcgstatus & MCG_STATUS_RIPV;
	bool overflow = m->status & MCI_STATUS_OVER;
	bool uc_err = m->status & MCI_STATUS_UC;
	bool recov = m->status & MCI_STATUS_S;
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	int rc;

	tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) :
						 HW_EVENT_ERR_CORRECTED;

	/*
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (!((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
			optype = "generic undef request error";
			break;
		case 1:
			optype = "memory read error";
			break;
		case 2:
			optype = "memory write error";
			break;
		case 3:
			optype = "addr/cmd error";
			break;
		case 4:
			optype = "memory scrubbing error";
			break;
		default:
			optype = "reserved";
			break;
		}
	}

	/* Only decode errors with an valid address (ADDRV) */
	if (!(m->status & MCI_STATUS_ADDRV))
		return;

	rc = get_memory_error_data(mci, m->addr, daddr, msg);
	if (rc)
		goto address_error;

	snprintf(msg, sizeof(msg),
		 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
		 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod,
		 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col);

	edac_dbg(0, "%s\n", msg);

	/* Call the helper to output message */
	edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT,
						 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg);

	return;

address_error:
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, "");
}

static void apl_get_dimm_config(struct mem_ctl_info *mci)
{
	struct pnd2_pvt	*pvt = mci->pvt_info;
	struct dimm_info *dimm;
	struct d_cr_drp0 *d;
	u64	capacity;
	int	i, g;

	for (i = 0; i < APL_NUM_CHANNELS; i++) {
		if (!(chan_mask & BIT(i)))
			continue;

		dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0);
		if (!dimm) {
			edac_dbg(0, "No allocated DIMM for channel %d\n", i);
			continue;
		}

		d = &drp0[i];
		for (g = 0; g < ARRAY_SIZE(dimms); g++)
			if (dimms[g].addrdec == d->addrdec &&
			    dimms[g].dden == d->dden &&
			    dimms[g].dwid == d->dwid)
				break;

		if (g == ARRAY_SIZE(dimms)) {
			edac_dbg(0, "Channel %d: unrecognized DIMM\n", i);
			continue;
		}

		pvt->dimm_geom[i] = g;
		capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) *
				   (1ul << dimms[g].colbits);
		edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3));
		dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
		dimm->grain = 32;
		dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16;
		dimm->mtype = MEM_DDR3;
		dimm->edac_mode = EDAC_SECDED;
		snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2);
	}
}

static const int dnv_dtypes[] = {
	DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN
};

static void dnv_get_dimm_config(struct mem_ctl_info *mci)
{
	int	i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype;
	struct dimm_info *dimm;
	struct d_cr_drp *d;
	u64	capacity;

	if (dsch.ddr4en) {
		memtype = MEM_DDR4;
		banks = 16;
		colbits = 10;
	} else {
		memtype = MEM_DDR3;
		banks = 8;
	}

	for (i = 0; i < DNV_NUM_CHANNELS; i++) {
		if (dmap4[i].row14 == 31)
			rowbits = 14;
		else if (dmap4[i].row15 == 31)
			rowbits = 15;
		else if (dmap4[i].row16 == 31)
			rowbits = 16;
		else if (dmap4[i].row17 == 31)
			rowbits = 17;
		else
			rowbits = 18;

		if (memtype == MEM_DDR3) {
			if (dmap1[i].ca11 != 0x3f)
				colbits = 12;
			else
				colbits = 10;
		}

		d = &drp[i];
		/* DIMM0 is present if rank0 and/or rank1 is enabled */
		ranks_of_dimm[0] = d->rken0 + d->rken1;
		/* DIMM1 is present if rank2 and/or rank3 is enabled */
		ranks_of_dimm[1] = d->rken2 + d->rken3;

		for (j = 0; j < DNV_MAX_DIMMS; j++) {
			if (!ranks_of_dimm[j])
				continue;

			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
			if (!dimm) {
				edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j);
				continue;
			}

			capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits);
			edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3));
			dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
			dimm->grain = 32;
			dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1];
			dimm->mtype = memtype;
			dimm->edac_mode = EDAC_SECDED;
			snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j);
		}
	}
}

static int pnd2_register_mci(struct mem_ctl_info **ppmci)
{
	struct edac_mc_layer layers[2];
	struct mem_ctl_info *mci;
	struct pnd2_pvt *pvt;
	int rc;

	rc = ops->check_ecc();
	if (rc < 0)
		return rc;

	/* Allocate a new MC control structure */
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = ops->channels;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = ops->dimms_per_channel;
	layers[1].is_virt_csrow = true;
	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
	if (!mci)
		return -ENOMEM;

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	mci->mod_name = EDAC_MOD_STR;
	mci->dev_name = ops->name;
	mci->ctl_name = "Pondicherry2";

	/* Get dimm basic config and the memory layout */
	ops->get_dimm_config(mci);

	if (edac_mc_add_mc(mci)) {
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
		edac_mc_free(mci);
		return -EINVAL;
	}

	*ppmci = mci;

	return 0;
}

static void pnd2_unregister_mci(struct mem_ctl_info *mci)
{
	if (unlikely(!mci || !mci->pvt_info)) {
		pnd2_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(NULL);
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
	edac_mc_free(mci);
}

