Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 4957 | 64.14% | 13 | 13.68% |
Chunming Zhou | 506 | 6.55% | 8 | 8.42% |
Christian König | 356 | 4.61% | 26 | 27.37% |
Jammy Zhou | 250 | 3.23% | 5 | 5.26% |
Eric Huang | 232 | 3.00% | 1 | 1.05% |
Flora Cui | 198 | 2.56% | 3 | 3.16% |
Monk Liu | 176 | 2.28% | 8 | 8.42% |
yanyang1 | 141 | 1.82% | 1 | 1.05% |
Felix Kuhling | 124 | 1.60% | 1 | 1.05% |
Xiangliang Yu | 123 | 1.59% | 2 | 2.11% |
David Zhang | 120 | 1.55% | 1 | 1.05% |
Ben Goz | 102 | 1.32% | 1 | 1.05% |
Samuel Li | 97 | 1.26% | 1 | 1.05% |
Huang Rui | 85 | 1.10% | 1 | 1.05% |
Pixel Ding | 74 | 0.96% | 1 | 1.05% |
Shaoyun Liu | 30 | 0.39% | 1 | 1.05% |
Junwei (Martin) Zhang | 28 | 0.36% | 2 | 2.11% |
Leo Liu | 25 | 0.32% | 2 | 2.11% |
Ken Wang | 19 | 0.25% | 1 | 1.05% |
Emily Deng | 17 | 0.22% | 1 | 1.05% |
Rex Zhu | 15 | 0.19% | 2 | 2.11% |
Andrey Grodzovsky | 12 | 0.16% | 2 | 2.11% |
Oak Zeng | 10 | 0.13% | 1 | 1.05% |
Yong Zhao | 9 | 0.12% | 2 | 2.11% |
Yintian Tao | 8 | 0.10% | 1 | 1.05% |
Tom St Denis | 5 | 0.06% | 1 | 1.05% |
Jack Xiao | 3 | 0.04% | 1 | 1.05% |
Chris Wilson | 3 | 0.04% | 1 | 1.05% |
Masahiro Yamada | 2 | 0.03% | 2 | 2.11% |
Edward O'Callaghan | 1 | 0.01% | 1 | 1.05% |
Joe Perches | 1 | 0.01% | 1 | 1.05% |
Total | 7729 | 95 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include <linux/firmware.h> #include <drm/drmP.h> #include "amdgpu.h" #include "amdgpu_ucode.h" #include "amdgpu_trace.h" #include "vi.h" #include "vid.h" #include "oss/oss_3_0_d.h" #include "oss/oss_3_0_sh_mask.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "gca/gfx_8_0_d.h" #include "gca/gfx_8_0_enum.h" #include "gca/gfx_8_0_sh_mask.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "tonga_sdma_pkt_open.h" #include "ivsrcid/ivsrcid_vislands30.h" static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev); static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev); static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev); static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev); MODULE_FIRMWARE("amdgpu/tonga_sdma.bin"); MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin"); MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin"); MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin"); MODULE_FIRMWARE("amdgpu/fiji_sdma.bin"); MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin"); MODULE_FIRMWARE("amdgpu/stoney_sdma.bin"); MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin"); MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin"); MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin"); MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin"); MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin"); MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin"); MODULE_FIRMWARE("amdgpu/vegam_sdma.bin"); MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin"); static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = { SDMA0_REGISTER_OFFSET, SDMA1_REGISTER_OFFSET }; static const u32 golden_settings_tonga_a11[] = { mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, }; static const u32 tonga_mgcg_cgcg_init[] = { mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 }; static const u32 golden_settings_fiji_a10[] = { mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, }; static const u32 fiji_mgcg_cgcg_init[] = { mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 }; static const u32 golden_settings_polaris11_a11[] = { mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, }; static const u32 golden_settings_polaris10_a11[] = { mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, }; static const u32 cz_golden_settings_a11[] = { mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100, mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800, mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100, mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100, }; static const u32 cz_mgcg_cgcg_init[] = { mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 }; static const u32 stoney_golden_settings_a11[] = { mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, }; static const u32 stoney_mgcg_cgcg_init[] = { mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100, }; /* * sDMA - System DMA * Starting with CIK, the GPU has new asynchronous * DMA engines. These engines are used for compute * and gfx. There are two DMA engines (SDMA0, SDMA1) * and each one supports 1 ring buffer used for gfx * and 2 queues used for compute. * * The programming model is very similar to the CP * (ring buffer, IBs, etc.), but sDMA has it's own * packet format that is different from the PM4 format * used by the CP. sDMA supports copying data, writing * embedded data, solid fills, and a number of other * things. It also has support for tiling/detiling of * buffers. */ static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_FIJI: