Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tony Luck | 9869 | 98.71% | 3 | 23.08% |
Qiuxu Zhuo | 72 | 0.72% | 4 | 30.77% |
Toshi Kani | 35 | 0.35% | 1 | 7.69% |
Borislav Petkov | 18 | 0.18% | 2 | 15.38% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 7.69% |
Peter Zijlstra | 1 | 0.01% | 1 | 7.69% |
Colin Ian King | 1 | 0.01% | 1 | 7.69% |
Total | 9998 | 13 |
/* * Driver for Pondicherry2 memory controller. * * Copyright (c) 2016, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * [Derived from sb_edac.c] * * Translation of system physical addresses to DIMM addresses * is a two stage process: * * First the Pondicherry 2 memory controller handles slice and channel interleaving * in "sys2pmi()". This is (almost) completley common between platforms. * * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM, * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters. */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/edac.h> #include <linux/mmzone.h> #include <linux/smp.h> #include <linux/bitmap.h> #include <linux/math64.h> #include <linux/mod_devicetable.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/processor.h> #include <asm/mce.h> #include "edac_mc.h" #include "edac_module.h" #include "pnd2_edac.h" #define EDAC_MOD_STR "pnd2_edac" #define APL_NUM_CHANNELS 4 #define DNV_NUM_CHANNELS 2 #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */ enum type { APL, DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */ }; struct dram_addr { int chan; int dimm; int rank; int bank; int row; int col; }; struct pnd2_pvt { int dimm_geom[APL_NUM_CHANNELS]; u64 tolm, tohm; }; /* * System address space is divided into multiple regions with * different interleave rules in each. The as0/as1 regions * have no interleaving at all. The as2 region is interleaved * between two channels. The mot region is magic and may overlap * other regions, with its interleave rules taking precedence. * Addresses not in any of these regions are interleaved across * all four channels. */ static struct region { u64 base; u64 limit; u8 enabled; } mot, as0, as1, as2; static struct dunit_ops { char *name; enum type type; int pmiaddr_shift; int pmiidx_shift; int channels; int dimms_per_channel; int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name); int (*get_registers)(void); int (*check_ecc)(void); void (*mk_region)(char *name, struct region *rp, void *asym); void (*get_dimm_config)(struct mem_ctl_info *mci); int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, struct dram_addr *daddr, char *msg); } *ops; static struct mem_ctl_info *pnd2_mci; #define PND2_MSG_SIZE 256 /* Debug macros */ #define pnd2_printk(level, fmt, arg...) \ edac_printk(level, "pnd2", fmt, ##arg) #define pnd2_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg) #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12 #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13 #define SELECTOR_DISABLED (-1) #define _4GB (1ul << 32) #define PMI_ADDRESS_WIDTH 31 #define PND_MAX_PHYS_BIT 39 #define APL_ASYMSHIFT 28 #define DNV_ASYMSHIFT 31 #define CH_HASH_MASK_LSB 6 #define SLICE_HASH_MASK_LSB 6 #define MOT_SLC_INTLV_BIT 12 #define LOG2_PMI_ADDR_GRANULARITY 5 #define MOT_SHIFT 24 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo)) #define U64_LSHIFT(val, s) ((u64)(val) << (s)) /* * On Apollo Lake we access memory controller registers via a * side-band mailbox style interface in a hidden PCI device * configuration space. */ static struct pci_bus *p2sb_bus; #define P2SB_DEVFN PCI_DEVFN(0xd, 0) #define P2SB_ADDR_OFF 0xd0 #define P2SB_DATA_OFF 0xd4 #define P2SB_STAT_OFF 0xd8 #define P2SB_ROUT_OFF 0xda #define P2SB_EADD_OFF 0xdc #define P2SB_HIDE_OFF 0xe1 #define P2SB_BUSY 1 #define P2SB_READ(size, off, ptr) \ pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr) #define P2SB_WRITE(size, off, val) \ pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val) static bool p2sb_is_busy(u16 *status) { P2SB_READ(word, P2SB_STAT_OFF, status); return !!(*status & P2SB_BUSY); } static int _apl_rd_reg(int port, int off, int op, u32 *data) { int retries = 0xff, ret; u16 status; u8 hidden; /* Unhide the P2SB device, if it's hidden */ P2SB_READ(byte, P2SB_HIDE_OFF, &hidden); if (hidden) P2SB_WRITE(byte, P2SB_HIDE_OFF, 0); if (p2sb_is_busy(&status)) { ret = -EAGAIN; goto out; } P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off); P2SB_WRITE(dword, P2SB_DATA_OFF, 0); P2SB_WRITE(dword, P2SB_EADD_OFF, 0); P2SB_WRITE(word, P2SB_ROUT_OFF, 0); P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY); while (p2sb_is_busy(&status)) { if (retries-- == 0) { ret = -EBUSY; goto out; } } P2SB_READ(dword, P2SB_DATA_OFF, data); ret = (status >> 1) & 0x3; out: /* Hide the P2SB device, if it was hidden before */ if (hidden) P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden); return