Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 2422 | 98.94% | 1 | 33.33% |
Mark Rutland | 16 | 0.65% | 1 | 33.33% |
Christoph Hellwig | 10 | 0.41% | 1 | 33.33% |
Total | 2448 | 3 |
/* * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <soc/tegra/ivc.h> #define TEGRA_IVC_ALIGN 64 /* * IVC channel reset protocol. * * Each end uses its tx_channel.state to indicate its synchronization state. */ enum tegra_ivc_state { /* * This value is zero for backwards compatibility with services that * assume channels to be initially zeroed. Such channels are in an * initially valid state, but cannot be asynchronously reset, and must * maintain a valid state at all times. * * The transmitting end can enter the established state from the sync or * ack state when it observes the receiving endpoint in the ack or * established state, indicating that has cleared the counters in our * rx_channel. */ TEGRA_IVC_STATE_ESTABLISHED = 0, /* * If an endpoint is observed in the sync state, the remote endpoint is * allowed to clear the counters it owns asynchronously with respect to * the current endpoint. Therefore, the current endpoint is no longer * allowed to communicate. */ TEGRA_IVC_STATE_SYNC, /* * When the transmitting end observes the receiving end in the sync * state, it can clear the w_count and r_count and transition to the ack * state. If the remote endpoint observes us in the ack state, it can * return to the established state once it has cleared its counters. */ TEGRA_IVC_STATE_ACK }; /* * This structure is divided into two-cache aligned parts, the first is only * written through the tx.channel pointer, while the second is only written * through the rx.channel pointer. This delineates ownership of the cache * lines, which is critical to performance and necessary in non-cache coherent * implementations. */ struct tegra_ivc_header { union { struct { /* fields owned by the transmitting end */ u32 count; u32 state; }; u8 pad[TEGRA_IVC_ALIGN]; } tx; union { /* fields owned by the receiving end */ u32 count; u8 pad[TEGRA_IVC_ALIGN]; } rx; }; static inline void tegra_ivc_invalidate(struct tegra_ivc *ivc, dma_addr_t phys) { if (!ivc->peer) return; dma_sync_single_for_cpu(ivc->peer, phys, TEGRA_IVC_ALIGN, DMA_FROM_DEVICE); } static inline void tegra_ivc_flush(struct tegra_ivc *ivc, dma_addr_t phys) { if (!ivc->peer) return; dma_sync_single_for_device(ivc->peer, phys, TEGRA_IVC_ALIGN, DMA_TO_DEVICE); } static inline bool tegra_ivc_empty(struct tegra_ivc *ivc, struct tegra_ivc_header *header) { /* * This function performs multiple checks on the same values with * security implications, so create snapshots with READ_ONCE() to * ensure that these checks use the same values. */ u32 tx = READ_ONCE(header->tx.count); u32 rx = READ_ONCE(header->rx.count); /* * Perform an over-full check to prevent denial of service attacks * where a server could be easily fooled into believing that there's * an extremely large number of frames ready, since receivers are not * expected to check for full or over-full conditions. * * Although the channel isn't empty, this is an invalid case caused by * a potentially malicious peer, so returning empty is safer, because * it gives the impression that the channel has gone silent. */ if (tx - rx > ivc->num_frames) return true; return tx == rx; } static inline bool tegra_ivc_full(struct tegra_ivc *ivc, struct tegra_ivc_header *header) { u32 tx = READ_ONCE(header->tx.count); u32 rx = READ_ONCE(header->rx.count); /* * Invalid cases where the counters indicate that the queue is over * capacity also appear full. */ return tx - rx >= ivc->num_frames; } static inline u32 tegra_ivc_available(struct tegra_ivc *ivc, struct tegra_ivc_header *header) { u32 tx = READ_ONCE(header->tx.count); u32 rx = READ_ONCE(header->rx.count); /* * This function isn't expected to be used in scenarios where an * over-full situation can lead to denial of service attacks. See the * comment in tegra_ivc_empty() for an explanation about special * over-full considerations. */ return tx - rx; } static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc) { WRITE_ONCE(ivc->tx.channel->tx.count, READ_ONCE(ivc->tx.channel->tx.count) + 1); if (ivc->tx.position == ivc->num_frames - 1) ivc->tx.position = 0; else