Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kumar Gala | 873 | 42.03% | 2 | 13.33% |
Björn Andersson | 557 | 26.82% | 4 | 26.67% |
Andy Gross | 422 | 20.32% | 3 | 20.00% |
Jilai Wang | 117 | 5.63% | 1 | 6.67% |
Stanimir Varbanov | 44 | 2.12% | 1 | 6.67% |
Avaneesh Kumar Dwivedi | 32 | 1.54% | 1 | 6.67% |
Rob Clark | 28 | 1.35% | 2 | 13.33% |
Niklas Cassel | 4 | 0.19% | 1 | 6.67% |
Total | 2077 | 15 |
/* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved. * Copyright (C) 2015 Linaro Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ #include <linux/slab.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/qcom_scm.h> #include <linux/dma-mapping.h> #include "qcom_scm.h" #define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00 #define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01 #define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08 #define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20 #define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04 #define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02 #define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10 #define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40 struct qcom_scm_entry { int flag; void *entry; }; static struct qcom_scm_entry qcom_scm_wb[] = { { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 }, { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 }, { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 }, { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 }, }; static DEFINE_MUTEX(qcom_scm_lock); /** * struct qcom_scm_command - one SCM command buffer * @len: total available memory for command and response * @buf_offset: start of command buffer * @resp_hdr_offset: start of response buffer * @id: command to be executed * @buf: buffer returned from qcom_scm_get_command_buffer() * * An SCM command is laid out in memory as follows: * * ------------------- <--- struct qcom_scm_command * | command header | * ------------------- <--- qcom_scm_get_command_buffer() * | command buffer | * ------------------- <--- struct qcom_scm_response and * | response header | qcom_scm_command_to_response() * ------------------- <--- qcom_scm_get_response_buffer() * | response buffer | * ------------------- * * There can be arbitrary padding between the headers and buffers so * you should always use the appropriate qcom_scm_get_*_buffer() routines * to access the buffers in a safe manner. */ struct qcom_scm_command { __le32 len; __le32 buf_offset; __le32 resp_hdr_offset; __le32 id; __le32 buf[0]; }; /** * struct qcom_scm_response - one SCM response buffer * @len: total available memory for response * @buf_offset: start of response data relative to start of qcom_scm_response * @is_complete: indicates if the command has finished processing */ struct qcom_scm_response { __le32 len; __le32 buf_offset; __le32 is_complete; }; /** * qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response * @cmd: command * * Returns a pointer to a response for a command. */ static inline struct qcom_scm_response *qcom_scm_command_to_response( const struct qcom_scm_command *cmd) { return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset); } /** * qcom_scm_get_command_buffer() - Get a pointer to a command buffer * @cmd: command * * Returns a pointer to the command buffer of a command. */ static inline void *qcom_scm_get_command_buffer(const struct qcom_scm_command *cmd) { return (void *)cmd->buf; } /** * qcom_scm_get_response_buffer() - Get a pointer to a response buffer * @rsp: response * * Returns a pointer to a response buffer of a response. */ static inline void *qcom_scm_get_response_buffer(const struct qcom_scm_response *rsp) { return (void *)rsp + le32_to_cpu(rsp->buf_offset); } static u32 smc(u32 cmd_addr) { int context_id; register u32 r0 asm("r0") = 1; register u32 r1 asm("r1") = (u32)&context_id; register u32 r2 asm("r2") = cmd_addr; do { asm volatile( __asmeq("%0", "r0") __asmeq("%1", "r0") __asmeq("%2", "r1") __asmeq("%3", "r2") #ifdef REQUIRES_SEC ".arch_extension sec\n" #endif "smc #0 @ switch to secure world\n" : "=r" (r0) : "r" (r0), "r" (r1), "r" (r2) : "r3", "r12"); } while (r0 == QCOM_SCM_INTERRUPTED); return r0; } /** * qcom_scm_call() - Send an SCM command * @dev: struct device * @svc_id: service identifier * @cmd_id: command identifier * @cmd_buf: command buffer * @cmd_len: length of the command buffer * @resp_buf: response buffer * @resp_len: length of the response buffer * * Sends a command to the SCM and waits for the command to finish processing. * * A note on cache maintenance: * Note that any buffers that are expected to be accessed by the secure world * must be flushed before invoking qcom_scm_call and invalidated in the cache * immediately after qcom_scm_call returns. Cache maintenance on the command * and response buffers is taken care of by