amdgpu_device_program_register_sequence(adev, fiji_mgcg_cgcg_init, ARRAY_SIZE(fiji_mgcg_cgcg_init)); amdgpu_device_program_register_sequence(adev, golden_settings_fiji_a10, ARRAY_SIZE(golden_settings_fiji_a10)); break; case CHIP_TONGA: amdgpu_device_program_register_sequence(adev, tonga_mgcg_cgcg_init, ARRAY_SIZE(tonga_mgcg_cgcg_init)); amdgpu_device_program_register_sequence(adev, golden_settings_tonga_a11, ARRAY_SIZE(golden_settings_tonga_a11)); break; case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: amdgpu_device_program_register_sequence(adev, golden_settings_polaris11_a11, ARRAY_SIZE(golden_settings_polaris11_a11)); break; case CHIP_POLARIS10: amdgpu_device_program_register_sequence(adev, golden_settings_polaris10_a11, ARRAY_SIZE(golden_settings_polaris10_a11)); break; case CHIP_CARRIZO: amdgpu_device_program_register_sequence(adev, cz_mgcg_cgcg_init, ARRAY_SIZE(cz_mgcg_cgcg_init)); amdgpu_device_program_register_sequence(adev, cz_golden_settings_a11, ARRAY_SIZE(cz_golden_settings_a11)); break; case CHIP_STONEY: amdgpu_device_program_register_sequence(adev, stoney_mgcg_cgcg_init, ARRAY_SIZE(stoney_mgcg_cgcg_init)); amdgpu_device_program_register_sequence(adev, stoney_golden_settings_a11, ARRAY_SIZE(stoney_golden_settings_a11)); break; default: break; } } static void sdma_v3_0_free_microcode(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->sdma.num_instances; i++) { release_firmware(adev->sdma.instance[i].fw); adev->sdma.instance[i].fw = NULL; } } /** * sdma_v3_0_init_microcode - load ucode images from disk * * @adev: amdgpu_device pointer * * Use the firmware interface to load the ucode images into * the driver (not loaded into hw). * Returns 0 on success, error on failure. */ static int sdma_v3_0_init_microcode(struct amdgpu_device *adev) { const char *chip_name; char fw_name[30]; int err = 0, i; struct amdgpu_firmware_info *info = NULL; const struct common_firmware_header *header = NULL; const struct sdma_firmware_header_v1_0 *hdr; DRM_DEBUG("\n"); switch (adev->asic_type) { case CHIP_TONGA: chip_name = "tonga"; break; case CHIP_FIJI: chip_name = "fiji"; break; case CHIP_POLARIS10: chip_name = "polaris10"; break; case CHIP_POLARIS11: chip_name = "polaris11"; break; case CHIP_POLARIS12: chip_name = "polaris12"; break; case CHIP_VEGAM: chip_name = "vegam"; break; case CHIP_CARRIZO: chip_name = "carrizo"; break; case CHIP_STONEY: chip_name = "stoney"; break; default: BUG(); } for (i = 0; i < adev->sdma.num_instances; i++) { if (i == 0) snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); else snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); if (err) goto out; hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); if (adev->sdma.instance[i].feature_version >= 20) adev->sdma.instance[i].burst_nop = true; info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; info->fw = adev->sdma.instance[i].fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); } out: if (err) { pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name); for (i = 0; i < adev->sdma.num_instances; i++) { release_firmware(adev->sdma.instance[i].fw); adev->sdma.instance[i].fw = NULL; } } return err; } /** * sdma_v3_0_ring_get_rptr - get the current read pointer * * @ring: amdgpu ring pointer * * Get the current rptr from the hardware (VI+). */ static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring) { /* XXX check if swapping is necessary on BE */ return ring->adev->wb.wb[ring->rptr_offs] >> 2; } /** * sdma_v3_0_ring_get_wptr - get the current write pointer * * @ring: amdgpu ring pointer * * Get the current wptr from the hardware (VI+). */ static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 wptr; if (ring->use_doorbell || ring->use_pollmem) { /* XXX check if swapping is necessary on BE */ wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2; } else { wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2; } return wptr; } /** * sdma_v3_0_ring_set_wptr - commit the write pointer * * @ring: amdgpu ring pointer * * Write the wptr back to the hardware (VI+). */ static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->use_doorbell) { u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs]; /* XXX check if swapping is necessary on BE */ WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2)); WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2); } else if (ring->use_pollmem) { u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs]; WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2)); } else { WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2); } } static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); int i; for (i = 0; i < count; i++) if (sdma && sdma->burst_nop && (i == 0)) amdgpu_ring_write(ring, ring->funcs->nop | SDMA_PKT_NOP_HEADER_COUNT(count - 1)); else amdgpu_ring_write(ring, ring->funcs->nop); } /** * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine * * @ring: amdgpu ring pointer * @ib: IB object to schedule * * Schedule an IB in the DMA ring (VI). */ static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, bool ctx_switch) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); /* IB packet must end on a 8 DW boundary */ sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8); amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); /* base must be 32 byte aligned */ amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, ib->length_dw); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0); } /** * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring * * @ring: amdgpu ring pointer * * Emit an hdp flush packet on the requested DMA ring. */ static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) { u32 ref_and_mask = 0; if (ring->me == 0) ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1); else ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1); amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); amdgpu_ring_write(ring, ref_and_mask); /* reference */ amdgpu_ring_write(ring, ref_and_mask); /* mask */ amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ } /** * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring * * @ring: amdgpu ring pointer * @fence: amdgpu fence object * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed (VI). */ static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; /* write the fence */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); /* optionally write high bits as well */ if (write64bit) { addr += 4; amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(seq)); } /* generate an interrupt */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); } /** * sdma_v3_0_gfx_stop - stop the gfx async dma engines * * @adev: amdgpu_device pointer * * Stop the gfx async dma ring buffers (VI). */ static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev) { struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; u32 rb_cntl, ib_cntl; int i; if ((adev->mman.buffer_funcs_ring == sdma0) || (adev->mman.buffer_funcs_ring == sdma1)) amdgpu_ttm_set_buffer_funcs_status(adev, false); for (i = 0; i < adev->sdma.num_instances; i++) { rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); } sdma0->sched.ready = false; sdma1->sched.ready = false; } /** * sdma_v3_0_rlc_stop - stop the compute async dma engines * * @adev: amdgpu_device pointer * * Stop the compute async dma queues (VI). */ static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev) { /* XXX todo */ } /** * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs context switch. * * Halt or unhalt the async dma engines context switch (VI). */ static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) { u32 f32_cntl, phase_quantum = 0; int i; if (amdgpu_sdma_phase_quantum) { unsigned value = amdgpu_sdma_phase_quantum; unsigned unit = 0; while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { value = (value + 1) >> 1; unit++; } if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); WARN_ONCE(1, "clamping sdma_phase_quantum to %uK clock cycles\n", value << unit); } phase_quantum = value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; } for (i = 0; i < adev->sdma.num_instances; i++) { f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]); if (enable) { f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, AUTO_CTXSW_ENABLE, 1); f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, ATC_L1_ENABLE, 1); if (amdgpu_sdma_phase_quantum) { WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i], phase_quantum); WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i], phase_quantum); } } else { f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, AUTO_CTXSW_ENABLE, 0); f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, ATC_L1_ENABLE, 1); } WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl); } } /** * sdma_v3_0_enable - stop the async dma engines * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs. * * Halt or unhalt the async dma engines (VI). */ static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable) { u32 f32_cntl; int i; if (!enable) { sdma_v3_0_gfx_stop(adev); sdma_v3_0_rlc_stop(adev); } for (i = 0; i < adev->sdma.num_instances; i++) { f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); if (enable) f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0); else f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1); WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl); } } /** * sdma_v3_0_gfx_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the gfx DMA ring buffers and enable them (VI). * Returns 0 for success, error for failure. */ static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 rb_cntl, ib_cntl, wptr_poll_cntl; u32 rb_bufsz; u32 wb_offset; u32 doorbell; u64 wptr_gpu_addr; int i, j, r; for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; amdgpu_ring_clear_ring(ring); wb_offset = (ring->rptr_offs * 4); mutex_lock(&adev->srbm_mutex); for (j = 0; j < 16; j++) { vi_srbm_select(adev, 0, 0, 0, j); /* SDMA GFX */ WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); } vi_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], adev->gfx.config.gb_addr_config & 0x70); WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); /* Set ring buffer size in dwords */ rb_bufsz = order_base_2(ring->ring_size / 4); rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); #ifdef __BIG_ENDIAN rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_SWAP_ENABLE, 1); #endif WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); /* Initialize the ring buffer's read and write pointers */ ring->wptr = 0; WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); sdma_v3_0_ring_set_wptr(ring); WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); /* set the wb address whether it's enabled or not */ WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]); if (ring->use_doorbell) { doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, OFFSET, ring->doorbell_index); doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); } else { doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); } WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell); /* setup the wptr shadow polling */ wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i], lower_32_bits(wptr_gpu_addr)); WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i], upper_32_bits(wptr_gpu_addr)); wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]); if (ring->use_pollmem) { /*wptr polling is not enogh fast, directly clean the wptr register */ WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, ENABLE, 1); } else { wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, ENABLE, 0); } WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl); /* enable DMA RB */ rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); #ifdef __BIG_ENDIAN ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); #endif /* enable DMA IBs */ WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); ring->sched.ready = true; } /* unhalt the MEs */ sdma_v3_0_enable(adev, true); /* enable sdma ring preemption */ sdma_v3_0_ctx_switch_enable(adev, true); for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; r = amdgpu_ring_test_helper(ring); if (r) return r; if (adev->mman.buffer_funcs_ring == ring) amdgpu_ttm_set_buffer_funcs_status(adev, true); } return 0; } /** * sdma_v3_0_rlc_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the compute DMA queues and enable them (VI). * Returns 0 for success, error for failure. */ static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev) { /* XXX todo */ return 0; } /** * sdma_v3_0_start - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the DMA engines and enable them (VI). * Returns 0 for success, error for failure. */ static int sdma_v3_0_start(struct amdgpu_device *adev) { int r; /* disable sdma engine before programing it */ sdma_v3_0_ctx_switch_enable(adev, false); sdma_v3_0_enable(adev, false); /* start the gfx rings and rlc compute queues */ r = sdma_v3_0_gfx_resume(adev); if (r) return r; r = sdma_v3_0_rlc_resume(adev); if (r) return r; return 0; } /** * sdma_v3_0_ring_test_ring - simple async dma engine test * * @ring: amdgpu_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. (VI). * Returns 0 for success, error for failure. */ static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; unsigned i; unsigned index; int r; u32 tmp; u64 gpu_addr; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); r = amdgpu_ring_alloc(ring, 5); if (r) goto error_free_wb; amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; error_free_wb: amdgpu_device_wb_free(adev, index); return r; } /** * sdma_v3_0_ring_test_ib - test an IB on the DMA engine * * @ring: amdgpu_ring structure holding ring information * * Test a simple IB in the DMA ring (VI). * Returns 0 on success, error on failure. */ static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; unsigned index; u32 tmp = 0; u64 gpu_addr; long r; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 256, &ib); if (r) goto err0; ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); ib.ptr[1] = lower_32_bits(gpu_addr); ib.ptr[2] = upper_32_bits(gpu_addr); ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1); ib.ptr[4] = 0xDEADBEEF; ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.length_dw = 8; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err1; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { r = -ETIMEDOUT; goto err1; } else if (r < 0) { goto err1; } tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) r = 0; else r = -EINVAL; err1: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err0: amdgpu_device_wb_free(adev, index); return r; } /** * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @src: src addr to copy from * @count: number of page entries to update * * Update PTEs by copying them from the GART using sDMA (CIK). */ static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t src, unsigned count) { unsigned bytes = count * 8; ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); ib->ptr[ib->length_dw++] = bytes; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src); ib->ptr[ib->length_dw++] = upper_32_bits(src); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); } /** * sdma_v3_0_vm_write_pte - update PTEs by writing them manually * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @value: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * * Update PTEs by writing them manually using sDMA (CIK). */ static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t value, unsigned count, uint32_t incr) { unsigned ndw = count * 2; ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = ndw; for (; ndw > 0; ndw -= 2) { ib->ptr[ib->length_dw++] = lower_32_bits(value); ib->ptr[ib->length_dw++] = upper_32_bits(value); value += incr; } } /** * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update the page tables using sDMA (CIK). */ static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE); ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ ib->ptr[ib->length_dw++] = upper_32_bits(flags); ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(addr); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = count; /* number of entries */ } /** * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw * * @ib: indirect buffer to fill with padding * */ static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); u32 pad_count; int i; pad_count = (8 - (ib->length_dw & 0x7)) % 8; for (i = 0; i < pad_count; i++) if (sdma && sdma->burst_nop && (i == 0)) ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); else ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); } /** * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline * * @ring: amdgpu_ring pointer * * Make sure all previous operations are completed (CIK). */ static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; /* wait for idle */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); amdgpu_ring_write(ring, seq); /* reference */ amdgpu_ring_write(ring, 0xffffffff); /* mask */ amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ } /** * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA * * @ring: amdgpu_ring pointer * @vm: amdgpu_vm pointer * * Update the page table base and flush the VM TLB * using sDMA (VI). */ static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); /* wait for flush */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */ amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0); /* reference */ amdgpu_ring_write(ring, 0); /* mask */ amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ } static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, val); } static int sdma_v3_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; switch (adev->asic_type) { case CHIP_STONEY: adev->sdma.num_instances = 1; break; default: adev->sdma.num_instances = SDMA_MAX_INSTANCE; break; } sdma_v3_0_set_ring_funcs(adev); sdma_v3_0_set_buffer_funcs(adev); sdma_v3_0_set_vm_pte_funcs(adev); sdma_v3_0_set_irq_funcs(adev); return 0; } static int sdma_v3_0_sw_init(void *handle) { struct amdgpu_ring *ring; int r, i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* SDMA trap event */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP, &adev->sdma.trap_irq); if (r) return r; /* SDMA Privileged inst */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241, &adev->sdma.illegal_inst_irq); if (r) return r; /* SDMA Privileged inst */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE, &adev->sdma.illegal_inst_irq); if (r) return r; r = sdma_v3_0_init_microcode(adev); if (r) { DRM_ERROR("Failed to load sdma firmware!\n"); return r; } for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; ring->ring_obj = NULL; if (!amdgpu_sriov_vf(adev)) { ring->use_doorbell = true; ring->doorbell_index = (i == 0) ? adev->doorbell_index.sdma_engine0 : adev->doorbell_index.sdma_engine1; } else { ring->use_pollmem = true; } sprintf(ring->name, "sdma%d", i); r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, (i == 0) ? AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1); if (r) return r; } return r; } static int sdma_v3_0_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i; for (i = 0; i < adev->sdma.num_instances; i++) amdgpu_ring_fini(&adev->sdma.instance[i].ring); sdma_v3_0_free_microcode(adev); return 0; } static int sdma_v3_0_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; sdma_v3_0_init_golden_registers(adev); r = sdma_v3_0_start(adev); if (r) return r; return r; } static int sdma_v3_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; sdma_v3_0_ctx_switch_enable(adev, false); sdma_v3_0_enable(adev, false); return 0; } static int sdma_v3_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return sdma_v3_0_hw_fini(adev); } static int sdma_v3_0_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return sdma_v3_0_hw_init(adev); } static bool sdma_v3_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 