ivc->tx.position++; } static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc) { WRITE_ONCE(ivc->rx.channel->rx.count, READ_ONCE(ivc->rx.channel->rx.count) + 1); if (ivc->rx.position == ivc->num_frames - 1) ivc->rx.position = 0; else ivc->rx.position++; } static inline int tegra_ivc_check_read(struct tegra_ivc *ivc) { unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); /* * tx.channel->state is set locally, so it is not synchronized with * state from the remote peer. The remote peer cannot reset its * transmit counters until we've acknowledged its synchronization * request, so no additional synchronization is required because an * asynchronous transition of rx.channel->state to * TEGRA_IVC_STATE_ACK is not allowed. */ if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) return -ECONNRESET; /* * Avoid unnecessary invalidations when performing repeated accesses * to an IVC channel by checking the old queue pointers first. * * Synchronization is only necessary when these pointers indicate * empty or full. */ if (!tegra_ivc_empty(ivc, ivc->rx.channel)) return 0; tegra_ivc_invalidate(ivc, ivc->rx.phys + offset); if (tegra_ivc_empty(ivc, ivc->rx.channel)) return -ENOSPC; return 0; } static inline int tegra_ivc_check_write(struct tegra_ivc *ivc) { unsigned int offset = offsetof(struct tegra_ivc_header, rx.count); if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) return -ECONNRESET; if (!tegra_ivc_full(ivc, ivc->tx.channel)) return 0; tegra_ivc_invalidate(ivc, ivc->tx.phys + offset); if (tegra_ivc_full(ivc, ivc->tx.channel)) return -ENOSPC; return 0; } static void *tegra_ivc_frame_virt(struct tegra_ivc *ivc, struct tegra_ivc_header *header, unsigned int frame) { if (WARN_ON(frame >= ivc->num_frames)) return ERR_PTR(-EINVAL); return (void *)(header + 1) + ivc->frame_size * frame; } static inline dma_addr_t tegra_ivc_frame_phys(struct tegra_ivc *ivc, dma_addr_t phys, unsigned int frame) { unsigned long offset; offset = sizeof(struct tegra_ivc_header) + ivc->frame_size * frame; return phys + offset; } static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc, dma_addr_t phys, unsigned int frame, unsigned int offset, size_t size) { if (!ivc->peer || WARN_ON(frame >= ivc->num_frames)) return; phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset; dma_sync_single_for_cpu(ivc->peer, phys, size, DMA_FROM_DEVICE); } static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc, dma_addr_t phys, unsigned int frame, unsigned int offset, size_t size) { if (!ivc->peer || WARN_ON(frame >= ivc->num_frames)) return; phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset; dma_sync_single_for_device(ivc->peer, phys, size, DMA_TO_DEVICE); } /* directly peek at the next frame rx'ed */ void *tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc) { int err; if (WARN_ON(ivc == NULL)) return ERR_PTR(-EINVAL); err = tegra_ivc_check_read(ivc); if (err < 0) return ERR_PTR(err); /* * Order observation of ivc->rx.position potentially indicating new * data before data read. */ smp_rmb(); tegra_ivc_invalidate_frame(ivc, ivc->rx.phys, ivc->rx.position, 0, ivc->frame_size); return tegra_ivc_frame_virt(ivc, ivc->rx.channel, ivc->rx.position); } EXPORT_SYMBOL(tegra_ivc_read_get_next_frame); int tegra_ivc_read_advance(struct tegra_ivc *ivc) { unsigned int rx = offsetof(struct tegra_ivc_header, rx.count); unsigned int tx = offsetof(struct tegra_ivc_header, tx.count); int err; /* * No read barriers or synchronization here: the caller is expected to * have already observed the channel non-empty. This check is just to * catch programming errors. */ err = tegra_ivc_check_read(ivc); if (err < 0) return err; tegra_ivc_advance_rx(ivc); tegra_ivc_flush(ivc, ivc->rx.phys + rx); /* * Ensure our write to ivc->rx.position occurs before our read from * ivc->tx.position. */ smp_mb(); /* * Notify only upon transition from full to non-full. The available * count can only asynchronously increase, so the worst possible * side-effect will be a spurious notification. */ tegra_ivc_invalidate(ivc, ivc->rx.phys + tx); if (tegra_ivc_available(ivc, ivc->rx.channel) == ivc->num_frames - 1) ivc->notify(ivc, ivc->notify_data); return 0; } EXPORT_SYMBOL(tegra_ivc_read_advance); /* directly poke at the next frame to be tx'ed */ void *tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc) { int err; err = tegra_ivc_check_write(ivc); if (err < 0) return