qcom_scm_call; however, callers are * responsible for any other cached buffers passed over to the secure world. */ static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id, const void *cmd_buf, size_t cmd_len, void *resp_buf, size_t resp_len) { int ret; struct qcom_scm_command *cmd; struct qcom_scm_response *rsp; size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len; dma_addr_t cmd_phys; cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL); if (!cmd) return -ENOMEM; cmd->len = cpu_to_le32(alloc_len); cmd->buf_offset = cpu_to_le32(sizeof(*cmd)); cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len); cmd->id = cpu_to_le32((svc_id << 10) | cmd_id); if (cmd_buf) memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len); rsp = qcom_scm_command_to_response(cmd); cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE); if (dma_mapping_error(dev, cmd_phys)) { kfree(cmd); return -ENOMEM; } mutex_lock(&qcom_scm_lock); ret = smc(cmd_phys); if (ret < 0) ret = qcom_scm_remap_error(ret); mutex_unlock(&qcom_scm_lock); if (ret) goto out; do { dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len, sizeof(*rsp), DMA_FROM_DEVICE); } while (!rsp->is_complete); if (resp_buf) { dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len + le32_to_cpu(rsp->buf_offset), resp_len, DMA_FROM_DEVICE); memcpy(resp_buf, qcom_scm_get_response_buffer(rsp), resp_len); } out: dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE); kfree(cmd); return ret; } #define SCM_CLASS_REGISTER (0x2 << 8) #define SCM_MASK_IRQS BIT(5) #define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \ SCM_CLASS_REGISTER | \ SCM_MASK_IRQS | \ (n & 0xf)) /** * qcom_scm_call_atomic1() - Send an atomic SCM command with one argument * @svc_id: service identifier * @cmd_id: command identifier * @arg1: first argument * * This shall only be used with commands that are guaranteed to be * uninterruptable, atomic and SMP safe. */ static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1) { int context_id; register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1); register u32 r1 asm("r1") = (u32)&context_id; register u32 r2 asm("r2") = arg1; asm volatile( __asmeq("%0", "r0") __asmeq("%1", "r0") __asmeq("%2", "r1") __asmeq("%3", "r2") #ifdef REQUIRES_SEC ".arch_extension sec\n" #endif "smc #0 @ switch to secure world\n" : "=r" (r0) : "r" (r0), "r" (r1), "r" (r2) : "r3", "r12"); return r0; } /** * qcom_scm_call_atomic2() - Send an atomic SCM command with two arguments * @svc_id: service identifier * @cmd_id: command identifier * @arg1: first argument * @arg2: second argument * * This shall only be used with commands that are guaranteed to be * uninterruptable, atomic and SMP safe. */ static s32 qcom_scm_call_atomic2(u32 svc, u32 cmd, u32 arg1, u32 arg2) { int context_id; register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 2); register u32 r1 asm("r1") = (u32)&context_id; register u32 r2 asm("r2") = arg1; register u32 r3 asm("r3") = arg2; asm volatile( __asmeq("%0", "r0") __asmeq("%1", "r0") __asmeq("%2", "r1") __asmeq("%3", "r2") __asmeq("%4", "r3") #ifdef REQUIRES_SEC ".arch_extension sec\n" #endif "smc #0 @ switch to secure world\n" : "=r" (r0) : "r" (r0), "r" (r1), "r" (r2), "r" (r3) : "r12"); return r0; } u32 qcom_scm_get_version(void) { int context_id; static u32 version = -1; register u32 r0 asm("r0"); register u32 r1 asm("r1"); if (version != -1) return version; mutex_lock(&qcom_scm_lock); r0 = 0x1 << 8; r1 = (u32)&context_id; do { asm volatile( __asmeq("%0", "r0") __asmeq("%1", "r1") __asmeq("%2", "r0") __asmeq("%3", "r1") #ifdef REQUIRES_SEC ".arch_extension sec\n" #endif "smc #0 @ switch to secure world\n" : "=r" (r0), "=r" (r1) : "r" (r0), "r" (r1) : "r2", "r3", "r12"); } while (r0 == QCOM_SCM_INTERRUPTED); version = r1; mutex_unlock(&qcom_scm_lock); return version; } EXPORT_SYMBOL(qcom_scm_get_version); /** * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the cold boot address of the cpus. Any cpu outside the supported * range would be removed from the cpu present mask. */ int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus) { int flags = 0; int cpu; int scm_cb_flags[] = { QCOM_SCM_FLAG_COLDBOOT_CPU0, QCOM_SCM_FLAG_COLDBOOT_CPU1, QCOM_SCM_FLAG_COLDBOOT_CPU2, QCOM_SCM_FLAG_COLDBOOT_CPU3, }; if (!cpus || (cpus && cpumask_empty(cpus))) return -EINVAL; for_each_cpu(cpu, cpus) { if (cpu < ARRAY_SIZE(scm_cb_flags)) flags |= scm_cb_flags[cpu]; else set_cpu_present(cpu, false); } return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR, flags, virt_to_phys(entry)); } /** * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the Linux entry point for the SCM to transfer control to when coming * out of a power down. CPU power down may be executed on cpuidle or hotplug. */ int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry, const cpumask_t *cpus) { int ret; int flags = 0; int cpu; struct { __le32 