Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ken Wang | 5779 | 54.48% | 1 | 1.09% |
Christian König | 1791 | 16.88% | 17 | 18.48% |
Evan Quan | 575 | 5.42% | 7 | 7.61% |
Huang Rui | 522 | 4.92% | 6 | 6.52% |
Alex Deucher | 493 | 4.65% | 16 | 17.39% |
Feifei Xu | 349 | 3.29% | 8 | 8.70% |
Shaoyun Liu | 228 | 2.15% | 3 | 3.26% |
Chunming Zhou | 169 | 1.59% | 2 | 2.17% |
Philip Yang | 123 | 1.16% | 4 | 4.35% |
Felix Kuhling | 113 | 1.07% | 1 | 1.09% |
Monk Liu | 109 | 1.03% | 4 | 4.35% |
Hawking Zhang | 82 | 0.77% | 2 | 2.17% |
Rex Zhu | 80 | 0.75% | 6 | 6.52% |
Tao Zhou | 43 | 0.41% | 1 | 1.09% |
Oak Zeng | 30 | 0.28% | 2 | 2.17% |
Trigger Huang | 27 | 0.25% | 1 | 1.09% |
jimqu | 26 | 0.25% | 1 | 1.09% |
Andrey Grodzovsky | 22 | 0.21% | 2 | 2.17% |
Junwei (Martin) Zhang | 19 | 0.18% | 2 | 2.17% |
Emily Deng | 11 | 0.10% | 2 | 2.17% |
Likun Gao | 9 | 0.08% | 1 | 1.09% |
Yong Zhao | 5 | 0.05% | 1 | 1.09% |
Frank Min | 2 | 0.02% | 1 | 1.09% |
Dave Airlie | 1 | 0.01% | 1 | 1.09% |
Total | 10608 | 92 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/firmware.h> #include <drm/drmP.h> #include "amdgpu.h" #include "amdgpu_ucode.h" #include "amdgpu_trace.h" #include "sdma0/sdma0_4_2_offset.h" #include "sdma0/sdma0_4_2_sh_mask.h" #include "sdma1/sdma1_4_2_offset.h" #include "sdma1/sdma1_4_2_sh_mask.h" #include "hdp/hdp_4_0_offset.h" #include "sdma0/sdma0_4_1_default.h" #include "soc15_common.h" #include "soc15.h" #include "vega10_sdma_pkt_open.h" #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" MODULE_FIRMWARE("amdgpu/vega10_sdma.bin"); MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin"); MODULE_FIRMWARE("amdgpu/vega12_sdma.bin"); MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin"); MODULE_FIRMWARE("amdgpu/vega20_sdma.bin"); MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin"); MODULE_FIRMWARE("amdgpu/raven_sdma.bin"); MODULE_FIRMWARE("amdgpu/picasso_sdma.bin"); MODULE_FIRMWARE("amdgpu/raven2_sdma.bin"); #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L #define WREG32_SDMA(instance, offset, value) \ WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value) #define RREG32_SDMA(instance, offset) \ RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset))) static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev); static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev); static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev); static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev); static const struct soc15_reg_golden golden_settings_sdma_4[] = { SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000) }; static const struct soc15_reg_golden golden_settings_sdma_vg10[] = { SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002) }; static const struct soc15_reg_golden golden_settings_sdma_vg12[] = { SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001) }; static const struct soc15_reg_golden golden_settings_sdma_4_1[] = { SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000) }; static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = { SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), }; static const struct soc15_reg_golden golden_settings_sdma0_4_2[] = { SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000), }; static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = { SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000), }; static const struct soc15_reg_golden golden_settings_sdma_rv1[] = { SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002) }; static const struct soc15_reg_golden golden_settings_sdma_rv2[] = { SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001), SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001) }; static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 offset) { return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) : (adev->reg_offset[SDMA1_HWIP][0][0] + offset)); } static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA10: soc15_program_register_sequence(adev, golden_settings_sdma_4, ARRAY_SIZE(golden_settings_sdma_4)); soc15_program_register_sequence(adev, golden_settings_sdma_vg10, ARRAY_SIZE(golden_settings_sdma_vg10)); break; case CHIP_VEGA12: soc15_program_register_sequence(adev, golden_settings_sdma_4, ARRAY_SIZE(golden_settings_sdma_4)); soc15_program_register_sequence(adev, golden_settings_sdma_vg12, ARRAY_SIZE(golden_settings_sdma_vg12)); break; case