ERR_PTR(err); return tegra_ivc_frame_virt(ivc, ivc->tx.channel, ivc->tx.position); } EXPORT_SYMBOL(tegra_ivc_write_get_next_frame); /* advance the tx buffer */ int tegra_ivc_write_advance(struct tegra_ivc *ivc) { unsigned int tx = offsetof(struct tegra_ivc_header, tx.count); unsigned int rx = offsetof(struct tegra_ivc_header, rx.count); int err; err = tegra_ivc_check_write(ivc); if (err < 0) return err; tegra_ivc_flush_frame(ivc, ivc->tx.phys, ivc->tx.position, 0, ivc->frame_size); /* * Order any possible stores to the frame before update of * ivc->tx.position. */ smp_wmb(); tegra_ivc_advance_tx(ivc); tegra_ivc_flush(ivc, ivc->tx.phys + tx); /* * Ensure our write to ivc->tx.position occurs before our read from * ivc->rx.position. */ smp_mb(); /* * Notify only upon transition from empty to non-empty. The available * count can only asynchronously decrease, so the worst possible * side-effect will be a spurious notification. */ tegra_ivc_invalidate(ivc, ivc->tx.phys + rx); if (tegra_ivc_available(ivc, ivc->tx.channel) == 1) ivc->notify(ivc, ivc->notify_data); return 0; } EXPORT_SYMBOL(tegra_ivc_write_advance); void tegra_ivc_reset(struct tegra_ivc *ivc) { unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); ivc->tx.channel->tx.state = TEGRA_IVC_STATE_SYNC; tegra_ivc_flush(ivc, ivc->tx.phys + offset); ivc->notify(ivc, ivc->notify_data); } EXPORT_SYMBOL(tegra_ivc_reset); /* * ======================================================= * IVC State Transition Table - see tegra_ivc_notified() * ======================================================= * * local remote action * ----- ------ ----------------------------------- * SYNC EST <none> * SYNC ACK reset counters; move to EST; notify * SYNC SYNC reset counters; move to ACK; notify * ACK EST move to EST; notify * ACK ACK move to EST; notify * ACK SYNC reset counters; move to ACK; notify * EST EST <none> * EST ACK <none> * EST SYNC reset counters; move to ACK; notify * * =============================================================== */ int tegra_ivc_notified(struct tegra_ivc *ivc) { unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); enum tegra_ivc_state state; /* Copy the receiver's state out of shared memory. */ tegra_ivc_invalidate(ivc, ivc->rx.phys + offset); state = READ_ONCE(ivc->rx.channel->tx.state); if (state == TEGRA_IVC_STATE_SYNC) { offset = offsetof(struct tegra_ivc_header, tx.count); /* * Order observation of TEGRA_IVC_STATE_SYNC before stores * clearing tx.channel. */ smp_rmb(); /* * Reset tx.channel counters. The remote end is in the SYNC * state and won't make progress until we change our state, * so the counters are not in use at this time. */ ivc->tx.channel->tx.count = 0; ivc->rx.channel->rx.count = 0; ivc->tx.position = 0; ivc->rx.position = 0; /* * Ensure that counters appear cleared before new state can be * observed. */ smp_wmb(); /* * Move to ACK state. We have just cleared our counters, so it * is now safe for the remote end to start using these values. */ ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ACK; tegra_ivc_flush(ivc, ivc->tx.phys + offset); /* * Notify remote end to observe state transition. */ ivc->notify(ivc, ivc->notify_data); } else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_SYNC && state == TEGRA_IVC_STATE_ACK) { offset = offsetof(struct tegra_ivc_header, tx.count); /* * Order observation of ivc_state_sync before stores clearing * tx_channel. */ smp_rmb(); /* * Reset tx.channel counters. The remote end is in the ACK * state and won't make progress until we change our state, * so the counters are not in use at this time. */ ivc->tx.channel->tx.count = 0; ivc->rx.channel->rx.count = 0; ivc->tx.position = 0; ivc->rx.position = 0; /* * Ensure that counters appear cleared before new state can be * observed. */ smp_wmb(); /* * Move to ESTABLISHED state. We know that the remote end has * already cleared its counters, so it is safe to start * writing/reading on this channel. */ ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED; tegra_ivc_flush(ivc, ivc->tx.phys + offset); /* * Notify remote end to observe state transition. */ ivc->notify(ivc, ivc->notify_data); } else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_ACK) { offset = offsetof(struct tegra_ivc_header, tx.count); /* * At this point, we have observed the peer to be in either * the ACK