ret; } static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) { int ret = 0; edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op); switch (sz) { case 8: ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4)); /* fall through */ case 4: ret |= _apl_rd_reg(port, off, op, (u32 *)data); pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name, sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret); break; } return ret; } static u64 get_mem_ctrl_hub_base_addr(void) { struct b_cr_mchbar_lo_pci lo; struct b_cr_mchbar_hi_pci hi; struct pci_dev *pdev; pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); if (pdev) { pci_read_config_dword(pdev, 0x48, (u32 *)&lo); pci_read_config_dword(pdev, 0x4c, (u32 *)&hi); pci_dev_put(pdev); } else { return 0; } if (!lo.enable) { edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n"); return 0; } return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15); } static u64 get_sideband_reg_base_addr(void) { struct pci_dev *pdev; u32 hi, lo; u8 hidden; pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL); if (pdev) { /* Unhide the P2SB device, if it's hidden */ pci_read_config_byte(pdev, 0xe1, &hidden); if (hidden) pci_write_config_byte(pdev, 0xe1, 0); pci_read_config_dword(pdev, 0x10, &lo); pci_read_config_dword(pdev, 0x14, &hi); lo &= 0xfffffff0; /* Hide the P2SB device, if it was hidden before */ if (hidden) pci_write_config_byte(pdev, 0xe1, hidden); pci_dev_put(pdev); return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0)); } else { return 0xfd000000; } } static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) { struct pci_dev *pdev; char *base; u64 addr; if (op == 4) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); if (!pdev) return -ENODEV; pci_read_config_dword(pdev, off, data); pci_dev_put(pdev); } else { /* MMIO via memory controller hub base address */ if (op == 0 && port == 0x4c) { addr = get_mem_ctrl_hub_base_addr(); if (!addr) return -ENODEV; } else { /* MMIO via sideband register base address */ addr = get_sideband_reg_base_addr(); if (!addr) return -ENODEV; addr += (port << 16); } base = ioremap((resource_size_t)addr, 0x10000); if (!base) return -ENODEV; if (sz == 8) *(u32 *)(data + 4) = *(u32 *)(base + off + 4); *(u32 *)data = *(u32 *)(base + off); iounmap(base); } edac_dbg(2, "Read %s=%.8x_%.8x\n", name, (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data); return 0; } #define RD_REGP(regp, regname, port) \ ops->rd_reg(port, \ regname##_offset, \ regname##_r_opcode, \ regp, sizeof(struct regname), \ #regname) #define RD_REG(regp, regname) \ ops->rd_reg(regname ## _port, \ regname##_offset, \ regname##_r_opcode, \ regp, sizeof(struct regname), \ #regname) static u64 top_lm, top_hm; static bool two_slices; static bool two_channels; /* Both PMI channels in one slice enabled */ static u8 sym_chan_mask; static u8 asym_chan_mask; static u8 chan_mask; static int slice_selector = -1; static int chan_selector = -1; static u64 slice_hash_mask; static u64 chan_hash_mask; static void mk_region(char *name, struct region *rp, u64 base, u64 limit) { rp->enabled = 1; rp->base = base; rp->limit = limit; edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit); } static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask) { if (mask == 0) { pr_info(FW_BUG "MOT mask cannot be zero\n"); return; } if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) { pr_info(FW_BUG "MOT mask not power of two\n"); return; } if (base & ~mask) { pr_info(FW_BUG "MOT region base/mask alignment error\n"); return; } rp->base = base; rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0); rp->enabled = 1; edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit); } static bool in_region(struct region *rp, u64 addr) { if (!rp->enabled) return false; return rp->base <= addr && addr <= rp->limit; } static int gen_sym_mask(struct b_cr_slice_channel_hash *p) { int mask = 0; if (!p->slice_0_mem_disabled) mask |= p->sym_slice0_channel_enabled; if (!p->slice_1_disabled) mask |= p->sym_slice1_channel_enabled << 2; if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) mask &= 0x5; return mask; } static int gen_asym_mask(struct b_cr_slice_channel_hash *p, struct b_cr_asym_mem_region0_mchbar *as0, struct b_cr_asym_mem_region1_mchbar *as1, struct b_cr_asym_2way_mem_region_mchbar *as2way) { const int intlv[] = { 0x5, 0xA, 0x3, 0xC }; int mask = 0; if (as2way->asym_2way_interleave_enable) mask = intlv[as2way->asym_2way_intlv_mode]; if (as0->slice0_asym_enable) mask |= (1 << as0->slice0_asym_channel_select); if (as1->slice1_asym_enable) mask |= (4 << as1->slice1_asym_channel_select); if (p->slice_0_mem_disabled) mask &= 0xc; if (p->slice_1_disabled) mask &= 0x3; if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) mask &= 0x5; return mask; } static struct b_cr_tolud_pci tolud; static struct b_cr_touud_lo_pci touud_lo; static struct b_cr_touud_hi_pci