Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kevin Brodsky | 1416 | 84.89% | 1 | 14.29% |
Sudeep Holla | 238 | 14.27% | 3 | 42.86% |
Lorenzo Pieralisi | 6 | 0.36% | 1 | 14.29% |
Kees Cook | 5 | 0.30% | 1 | 14.29% |
Ingo Molnar | 3 | 0.18% | 1 | 14.29% |
Total | 1668 | 7 |
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Copyright (C) 2016 ARM Limited */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/atomic.h> #include <linux/completion.h> #include <linux/cpu.h> #include <linux/cpuidle.h> #include <linux/cpu_pm.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <uapi/linux/sched/types.h> #include <linux/module.h> #include <linux/preempt.h> #include <linux/psci.h> #include <linux/slab.h> #include <linux/tick.h> #include <linux/topology.h> #include <asm/cpuidle.h> #include <uapi/linux/psci.h> #define NUM_SUSPEND_CYCLE (10) static unsigned int nb_available_cpus; static int tos_resident_cpu = -1; static atomic_t nb_active_threads; static struct completion suspend_threads_started = COMPLETION_INITIALIZER(suspend_threads_started); static struct completion suspend_threads_done = COMPLETION_INITIALIZER(suspend_threads_done); /* * We assume that PSCI operations are used if they are available. This is not * necessarily true on arm64, since the decision is based on the * "enable-method" property of each CPU in the DT, but given that there is no * arch-specific way to check this, we assume that the DT is sensible. */ static int psci_ops_check(void) { int migrate_type = -1; int cpu; if (!(psci_ops.cpu_off && psci_ops.cpu_on && psci_ops.cpu_suspend)) { pr_warn("Missing PSCI operations, aborting tests\n"); return -EOPNOTSUPP; } if (psci_ops.migrate_info_type) migrate_type = psci_ops.migrate_info_type(); if (migrate_type == PSCI_0_2_TOS_UP_MIGRATE || migrate_type == PSCI_0_2_TOS_UP_NO_MIGRATE) { /* There is a UP Trusted OS, find on which core it resides. */ for_each_online_cpu(cpu) if (psci_tos_resident_on(cpu)) { tos_resident_cpu = cpu; break; } if (tos_resident_cpu == -1) pr_warn("UP Trusted OS resides on no online CPU\n"); } return 0; } /* * offlined_cpus is a temporary array but passing it as an argument avoids * multiple allocations. */ static unsigned int down_and_up_cpus(const struct cpumask *cpus, struct cpumask *offlined_cpus) { int cpu; int err = 0; cpumask_clear(offlined_cpus); /* Try to power down all CPUs in the mask. */ for_each_cpu(cpu, cpus) { int ret = cpu_down(cpu); /* * cpu_down() checks the number of online CPUs before the TOS * resident CPU. */ if (cpumask_weight(offlined_cpus) + 1 == nb_available_cpus) { if (ret != -EBUSY) { pr_err("Unexpected return code %d while trying " "to power down last online CPU %d\n", ret, cpu); ++err; } } else if (cpu == tos_resident_cpu) { if (ret != -EPERM) { pr_err("Unexpected return code %d while trying " "to power down TOS resident CPU %d\n", ret, cpu); ++err; } } else if (ret != 0) { pr_err("Error occurred (%d) while trying " "to power down CPU %d\n", ret, cpu); ++err; } if (ret == 0) cpumask_set_cpu(cpu, offlined_cpus); } /* Try to power up all the CPUs that have been offlined. */ for_each_cpu(cpu, offlined_cpus) { int ret = cpu_up(cpu); if (ret != 0) { pr_err("Error occurred (%d) while trying " "to power up CPU %d\n", ret, cpu); ++err; } else { cpumask_clear_cpu(cpu, offlined_cpus); } } /* * Something went bad at some point and some CPUs could not be turned * back on. */ WARN_ON(!cpumask_empty(offlined_cpus) || num_online_cpus() != nb_available_cpus); return err; } static void free_cpu_groups(int num, cpumask_var_t **pcpu_groups) { int i; cpumask_var_t *cpu_groups = *pcpu_groups; for (i = 0; i < num; ++i) free_cpumask_var(cpu_groups[i]); kfree(cpu_groups); } static int alloc_init_cpu_groups(cpumask_var_t **pcpu_groups) { int num_groups = 0; cpumask_var_t tmp, *cpu_groups; if (!alloc_cpumask_var(&tmp, GFP_KERNEL)) return -ENOMEM; cpu_groups = kcalloc(nb_available_cpus, sizeof(cpu_groups), GFP_KERNEL); if (!cpu_groups) return -ENOMEM; cpumask_copy(tmp, cpu_online_mask); while (!cpumask_empty(tmp)) { const struct cpumask *cpu_group = topology_core_cpumask(cpumask_any(tmp)); if (!alloc_cpumask_var(&cpu_groups[num_groups], GFP_KERNEL)) { free_cpu_groups(num_groups, &cpu_groups); return -ENOMEM; } cpumask_copy(cpu_groups[num_groups++], cpu_group); cpumask_andnot(tmp, tmp, cpu_group); } free_cpumask_var(tmp); *pcpu_groups = cpu_groups; return num_groups; } static int hotplug_tests(void) { int i, nb_cpu_group, err = -ENOMEM; cpumask_var_t offlined_cpus, *cpu_groups; char *page_buf; if (!alloc_cpumask_var(&offlined_cpus, GFP_KERNEL)) return err; nb_cpu_group = alloc_init_cpu_groups(&cpu_groups); if (nb_cpu_group < 0) goto out_free_cpus; page_buf = (char *)__get_free_page(GFP_KERNEL); if (!page_buf) goto out_free_cpu_groups; err = 0; /* * Of course the last CPU cannot be powered down and cpu_down() should * refuse doing that. */ pr_info("Trying to turn off and on again all CPUs\n"); err += down_and_up_cpus(cpu_online_mask, offlined_cpus); /* * Take down CPUs by cpu group this time. When the last CPU is turned * off, the cpu group itself should shut down. */ for (i = 0; i < nb_cpu_group; ++i) { ssize_t len = cpumap_print_to_pagebuf(true, page_buf, cpu_groups[i]); /* Remove trailing newline. */ page_buf[len - 1] = '\0'; pr_info("Trying to turn off and on again group %d (CPUs %s)\n", i, page_buf); err += down_and_up_cpus(cpu_groups[i], offlined_cpus); } free_page((unsigned long)page_buf); out_free_cpu_groups: free_cpu_groups(nb_cpu_group, &cpu_groups); out_free_cpus: free_cpumask_var(offlined_cpus); return err; } static void dummy_callback(struct timer_list *unused) {} static int suspend_cpu(int index, bool broadcast) { int ret; arch_cpu_idle_enter(); if (broadcast) { /* * The local timer will be shut down, we need to enter tick * broadcast. */ ret = tick_broadcast_enter(); if (ret) { /* * In the absence of hardware broadcast mechanism, * this CPU might be used to broadcast wakeups, which * may be why entering tick broadcast has failed. * There is little the kernel can do to work around * that, so enter WFI instead (idle state 0). */ cpu_do_idle(); ret = 0; goto out_arch_exit; } } /* * Replicate the common ARM cpuidle enter function * (arm_enter_idle_state). */ ret = CPU_PM_CPU_IDLE_ENTER(arm_cpuidle_suspend, index); if (broadcast) tick_broadcast_exit(); out_arch_exit: arch_cpu_idle_exit(); return ret; } static int suspend_test_thread(void *arg) { int cpu = (long)arg; int i, nb_suspend = 0, nb_shallow_sleep = 0, nb_err = 0; struct sched_param sched_priority = { .sched_priority = MAX_RT_PRIO-1 }; struct cpuidle_device *dev; struct cpuidle_driver *drv; /* No need for an actual callback, we just want to wake up the CPU. */ struct timer_list wakeup_timer; /* Wait for the main thread to give the start signal. */ wait_for_completion(&suspend_threads_started); /* Set maximum priority to preempt all other threads on this CPU. */ if (sched_setscheduler_nocheck(current, SCHED_FIFO, &sched_priority)) pr_warn("Failed to set suspend thread scheduler on CPU %d\n", cpu); dev = this_cpu_read(cpuidle_devices); drv = cpuidle_get_cpu_driver(dev); pr_info("CPU %d entering suspend cycles, states 1 through %d\n", cpu, drv->state_count - 1); timer_setup_on_stack(&wakeup_timer, dummy_callback, 0); for (i = 0; i < NUM_SUSPEND_CYCLE; ++i) { int index; /* * Test all possible states, except 0 (which is usually WFI and * doesn't use PSCI). */ for (index = 1; index < drv->state_count; ++index) { struct cpuidle_state *state = &drv->states[index]; bool broadcast = state->flags & CPUIDLE_FLAG_TIMER_STOP; int ret; /* * Set the timer to wake this CPU up in some time (which * should be largely sufficient for entering suspend). * If the local tick is disabled when entering suspend, * suspend_cpu() takes care of switching to a broadcast * tick, so the timer will still wake us up. */ mod_timer(&wakeup_timer, jiffies + usecs_to_jiffies(state->target_residency)); /* IRQs must be disabled during suspend operations. */ local_irq_disable(); ret = suspend_cpu(index, broadcast); /* * We have woken up. Re-enable IRQs to handle any * pending interrupt, do not wait until the end of the * loop. */ local_irq_enable(); if (ret == index) { ++nb_suspend; } else