tmp = RREG32(mmSRBM_STATUS2); if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | SRBM_STATUS2__SDMA1_BUSY_MASK)) return false; return true; } static int sdma_v3_0_wait_for_idle(void *handle) { unsigned i; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | SRBM_STATUS2__SDMA1_BUSY_MASK); if (!tmp) return 0; udelay(1); } return -ETIMEDOUT; } static bool sdma_v3_0_check_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset = 0; u32 tmp = RREG32(mmSRBM_STATUS2); if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) || (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) { srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; } if (srbm_soft_reset) { adev->sdma.srbm_soft_reset = srbm_soft_reset; return true; } else { adev->sdma.srbm_soft_reset = 0; return false; } } static int sdma_v3_0_pre_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset = 0; if (!adev->sdma.srbm_soft_reset) return 0; srbm_soft_reset = adev->sdma.srbm_soft_reset; if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { sdma_v3_0_ctx_switch_enable(adev, false); sdma_v3_0_enable(adev, false); } return 0; } static int sdma_v3_0_post_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset = 0; if (!adev->sdma.srbm_soft_reset) return 0; srbm_soft_reset = adev->sdma.srbm_soft_reset; if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { sdma_v3_0_gfx_resume(adev); sdma_v3_0_rlc_resume(adev); } return 0; } static int sdma_v3_0_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset = 0; u32 tmp; if (!adev->sdma.srbm_soft_reset) return 0; srbm_soft_reset = adev->sdma.srbm_soft_reset; if (srbm_soft_reset) { tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); } return 0; } static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { u32 sdma_cntl; switch (type) { case AMDGPU_SDMA_IRQ_TRAP0: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); break; default: break; } break; case AMDGPU_SDMA_IRQ_TRAP1: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); break; default: break; } break; default: break; } return 0; } static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { u8 instance_id, queue_id; instance_id = (entry->ring_id & 0x3) >> 0; queue_id = (entry->ring_id & 0xc) >> 2; DRM_DEBUG("IH: SDMA trap\n"); switch (instance_id) { case 0: switch (queue_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[0].ring); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; } break; case 1: switch (queue_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[1].ring); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; } break; } return 0; } static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { u8 instance_id, queue_id; DRM_ERROR("Illegal instruction in SDMA command stream\n"); instance_id = (entry->ring_id & 0x3) >> 0; queue_id = (entry->ring_id & 0xc) >> 2; if (instance_id <= 1 && queue_id == 0) drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched); return 0; } static void sdma_v3_0_update_sdma_medium_grain_clock_gating( struct amdgpu_device *adev, bool enable) { uint32_t temp, data; int i; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { for (i = 0; i < adev->sdma.num_instances; i++) { temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); if (data != temp) WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); } } else { for (i = 0; i < adev->sdma.num_instances; i++) { temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK; if (data != temp) WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); } } } static void sdma_v3_0_update_sdma_medium_grain_light_sleep( struct amdgpu_device *adev, bool enable) { uint32_t temp, data; int i; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { for (i = 0; i < adev->sdma.num_instances; i++) { temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (temp != data) WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); } } else { for (i = 0; i < adev->sdma.num_instances; i++) { temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (temp != data) WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); } } } static int sdma_v3_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) return 0; switch (adev->asic_type) { case CHIP_FIJI: case CHIP_CARRIZO: case CHIP_STONEY: sdma_v3_0_update_sdma_medium_grain_clock_gating(adev, state == AMD_CG_STATE_GATE); sdma_v3_0_update_sdma_medium_grain_light_sleep(adev, state == AMD_CG_STATE_GATE); break; default: break; } return 0; } static int sdma_v3_0_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; if (amdgpu_sriov_vf(adev)) *flags = 0; /* AMD_CG_SUPPORT_SDMA_MGCG */ data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]); if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK)) *flags |= AMD_CG_SUPPORT_SDMA_MGCG; /* AMD_CG_SUPPORT_SDMA_LS */ data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]); if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) *flags |= AMD_CG_SUPPORT_SDMA_LS; } static const struct amd_ip_funcs