touud_hi; static struct b_cr_asym_mem_region0_mchbar asym0; static struct b_cr_asym_mem_region1_mchbar asym1; static struct b_cr_asym_2way_mem_region_mchbar asym_2way; static struct b_cr_mot_out_base_mchbar mot_base; static struct b_cr_mot_out_mask_mchbar mot_mask; static struct b_cr_slice_channel_hash chash; /* Apollo Lake dunit */ /* * Validated on board with just two DIMMs in the [0] and [2] positions * in this array. Other port number matches documentation, but caution * advised. */ static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 }; static struct d_cr_drp0 drp0[APL_NUM_CHANNELS]; /* Denverton dunit */ static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 }; static struct d_cr_dsch dsch; static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS]; static struct d_cr_drp drp[DNV_NUM_CHANNELS]; static struct d_cr_dmap dmap[DNV_NUM_CHANNELS]; static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS]; static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS]; static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS]; static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS]; static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS]; static void apl_mk_region(char *name, struct region *rp, void *asym) { struct b_cr_asym_mem_region0_mchbar *a = asym; mk_region(name, rp, U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT), U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) + GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); } static void dnv_mk_region(char *name, struct region *rp, void *asym) { struct b_cr_asym_mem_region_denverton *a = asym; mk_region(name, rp, U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT), U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) + GENMASK_ULL(DNV_ASYMSHIFT - 1, 0)); } static int apl_get_registers(void) { int ret = -ENODEV; int i; if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar)) return -ENODEV; /* * RD_REGP() will fail for unpopulated or non-existent * DIMM slots. Return success if we find at least one DIMM. */ for (i = 0; i < APL_NUM_CHANNELS; i++) if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i])) ret = 0; return ret; } static int dnv_get_registers(void) { int i; if (RD_REG(&dsch, d_cr_dsch)) return -ENODEV; for (i = 0; i < DNV_NUM_CHANNELS; i++) if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) || RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) || RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) || RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) || RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) || RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) || RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) || RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i])) return -ENODEV; return 0; } /* * Read all the h/w config registers once here (they don't * change at run time. Figure out which address ranges have * which interleave characteristics. */ static int get_registers(void) { const int intlv[] = { 10, 11, 12, 12 }; if (RD_REG(&tolud, b_cr_tolud_pci) || RD_REG(&touud_lo, b_cr_touud_lo_pci) || RD_REG(&touud_hi, b_cr_touud_hi_pci) || RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) || RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) || RD_REG(&mot_base, b_cr_mot_out_base_mchbar) || RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) || RD_REG(&chash, b_cr_slice_channel_hash)) return -ENODEV; if (ops->get_registers()) return -ENODEV; if (ops->type == DNV) { /* PMI channel idx (always 0) for asymmetric region */ asym0.slice0_asym_channel_select = 0; asym1.slice1_asym_channel_select = 0; /* PMI channel bitmap (always 1) for symmetric region */ chash.sym_slice0_channel_enabled = 0x1; chash.sym_slice1_channel_enabled = 0x1; } if (asym0.slice0_asym_enable) ops->mk_region("as0", &as0, &asym0); if (asym1.slice1_asym_enable) ops->mk_region("as1", &as1, &asym1); if (asym_2way.asym_2way_interleave_enable) { mk_region("as2way", &as2, U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT), U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) + GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); } if (mot_base.imr_en) { mk_region_mask("mot", &mot, U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT), U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT)); } top_lm = U64_LSHIFT(tolud.tolud, 20); top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20); two_slices = !chash.slice_1_disabled && !chash.slice_0_mem_disabled && (chash.sym_slice0_channel_enabled != 0) && (chash.sym_slice1_channel_enabled != 0); two_channels = !chash.ch_1_disabled && !chash.enable_pmi_dual_data_mode && ((chash.sym_slice0_channel_enabled == 3) || (chash.sym_slice1_channel_enabled == 3)); sym_chan_mask = gen_sym_mask(&chash); asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way); chan_mask = sym_chan_mask | asym_chan_mask; if (two_slices && !two_channels) { if (chash.hvm_mode) slice_selector = 29; else slice_selector = intlv[chash.interleave_mode]; } else if (!two_slices && two_channels) { if (chash.hvm_mode) chan_selector = 29; else chan_selector = intlv[chash.interleave_mode]; } else if (two_slices && two_channels) { if (chash.hvm_mode) { slice_selector = 29; chan_selector = 30; } else { slice_selector = intlv[chash.interleave_mode]; chan_selector = intlv[chash.interleave_mode] + 1; } } if (two_slices) { if (!chash.hvm_mode) slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB; if (!two_channels) slice_hash_mask |= BIT_ULL(slice_selector); } if (two_channels) { if (!chash.hvm_mode) chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB; if (!two_slices) chan_hash_mask |= BIT_ULL(chan_selector); } return 0; } /* Get a contiguous memory address (remove the MMIO gap) */ static u64 remove_mmio_gap(u64 sys) { return (sys < _4GB) ? sys : sys - (_4GB - top_lm); } /* Squeeze out one address bit, shift upper part down to fill gap */ static void remove_addr_bit(u64 *addr, int bitidx) { u64 mask; if (bitidx == -1) return; mask = (1ull << bitidx) - 1; *addr = ((*addr >> 1) & ~mask) | (*addr & mask); } /* XOR all the bits from addr specified in mask */ static int hash_by_mask(u64 addr, u64 mask) { u64 result = addr & mask; result = (result >> 32) ^ result; result = (result >> 16) ^ result; result = (result >> 8) ^ result; result = (result >> 4) ^ result; result = (result >> 2) ^ result; result = (result >> 1) ^ result; return (int)result & 1; } /* * First stage decode. Take the system address and figure out which * second stage will deal with it based on interleave modes. */ static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg) { u64 contig_addr, contig_base, contig_offset, contig_base_adj; int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : MOT_CHAN_INTLV_BIT_1SLC_2CH; int slice_intlv_bit_rm = SELECTOR_DISABLED; int chan_intlv_bit_rm = SELECTOR_DISABLED; /* Determine if address is in the MOT region. */ bool mot_hit = in_region(&mot, addr); /* Calculate the number of symmetric regions enabled. */ int sym_channels = hweight8(sym_chan_mask); /* * The amount we need to shift the asym base can be determined by the * number of enabled symmetric channels. * NOTE: This can only work because symmetric memory is not supposed * to do a 3-way interleave. */ int sym_chan_shift = sym_channels >> 1; /* Give up if address is out of range, or in MMIO gap */ if (addr >= (1ul << PND_MAX_PHYS_BIT) || (addr >= top_lm && addr < _4GB) || addr >= top_hm) { snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr); return -EINVAL; } /* Get a contiguous memory address (remove the MMIO gap) */ contig_addr = remove_mmio_gap(addr); if (in_region(&as0, addr)) { *pmiidx = asym0.slice0_asym_channel_select; contig_base = remove_mmio_gap(as0.base); contig_offset = contig_addr - contig_base; contig_base_adj = (contig_base >> sym_chan_shift) * ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1); contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); } else if (in_region(&as1, addr)) { *pmiidx = 2u + asym1.slice1_asym_channel_select; contig_base = remove_mmio_gap(as1.base); contig_offset = contig_addr - contig_base; contig_base_adj = (contig_base >> sym_chan_shift) * ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1); contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) { bool channel1; mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH; *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1; channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) : hash_by_mask(contig_addr, chan_hash_mask); *pmiidx |= (u32)channel1; contig_base = remove_mmio_gap(as2.base); chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector; contig_offset = contig_addr - contig_base; remove_addr_bit(&contig_offset, chan_intlv_bit_rm); contig_addr = (contig_base >> sym_chan_shift) + contig_offset; } else { /* Otherwise we're in normal, boring symmetric mode. */ *pmiidx = 0u; if (two_slices) { bool slice1; if (mot_hit) { slice_intlv_bit_rm = MOT_SLC_INTLV_BIT; slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1; } else { slice_intlv_bit_rm = slice_selector; slice1 = hash_by_mask(addr, slice_hash_mask); } *pmiidx = (u32)slice1 << 1; } if (two_channels) { bool channel1; mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : MOT_CHAN_INTLV_BIT_1SLC_2CH; if (mot_hit) { chan_intlv_bit_rm = mot_intlv_bit; channel1 = (addr >> mot_intlv_bit) & 1; } else { chan_intlv_bit_rm = chan_selector; channel1 = hash_by_mask(contig_addr, chan_hash_mask); } *pmiidx |= (u32)channel1; } } /* Remove the chan_selector bit first */ remove_addr_bit(&contig_addr, chan_intlv_bit_rm); /* Remove the slice bit (we remove it second because it must be lower */ remove_addr_bit(&contig_addr, slice_intlv_bit_rm); *pmiaddr = contig_addr; return 0; } /* Translate PMI address to memory (rank, row, bank, column) */ #define C(n) (0x10 | (n)) /* column */ #define B(n) (0x20 | (n)) /* bank */ #define R(n) (0x40 | (n)) /* row */ #define RS (0x80) /* rank */ /* addrdec values */ #define AMAP_1KB 0 #define AMAP_2KB 1 #define AMAP_4KB 2 #define AMAP_RSVD 3 /* dden values */ #define DEN_4Gb 0 #define DEN_8Gb 2 /* dwid values */ #define X8 0 #define X16 1 static struct dimm_geometry { u8 addrdec; u8 dden; u8 dwid; u8 rowbits, colbits; u16 bits[PMI_ADDRESS_WIDTH]; } dimms[] = { { .