or ESTABLISHED state. Next, order observation of * peer state before storing to tx.channel. */ smp_rmb(); /* * Move to ESTABLISHED state. We know that we have previously * cleared our counters, and we know that the remote end has * cleared its counters, so it is safe to start writing/reading * on this channel. */ ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED; tegra_ivc_flush(ivc, ivc->tx.phys + offset); /* * Notify remote end to observe state transition. */ ivc->notify(ivc, ivc->notify_data); } else { /* * There is no need to handle any further action. Either the * channel is already fully established, or we are waiting for * the remote end to catch up with our current state. Refer * to the diagram in "IVC State Transition Table" above. */ } if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) return -EAGAIN; return 0; } EXPORT_SYMBOL(tegra_ivc_notified); size_t tegra_ivc_align(size_t size) { return ALIGN(size, TEGRA_IVC_ALIGN); } EXPORT_SYMBOL(tegra_ivc_align); unsigned tegra_ivc_total_queue_size(unsigned queue_size) { if (!IS_ALIGNED(queue_size, TEGRA_IVC_ALIGN)) { pr_err("%s: queue_size (%u) must be %u-byte aligned\n", __func__, queue_size, TEGRA_IVC_ALIGN); return 0; } return queue_size + sizeof(struct tegra_ivc_header); } EXPORT_SYMBOL(tegra_ivc_total_queue_size); static int tegra_ivc_check_params(unsigned long rx, unsigned long tx, unsigned int num_frames, size_t frame_size) { BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, tx.count), TEGRA_IVC_ALIGN)); BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, rx.count), TEGRA_IVC_ALIGN)); BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct tegra_ivc_header), TEGRA_IVC_ALIGN)); if ((uint64_t)num_frames * (uint64_t)frame_size >= 0x100000000UL) { pr_err("num_frames * frame_size overflows\n"); return -EINVAL; } if (!IS_ALIGNED(frame_size, TEGRA_IVC_ALIGN)) { pr_err("frame size not adequately aligned: %zu\n", frame_size); return -EINVAL; } /* * The headers must at least be aligned enough for counters * to be accessed atomically. */ if (!IS_ALIGNED(rx, TEGRA_IVC_ALIGN)) { pr_err("IVC channel start not aligned: %#lx\n", rx); return -EINVAL; } if (!IS_ALIGNED(tx, TEGRA_IVC_ALIGN)) { pr_err("IVC channel start not aligned: %#lx\n", tx); return -EINVAL; } if (rx < tx) { if (rx + frame_size * num_frames > tx) { pr_err("queue regions overlap: %#lx + %zx > %#lx\n", rx, frame_size * num_frames, tx); return -EINVAL; } } else { if (tx + frame_size * num_frames > rx) { pr_err("queue regions overlap: %#lx + %zx > %#lx\n", tx, frame_size * num_frames, rx); return -EINVAL; } } return 0; } int tegra_ivc_init(struct tegra_ivc *ivc, struct device *peer, void *rx, dma_addr_t rx_phys, void *tx, dma_addr_t tx_phys, unsigned int num_frames, size_t frame_size, void (*notify)(struct tegra_ivc *ivc, void *data), void *data) { size_t queue_size; int err; if (WARN_ON(!ivc || !notify)) return -EINVAL; /* * All sizes that can be returned by communication functions should * fit in an int. */ if (frame_size > INT_MAX) return -E2BIG; err = tegra_ivc_check_params((unsigned long)rx, (unsigned long)tx, num_frames, frame_size); if (err < 0) return err; queue_size = tegra_ivc_total_queue_size(num_frames * frame_size); if (peer) { ivc->rx.phys = dma_map_single(peer, rx, queue_size, DMA_BIDIRECTIONAL); if (dma_mapping_error(peer, ivc->rx.phys)) return -ENOMEM; ivc->tx.phys = dma_map_single(peer, tx, queue_size, DMA_BIDIRECTIONAL); if (dma_mapping_error(peer, ivc->tx.phys)) { dma_unmap_single(peer, ivc->rx.phys, queue_size, DMA_BIDIRECTIONAL); return -ENOMEM; } } else { ivc->rx.phys = rx_phys; ivc->tx.phys = tx_phys; } ivc->rx.channel = rx; ivc->tx.channel = tx; ivc->peer = peer; ivc->notify = notify; ivc->notify_data = data; ivc->frame_size = frame_size; ivc->num_frames = num_frames; /* * These values aren't necessarily correct until the channel has been * reset. */ ivc->tx.position = 0; ivc->rx.position = 0; return 0; } EXPORT_SYMBOL(tegra_ivc_init); void tegra_ivc_cleanup(struct tegra_ivc *ivc) { if (ivc->peer) { size_t size = tegra_ivc_total_queue_size(ivc->num_frames * ivc->frame_size); dma_unmap_single(ivc->peer, ivc->rx.phys, size, DMA_BIDIRECTIONAL); dma_unmap_single(ivc->peer, ivc->tx.phys, size, DMA_BIDIRECTIONAL); } } EXPORT_SYMBOL(tegra_ivc_cleanup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1