sdma_v3_0_ip_funcs = { .name = "sdma_v3_0", .early_init = sdma_v3_0_early_init, .late_init = NULL, .sw_init = sdma_v3_0_sw_init, .sw_fini = sdma_v3_0_sw_fini, .hw_init = sdma_v3_0_hw_init, .hw_fini = sdma_v3_0_hw_fini, .suspend = sdma_v3_0_suspend, .resume = sdma_v3_0_resume, .is_idle = sdma_v3_0_is_idle, .wait_for_idle = sdma_v3_0_wait_for_idle, .check_soft_reset = sdma_v3_0_check_soft_reset, .pre_soft_reset = sdma_v3_0_pre_soft_reset, .post_soft_reset = sdma_v3_0_post_soft_reset, .soft_reset = sdma_v3_0_soft_reset, .set_clockgating_state = sdma_v3_0_set_clockgating_state, .set_powergating_state = sdma_v3_0_set_powergating_state, .get_clockgating_state = sdma_v3_0_get_clockgating_state, }; static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = { .type = AMDGPU_RING_TYPE_SDMA, .align_mask = 0xf, .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), .support_64bit_ptrs = false, .get_rptr = sdma_v3_0_ring_get_rptr, .get_wptr = sdma_v3_0_ring_get_wptr, .set_wptr = sdma_v3_0_ring_set_wptr, .emit_frame_size = 6 + /* sdma_v3_0_ring_emit_hdp_flush */ 3 + /* hdp invalidate */ 6 + /* sdma_v3_0_ring_emit_pipeline_sync */ VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */ 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */ .emit_ib = sdma_v3_0_ring_emit_ib, .emit_fence = sdma_v3_0_ring_emit_fence, .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync, .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush, .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush, .test_ring = sdma_v3_0_ring_test_ring, .test_ib = sdma_v3_0_ring_test_ib, .insert_nop = sdma_v3_0_ring_insert_nop, .pad_ib = sdma_v3_0_ring_pad_ib, .emit_wreg = sdma_v3_0_ring_emit_wreg, }; static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->sdma.num_instances; i++) { adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs; adev->sdma.instance[i].ring.me = i; } } static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = { .set = sdma_v3_0_set_trap_irq_state, .process = sdma_v3_0_process_trap_irq, }; static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = { .process = sdma_v3_0_process_illegal_inst_irq, }; static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev) { adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs; adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs; } /** * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine * * @ring: amdgpu_ring structure holding ring information * @src_offset: src GPU address * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * * Copy GPU buffers using the DMA engine (VI). * Used by the amdgpu ttm implementation to move pages if * registered as the asic copy callback. */ static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib, uint64_t src_offset, uint64_t dst_offset, uint32_t byte_count) { ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); ib->ptr[ib->length_dw++] = byte_count; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); } /** * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine * * @ring: amdgpu_ring structure holding ring information * @src_data: value to write to buffer * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * * Fill GPU buffers using the DMA engine (VI). */ static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib, uint32_t src_data, uint64_t dst_offset, uint32_t byte_count) { ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); ib->ptr[ib->length_dw++] = src_data; ib->ptr[ib->length_dw++] = byte_count; } static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = { .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ .copy_num_dw = 7, .emit_copy_buffer = sdma_v3_0_emit_copy_buffer, .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ .fill_num_dw = 5, .emit_fill_buffer = sdma_v3_0_emit_fill_buffer, }; static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev) { adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs; adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; } static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = { .copy_pte_num_dw = 7, .copy_pte = sdma_v3_0_vm_copy_pte, .write_pte = sdma_v3_0_vm_write_pte, .set_pte_pde = sdma_v3_0_vm_set_pte_pde, }; static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev) { struct drm_gpu_scheduler *sched; unsigned i; adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs; for (i = 0; i < adev->sdma.num_instances; i++) { sched = &adev->sdma.instance[i].ring.sched; adev->vm_manager.vm_pte_rqs[i] = &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL]; } adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances; } const struct amdgpu_ip_block_version sdma_v3_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SDMA, .major = 3, .minor = 0, .rev = 0, .funcs = &sdma_v3_0_ip_funcs, }; const struct amdgpu_ip_block_version sdma_v3_1_ip_block = { .type = AMD_IP_BLOCK_TYPE_SDMA, .major = 3, .minor = 1, .rev = 0, .funcs = &sdma_v3_0_ip_funcs, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1