if (ret >= 0) { /* We did not enter the expected state. */ ++nb_shallow_sleep; } else { pr_err("Failed to suspend CPU %d: error %d " "(requested state %d, cycle %d)\n", cpu, ret, index, i); ++nb_err; } } } /* * Disable the timer to make sure that the timer will not trigger * later. */ del_timer(&wakeup_timer); destroy_timer_on_stack(&wakeup_timer); if (atomic_dec_return_relaxed(&nb_active_threads) == 0) complete(&suspend_threads_done); /* Give up on RT scheduling and wait for termination. */ sched_priority.sched_priority = 0; if (sched_setscheduler_nocheck(current, SCHED_NORMAL, &sched_priority)) pr_warn("Failed to set suspend thread scheduler on CPU %d\n", cpu); for (;;) { /* Needs to be set first to avoid missing a wakeup. */ set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); break; } schedule(); } pr_info("CPU %d suspend test results: success %d, shallow states %d, errors %d\n", cpu, nb_suspend, nb_shallow_sleep, nb_err); return nb_err; } static int suspend_tests(void) { int i, cpu, err = 0; struct task_struct **threads; int nb_threads = 0; threads = kmalloc_array(nb_available_cpus, sizeof(*threads), GFP_KERNEL); if (!threads) return -ENOMEM; /* * Stop cpuidle to prevent the idle tasks from entering a deep sleep * mode, as it might interfere with the suspend threads on other CPUs. * This does not prevent the suspend threads from using cpuidle (only * the idle tasks check this status). Take the idle lock so that * the cpuidle driver and device look-up can be carried out safely. */ cpuidle_pause_and_lock(); for_each_online_cpu(cpu) { struct task_struct *thread; /* Check that cpuidle is available on that CPU. */ struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu); struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); if (!dev || !drv) { pr_warn("cpuidle not available on CPU %d, ignoring\n", cpu); continue; } thread = kthread_create_on_cpu(suspend_test_thread, (void *)(long)cpu, cpu, "psci_suspend_test"); if (IS_ERR(thread)) pr_err("Failed to create kthread on CPU %d\n", cpu); else threads[nb_threads++] = thread; } if (nb_threads < 1) { err = -ENODEV; goto out; } atomic_set(&nb_active_threads, nb_threads); /* * Wake up the suspend threads. To avoid the main thread being preempted * before all the threads have been unparked, the suspend threads will * wait for the completion of suspend_threads_started. */ for (i = 0; i < nb_threads; ++i) wake_up_process(threads[i]); complete_all(&suspend_threads_started); wait_for_completion(&suspend_threads_done); /* Stop and destroy all threads, get return status. */ for (i = 0; i < nb_threads; ++i) err += kthread_stop(threads[i]); out: cpuidle_resume_and_unlock(); kfree(threads); return err; } static int __init psci_checker(void) { int ret; /* * Since we're in an initcall, we assume that all the CPUs that all * CPUs that can be onlined have been onlined. * * The tests assume that hotplug is enabled but nobody else is using it, * otherwise the results will be unpredictable. However, since there * is no userspace yet in initcalls, that should be fine, as long as * no torture test is running at the same time (see Kconfig). */ nb_available_cpus = num_online_cpus(); /* Check PSCI operations are set up and working. */ ret = psci_ops_check(); if (ret) return ret; pr_info("PSCI checker started using %u CPUs\n", nb_available_cpus); pr_info("Starting hotplug tests\n"); ret = hotplug_tests(); if (ret == 0) pr_info("Hotplug tests passed OK\n"); else if (ret > 0) pr_err("%d error(s) encountered in hotplug tests\n", ret); else { pr_err("Out of memory\n"); return ret; } pr_info("Starting suspend tests (%d cycles per state)\n", NUM_SUSPEND_CYCLE); ret = suspend_tests(); if (ret == 0) pr_info("Suspend tests passed OK\n"); else if (ret > 0) pr_err("%d error(s) encountered in suspend tests\n", ret); else { switch (ret) { case -ENOMEM: pr_err("Out of memory\n"); break; case -ENODEV: pr_warn("Could not start suspend tests on any CPU\n"); break; } } pr_info("PSCI checker completed\n"); return ret < 0 ? ret : 0; } late_initcall(psci_checker);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1