/*
 * Callback function registered with core kernel mce code.
 * Called once for each logged error.
 */
static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data)
{
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct dram_addr daddr;
	char *type;

	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
		return NOTIFY_DONE;

	mci = pnd2_mci;
	if (!mci)
		return NOTIFY_DONE;

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
		return NOTIFY_DONE;

	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

	pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n");
	pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
				   mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
	pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc);
	pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr);
	pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc);
	pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
				   mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid);

	pnd2_mce_output_error(mci, mce, &daddr);

	/* Advice mcelog that the error were handled */
	return NOTIFY_STOP;
}

static struct notifier_block pnd2_mce_dec = {
	.notifier_call	= pnd2_mce_check_error,
};

#ifdef CONFIG_EDAC_DEBUG
/*
 * Write an address to this file to exercise the address decode
 * logic in this driver.
 */
static u64 pnd2_fake_addr;
#define PND2_BLOB_SIZE 1024
static char pnd2_result[PND2_BLOB_SIZE];
static struct dentry *pnd2_test;
static struct debugfs_blob_wrapper pnd2_blob = {
	.data = pnd2_result,
	.size = 0
};

static int debugfs_u64_set(void *data, u64 val)
{
	struct dram_addr daddr;
	struct mce m;

	*(u64 *)data = val;
	m.mcgstatus = 0;
	/* ADDRV + MemRd + Unknown channel */
	m.status = MCI_STATUS_ADDRV + 0x9f;
	m.addr = val;
	pnd2_mce_output_error(pnd2_mci, &m, &daddr);
	snprintf(pnd2_blob.data, PND2_BLOB_SIZE,
			 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
			 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col);
	pnd2_blob.size = strlen(pnd2_blob.data);

	return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");

static void setup_pnd2_debug(void)
{
	pnd2_test = edac_debugfs_create_dir("pnd2_test");
	edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test,
							 &pnd2_fake_addr, &fops_u64_wo);
	debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob);
}

static void teardown_pnd2_debug(void)
{
	debugfs_remove_recursive(pnd2_test);
}
#else
static void setup_pnd2_debug(void)	{}
static void teardown_pnd2_debug(void)	{}
#endif /* CONFIG_EDAC_DEBUG */


static int pnd2_probe(void)
{
	int rc;

	edac_dbg(2, "\n");
	rc = get_registers();
	if (rc)
		return rc;

	return pnd2_register_mci(&pnd2_mci);
}

static void pnd2_remove(void)
{
	edac_dbg(0, "\n");
	pnd2_unregister_mci(pnd2_mci);
}

static struct dunit_ops apl_ops = {
		.name			= "pnd2/apl",
		.type			= APL,
		.pmiaddr_shift		= LOG2_PMI_ADDR_GRANULARITY,
		.pmiidx_shift		= 0,
		.channels		= APL_NUM_CHANNELS,
		.dimms_per_channel	= 1,
		.rd_reg			= apl_rd_reg,
		.get_registers		= apl_get_registers,
		.check_ecc		= apl_check_ecc_active,
		.mk_region		= apl_mk_region,
		.get_dimm_config	= apl_get_dimm_config,
		.pmi2mem		= apl_pmi2mem,
};

static struct dunit_ops dnv_ops = {
		.name			= "pnd2/dnv",
		.type			= DNV,
		.pmiaddr_shift		= 0,
		.pmiidx_shift		= 1,
		.channels		= DNV_NUM_CHANNELS,
		.dimms_per_channel	= 2,
		.rd_reg			= dnv_rd_reg,
		.get_registers		= dnv_get_registers,
		.check_ecc		= dnv_check_ecc_active,
		.mk_region		= dnv_mk_region,
		.get_dimm_config	= dnv_get_dimm_config,
		.pmi2mem		= dnv_pmi2mem,
};

static const struct x86_cpu_id pnd2_cpuids[] = {
	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops },
	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT_X, 0, (kernel_ulong_t)&dnv_ops },
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids);

static int __init pnd2_init(void)
{
	const struct x86_cpu_id *id;
	const char *owner;
	int rc;

	edac_dbg(2, "\n");

	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

	id = x86_match_cpu(pnd2_cpuids);
	if (!id)
		return -ENODEV;

	ops = (struct dunit_ops *)id->driver_data;

	if (ops->type == APL) {
		p2sb_bus = pci_find_bus(0, 0);
		if (!p2sb_bus)
			return -ENODEV;
	}

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	rc = pnd2_probe();
	if (rc < 0) {
		pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc);
		return rc;
	}

	if (!pnd2_mci)
		return -ENODEV;

	mce_register_decode_chain(&pnd2_mce_dec);
	setup_pnd2_debug();

	return 0;
}

static void __exit pnd2_exit(void)
{
	edac_dbg(2, "\n");
	teardown_pnd2_debug();
	mce_unregister_decode_chain(&pnd2_mce_dec);
	pnd2_remove();
}

module_init(pnd2_init);
module_exit(pnd2_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tony Luck");
MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");