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16, .rowbits = 15, .colbits = 10, .bits = { C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 0, 0, 0, 0 } }, { .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8, .rowbits = 16, .colbits = 10, .bits = { C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), R(15), 0, 0, 0 } }, { .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16, .rowbits = 16, .colbits = 10, .bits = { C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), R(15), 0, 0, 0 } }, { .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8, .rowbits = 16, .colbits = 11, .bits = { C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13), R(14), R(15), 0, 0 } }, { .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16, .rowbits = 15, .colbits = 10, .bits = { C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 0, 0, 0, 0 } }, { .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8, .rowbits = 16, .colbits = 10, .bits = { C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), R(15), 0, 0, 0 } }, { .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16, .rowbits = 16, .colbits = 10, .bits = { C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), R(15), 0, 0, 0 } }, { .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8, .rowbits = 16, .colbits = 11, .bits = { C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13), R(14), R(15), 0, 0 } }, { .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16, .rowbits = 15, .colbits = 10, .bits = { C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 0, 0, 0, 0 } }, { .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8, .rowbits = 16, .colbits = 10, .bits = { C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), R(15), 0, 0, 0 } }, { .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16, .rowbits = 16, .colbits = 10, .bits = { C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), R(15), 0, 0, 0 } }, { .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8, .rowbits = 16, .colbits = 11, .bits = { C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13), R(14), R(15), 0, 0 } } }; static int bank_hash(u64 pmiaddr, int idx, int shft) { int bhash = 0; switch (idx) { case 0: bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1; break; case 1: bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1; bhash ^= ((pmiaddr >> 22) & 1) << 1; break; case 2: bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2; break; } return bhash; } static int rank_hash(u64 pmiaddr) { return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1; } /* Second stage decode. Compute rank, bank, row & column. */ static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, struct dram_addr *daddr, char *msg) { struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx]; struct pnd2_pvt *pvt = mci->pvt_info; int g = pvt->dimm_geom[pmiidx]; struct dimm_geometry *d = &dimms[g]; int column = 0, bank = 0, row = 0, rank = 0; int i, idx, type, skiprs = 0; for (i = 0; i < PMI_ADDRESS_WIDTH; i++) { int bit = (pmiaddr >> i) & 1; if (i + skiprs >= PMI_ADDRESS_WIDTH) { snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n"); return -EINVAL; } type = d->bits[i + skiprs] & ~0xf; idx = d->bits[i + skiprs] & 0xf; /* * On single rank DIMMs ignore the rank select bit * and shift remainder of "bits[]" down one place. */ if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) { skiprs = 1; type = d->bits[i + skiprs] & ~0xf; idx = d->bits[i + skiprs] & 0xf; } switch (type) { case C(0): column |= (bit << idx); break; case B(0): bank |= (bit << idx); if (cr_drp0->bahen) bank ^= bank_hash(pmiaddr, idx, d->addrdec); break; case R(0): row |= (bit << idx); break; case RS: rank = bit; if (cr_drp0->rsien) rank ^= rank_hash(pmiaddr); break; default: if (bit) { snprintf(msg, PND2_MSG_SIZE, "Bad translation\n"); return -EINVAL; } goto done; } } done: daddr->col = column; daddr->bank = bank; daddr->row = row; daddr->rank = rank; daddr->dimm = 0; return 0; } /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */ #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out)) static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, struct dram_addr *daddr, char *msg) { /* Rank 0 or 1 */ daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0); /* Rank 2 or 3 */ daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1); /* * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we * flip them if DIMM1 is larger than DIMM0. */ daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip; daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0); daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1); daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2); if (dsch.ddr4en) daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3); if (dmap1[pmiidx].bxor) { if (dsch.ddr4en) { daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0); daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1); if (dsch.chan_width == 0) /* 64/72 bit dram channel width */ daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); else /* 32/40 bit dram channel width */ daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3); } else { daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0); daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1); if (dsch.chan_width == 0) daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); else daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); } } daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0); daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1); daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2); daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3); daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4); daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5); daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6); daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7); daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8); daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9); daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10); daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11); daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12); daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13); if (dmap4[pmiidx].row14 != 31) daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14); if (dmap4[pmiidx].row15 != 31) daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15); if (dmap4[pmiidx].row16 != 31) daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16); if (dmap4[pmiidx].row17 != 31) daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17); daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3); daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4); daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5); daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6); daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7); daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8); daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9); if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f) daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11); return 0; } static int check_channel(int ch) { if (drp0[ch].dramtype != 0) { pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch); return 1; } else if (drp0[ch].eccen == 0) { pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); return 1; } return 0; } static int apl_check_ecc_active(void) { int i, ret = 0; /* Check dramtype and ECC mode for each present DIMM */ for (i = 0; i < APL_NUM_CHANNELS; i++) if (chan_mask & BIT(i)) ret += check_channel(i); return ret ? -EINVAL : 0; } #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3) static int check_unit(int ch) { struct d_cr_drp *d = &drp[ch]; if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) { pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); return 1; } return 0; } static int dnv_check_ecc_active(void) { int i, ret = 0; for (i = 0; i < DNV_NUM_CHANNELS; i++) ret += check_unit(i); return ret ? -EINVAL : 0; } static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, struct dram_addr *daddr, char *msg) { u64 pmiaddr; u32 pmiidx; int ret; ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg); if (ret) return ret; pmiaddr >>= ops->pmiaddr_shift; /* pmi channel idx to dimm channel idx */ pmiidx >>= ops->pmiidx_shift; daddr->chan = pmiidx; ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg); if (ret) return ret; edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col); return 0; } static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, struct dram_addr *daddr) { enum hw_event_mc_err_type tp_event; char *optype, msg[PND2_MSG_SIZE]; bool ripv = m->mcgstatus & MCG_STATUS_RIPV; bool overflow = m->status & MCI_STATUS_OVER; bool uc_err = m->status & MCI_STATUS_UC; bool recov = m->status & MCI_STATUS_S; u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); u32 mscod = GET_BITFIELD(m->status, 16, 31); u32 errcode = GET_BITFIELD(m->status, 0, 15); u32 optypenum = GET_BITFIELD(m->status, 4, 6); int rc; tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) : HW_EVENT_ERR_CORRECTED; /* * According with Table 15-9 of the Intel Architecture spec vol 3A, * memory errors should fit in this mask: * 000f 0000 1mmm cccc (binary) * where: * f = Correction Report Filtering Bit. If 1, subsequent errors * won't be shown * mmm = error type * cccc = channel * If the mask doesn't match, report an error to the parsing logic */ if (!