flags; __le32 addr; } cmd; /* * Reassign only if we are switching from hotplug entry point * to cpuidle entry point or vice versa. */ for_each_cpu(cpu, cpus) { if (entry == qcom_scm_wb[cpu].entry) continue; flags |= qcom_scm_wb[cpu].flag; } /* No change in entry function */ if (!flags) return 0; cmd.addr = cpu_to_le32(virt_to_phys(entry)); cmd.flags = cpu_to_le32(flags); ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR, &cmd, sizeof(cmd), NULL, 0); if (!ret) { for_each_cpu(cpu, cpus) qcom_scm_wb[cpu].entry = entry; } return ret; } /** * qcom_scm_cpu_power_down() - Power down the cpu * @flags - Flags to flush cache * * This is an end point to power down cpu. If there was a pending interrupt, * the control would return from this function, otherwise, the cpu jumps to the * warm boot entry point set for this cpu upon reset. */ void __qcom_scm_cpu_power_down(u32 flags) { qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_CMD_TERMINATE_PC, flags & QCOM_SCM_FLUSH_FLAG_MASK); } int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id) { int ret; __le32 svc_cmd = cpu_to_le32((svc_id << 10) | cmd_id); __le32 ret_val = 0; ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD, &svc_cmd, sizeof(svc_cmd), &ret_val, sizeof(ret_val)); if (ret) return ret; return le32_to_cpu(ret_val); } int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) { if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) return -ERANGE; return qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP, req, req_cnt * sizeof(*req), resp, sizeof(*resp)); } void __qcom_scm_init(void) { } bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral) { __le32 out; __le32 in; int ret; in = cpu_to_le32(peripheral); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_IS_SUPPORTED_CMD, &in, sizeof(in), &out, sizeof(out)); return ret ? false : !!out; } int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral, dma_addr_t metadata_phys) { __le32 scm_ret; int ret; struct { __le32 proc; __le32 image_addr; } request; request.proc = cpu_to_le32(peripheral); request.image_addr = cpu_to_le32(metadata_phys); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_INIT_IMAGE_CMD, &request, sizeof(request), &scm_ret, sizeof(scm_ret)); return ret ? : le32_to_cpu(scm_ret); } int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral, phys_addr_t addr, phys_addr_t size) { __le32 scm_ret; int ret; struct { __le32 proc; __le32 addr; __le32 len; } request; request.proc = cpu_to_le32(peripheral); request.addr = cpu_to_le32(addr); request.len = cpu_to_le32(size); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MEM_SETUP_CMD, &request, sizeof(request), &scm_ret, sizeof(scm_ret)); return ret ? : le32_to_cpu(scm_ret); } int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral) { __le32 out; __le32 in; int ret; in = cpu_to_le32(peripheral); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_AUTH_AND_RESET_CMD, &in, sizeof(in), &out, sizeof(out)); return ret ? : le32_to_cpu(out); } int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral) { __le32 out; __le32 in; int ret; in = cpu_to_le32(peripheral); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_SHUTDOWN_CMD, &in, sizeof(in), &out, sizeof(out)); return ret ? : le32_to_cpu(out); } int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) { __le32 out; __le32 in = cpu_to_le32(reset); int ret; ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET, &in, sizeof(in), &out, sizeof(out)); return ret ? : le32_to_cpu(out); } int __qcom_scm_set_dload_mode(struct device *dev, bool enable) { return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE, enable ? QCOM_SCM_SET_DLOAD_MODE : 0, 0); } int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id) { struct { __le32 state; __le32 id; } req; __le32 scm_ret = 0; int ret; req.state = cpu_to_le32(state); req.id = cpu_to_le32(id); ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_REMOTE_STATE, &req, sizeof(req), &scm_ret, sizeof(scm_ret)); return ret ? : le32_to_cpu(scm_ret); } int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, size_t mem_sz, phys_addr_t src, size_t src_sz, phys_addr_t dest, size_t dest_sz) { return -ENODEV; } int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id, u32 spare) { return -ENODEV; } int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare, size_t *size) { return -ENODEV; } int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size, u32 spare) { return -ENODEV; } int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr, unsigned int *val) { int ret; ret = qcom_scm_call_atomic1(QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, addr); if (ret >= 0) *val = ret; return ret < 0 ? ret : 0; } int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val) { return qcom_scm_call_atomic2(QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE, addr, val); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1