((errcode & 0xef80) == 0x80)) { optype = "Can't parse: it is not a mem"; } else { switch (optypenum) { case 0: optype = "generic undef request error"; break; case 1: optype = "memory read error"; break; case 2: optype = "memory write error"; break; case 3: optype = "addr/cmd error"; break; case 4: optype = "memory scrubbing error"; break; default: optype = "reserved"; break; } } /* Only decode errors with an valid address (ADDRV) */ if (!(m->status & MCI_STATUS_ADDRV)) return; rc = get_memory_error_data(mci, m->addr, daddr, msg); if (rc) goto address_error; snprintf(msg, sizeof(msg), "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d", overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod, errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col); edac_dbg(0, "%s\n", msg); /* Call the helper to output message */ edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg); return; address_error: edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); } static void apl_get_dimm_config(struct mem_ctl_info *mci) { struct pnd2_pvt *pvt = mci->pvt_info; struct dimm_info *dimm; struct d_cr_drp0 *d; u64 capacity; int i, g; for (i = 0; i < APL_NUM_CHANNELS; i++) { if (!(chan_mask & BIT(i))) continue; dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0); if (!dimm) { edac_dbg(0, "No allocated DIMM for channel %d\n", i); continue; } d = &drp0[i]; for (g = 0; g < ARRAY_SIZE(dimms); g++) if (dimms[g].addrdec == d->addrdec && dimms[g].dden == d->dden && dimms[g].dwid == d->dwid) break; if (g == ARRAY_SIZE(dimms)) { edac_dbg(0, "Channel %d: unrecognized DIMM\n", i); continue; } pvt->dimm_geom[i] = g; capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) * (1ul << dimms[g].colbits); edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3)); dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); dimm->grain = 32; dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16; dimm->mtype = MEM_DDR3; dimm->edac_mode = EDAC_SECDED; snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2); } } static const int dnv_dtypes[] = { DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN }; static void dnv_get_dimm_config(struct mem_ctl_info *mci) { int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype; struct dimm_info *dimm; struct d_cr_drp *d; u64 capacity; if (dsch.ddr4en) { memtype = MEM_DDR4; banks = 16; colbits = 10; } else { memtype = MEM_DDR3; banks = 8; } for (i = 0; i < DNV_NUM_CHANNELS; i++) { if (dmap4[i].row14 == 31) rowbits = 14; else if (dmap4[i].row15 == 31) rowbits = 15; else if (dmap4[i].row16 == 31) rowbits = 16; else if (dmap4[i].row17 == 31) rowbits = 17; else rowbits = 18; if (memtype == MEM_DDR3) { if (dmap1[i].ca11 != 0x3f) colbits = 12; else colbits = 10; } d = &drp[i]; /* DIMM0 is present if rank0 and/or rank1 is enabled */ ranks_of_dimm[0] = d->rken0 + d->rken1; /* DIMM1 is present if rank2 and/or rank3 is enabled */ ranks_of_dimm[1] = d->rken2 + d->rken3; for (j = 0; j < DNV_MAX_DIMMS; j++) { if (!ranks_of_dimm[j]) continue; dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); if (!dimm) { edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j); continue; } capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits); edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3)); dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); dimm->grain = 32; dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1]; dimm->mtype = memtype; dimm->edac_mode = EDAC_SECDED; snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j); } } } static int pnd2_register_mci(struct mem_ctl_info **ppmci) { struct edac_mc_layer layers[2]; struct mem_ctl_info *mci; struct pnd2_pvt *pvt; int rc; rc = ops->check_ecc(); if (rc < 0) return rc; /* Allocate a new MC control structure */ layers[0].type = EDAC_MC_LAYER_CHANNEL; layers[0].size = ops->channels; layers[0].is_virt_csrow = false; layers[1].type = EDAC_MC_LAYER_SLOT; layers[1].size = ops->dimms_per_channel; layers[1].is_virt_csrow = true; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); if (!mci) return -ENOMEM; pvt = mci->pvt_info; memset(pvt, 0, sizeof(*pvt)); mci->mod_name = EDAC_MOD_STR; mci->dev_name = ops->name; mci->ctl_name = "Pondicherry2"; /* Get dimm basic config and the memory layout */ ops->get_dimm_config(mci); if (edac_mc_add_mc(mci)) { edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); edac_mc_free(mci); return -EINVAL; } *ppmci = mci; return 0; } static void pnd2_unregister_mci(struct mem_ctl_info *mci) { if (unlikely(!mci || !mci->pvt_info)) { pnd2_printk(KERN_ERR, "Couldn't find mci handler\n"); return; } /* Remove MC sysfs nodes */ edac_mc_del_mc(NULL); edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); edac_mc_free(mci); } /* * Callback function registered with core kernel mce code. * Called once for each logged error. */ static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) { struct mce *mce = (struct mce *)data; struct mem_ctl_info *mci; struct dram_addr daddr; char *type; if (edac_get_report_status() == EDAC_REPORTING_DISABLED) return NOTIFY_DONE; mci = pnd2_mci; if (!mci) return NOTIFY_DONE; /* * Just let mcelog handle it if the error is * outside the memory controller. A memory error * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. * bit 12 has an special meaning. */ if ((mce->status & 0xefff) >> 7 != 1) return NOTIFY_DONE; if (mce->mcgstatus & MCG_STATUS_MCIP) type = "Exception"; else type = "Event"; pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n"); pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n", mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc); pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr); pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc); pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); pnd2_mce_output_error(mci, mce, &daddr); /* Advice mcelog that the error were handled */ return NOTIFY_STOP; } static struct notifier_block pnd2_mce_dec = { .notifier_call = pnd2_mce_check_error, }; #ifdef CONFIG_EDAC_DEBUG /* * Write an address to this file to exercise the address decode * logic in this driver. */ static u64 pnd2_fake_addr; #define PND2_BLOB_SIZE 1024 static char pnd2_result[PND2_BLOB_SIZE]; static struct dentry *pnd2_test; static struct debugfs_blob_wrapper pnd2_blob = { .data = pnd2_result, .size = 0 }; static int debugfs_u64_set(void *data, u64 val) { struct dram_addr daddr; struct mce m; *(u64 *)data = val; m.mcgstatus = 0; /* ADDRV + MemRd + Unknown channel */ m.status = MCI_STATUS_ADDRV + 0x9f; m.addr = val; pnd2_mce_output_error(pnd2_mci, &m, &daddr); snprintf(pnd2_blob.data, PND2_BLOB_SIZE, "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col); pnd2_blob.size = strlen(pnd2_blob.data); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); static void setup_pnd2_debug(void) { pnd2_test = edac_debugfs_create_dir("pnd2_test"); edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test, &pnd2_fake_addr, &fops_u64_wo); debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob); } static void teardown_pnd2_debug(void) { debugfs_remove_recursive(pnd2_test); } #else static void setup_pnd2_debug(void) {} static void teardown_pnd2_debug(void) {} #endif /* CONFIG_EDAC_DEBUG */ static int pnd2_probe(void) { int rc; edac_dbg(2, "\n"); rc = get_registers(); if (rc) return rc; return pnd2_register_mci(&pnd2_mci); } static void pnd2_remove(void) { edac_dbg(0, "\n"); pnd2_unregister_mci(pnd2_mci); } static struct dunit_ops apl_ops = { .name = "pnd2/apl", .type = APL, .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY, .pmiidx_shift = 0, .channels = APL_NUM_CHANNELS, .dimms_per_channel = 1, .rd_reg = apl_rd_reg, .get_registers = apl_get_registers, .check_ecc = apl_check_ecc_active, .mk_region = apl_mk_region, .get_dimm_config = apl_get_dimm_config, .pmi2mem = apl_pmi2mem, }; static struct dunit_ops dnv_ops = { .name = "pnd2/dnv", .type = DNV, .pmiaddr_shift = 0, .pmiidx_shift = 1, .channels = DNV_NUM_CHANNELS, .dimms_per_channel = 2, .rd_reg = dnv_rd_reg, .get_registers = dnv_get_registers, .check_ecc = dnv_check_ecc_active, .mk_region = dnv_mk_region, .get_dimm_config = dnv_get_dimm_config, .pmi2mem = dnv_pmi2mem, }; static const struct x86_cpu_id pnd2_cpuids[] = { { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops }, { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT_X, 0, (kernel_ulong_t)&dnv_ops }, { } }; MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids); static int __init pnd2_init(void) { const struct x86_cpu_id *id; const char *owner; int rc; edac_dbg(2, "\n"); owner = edac_get_owner(); if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) return -EBUSY; id = x86_match_cpu(pnd2_cpuids); if (!id) return -ENODEV; ops = (struct dunit_ops *)id->driver_data; if (ops->type == APL) { p2sb_bus = pci_find_bus(0, 0); if (!p2sb_bus) return -ENODEV; } /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); rc = pnd2_probe(); if (rc < 0) { pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); return rc; } if (!pnd2_mci) return -ENODEV; mce_register_decode_chain(&pnd2_mce_dec); setup_pnd2_debug(); return 0; } static void __exit pnd2_exit(void) { edac_dbg(2, "\n"); teardown_pnd2_debug(); mce_unregister_decode_chain(&pnd2_mce_dec); pnd2_remove(); } module_init(pnd2_init); module_exit(pnd2_exit); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Tony Luck"); MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1