CHIP_VEGA20: soc15_program_register_sequence(adev, golden_settings_sdma0_4_2_init, ARRAY_SIZE(golden_settings_sdma0_4_2_init)); soc15_program_register_sequence(adev, golden_settings_sdma0_4_2, ARRAY_SIZE(golden_settings_sdma0_4_2)); soc15_program_register_sequence(adev, golden_settings_sdma1_4_2, ARRAY_SIZE(golden_settings_sdma1_4_2)); break; case CHIP_RAVEN: soc15_program_register_sequence(adev, golden_settings_sdma_4_1, ARRAY_SIZE(golden_settings_sdma_4_1)); if (adev->rev_id >= 8) soc15_program_register_sequence(adev, golden_settings_sdma_rv2, ARRAY_SIZE(golden_settings_sdma_rv2)); else soc15_program_register_sequence(adev, golden_settings_sdma_rv1, ARRAY_SIZE(golden_settings_sdma_rv1)); break; default: break; } } /** * sdma_v4_0_init_microcode - load ucode images from disk * * @adev: amdgpu_device pointer * * Use the firmware interface to load the ucode images into * the driver (not loaded into hw). * Returns 0 on success, error on failure. */ // emulation only, won't work on real chip // vega10 real chip need to use PSP to load firmware static int sdma_v4_0_init_microcode(struct amdgpu_device *adev) { const char *chip_name; char fw_name[30]; int err = 0, i; struct amdgpu_firmware_info *info = NULL; const struct common_firmware_header *header = NULL; const struct sdma_firmware_header_v1_0 *hdr; DRM_DEBUG("\n"); switch (adev->asic_type) { case CHIP_VEGA10: chip_name = "vega10"; break; case CHIP_VEGA12: chip_name = "vega12"; break; case CHIP_VEGA20: chip_name = "vega20"; break; case CHIP_RAVEN: if (adev->rev_id >= 8) chip_name = "raven2"; else if (adev->pdev->device == 0x15d8) chip_name = "picasso"; else chip_name = "raven"; break; default: BUG(); } for (i = 0; i < adev->sdma.num_instances; i++) { if (i == 0) snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); else snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); if (err) goto out; hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); if (adev->sdma.instance[i].feature_version >= 20) adev->sdma.instance[i].burst_nop = true; DRM_DEBUG("psp_load == '%s'\n", adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false"); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; info->fw = adev->sdma.instance[i].fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); } } out: if (err) { DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name); for (i = 0; i < adev->sdma.num_instances; i++) { release_firmware(adev->sdma.instance[i].fw); adev->sdma.instance[i].fw = NULL; } } return err; } /** * sdma_v4_0_ring_get_rptr - get the current read pointer * * @ring: amdgpu ring pointer * * Get the current rptr from the hardware (VEGA10+). */ static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring) { u64 *rptr; /* XXX check if swapping is necessary on BE */ rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); return ((*rptr) >> 2); } /** * sdma_v4_0_ring_get_wptr - get the current write pointer * * @ring: amdgpu ring pointer * * Get the current wptr from the hardware (VEGA10+). */ static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u64 wptr; if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); } else { wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI); wptr = wptr << 32; wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR); DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr); } return wptr >> 2; } /** * sdma_v4_0_ring_set_wptr - commit the write pointer * * @ring: amdgpu ring pointer * * Write the wptr back to the hardware (VEGA10+). */ static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; DRM_DEBUG("Setting write pointer\n"); if (ring->use_doorbell) { u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; DRM_DEBUG("Using doorbell -- " "wptr_offs == 0x%08x " "lower_32_bits(ring->wptr) << 2 == 0x%08x " "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", ring->wptr_offs, lower_32_bits(ring->wptr << 2), upper_32_bits(ring->wptr << 2)); /* XXX check if swapping is necessary on BE */ WRITE_ONCE(*wb, (ring->wptr << 2)); DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", ring->doorbell_index, ring->wptr << 2); WDOORBELL64(ring->doorbell_index, ring->wptr << 2); } else { DRM_DEBUG("Not using doorbell -- " "mmSDMA%i_GFX_RB_WPTR == 0x%08x " "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", ring->me, lower_32_bits(ring->wptr << 2), ring->me, upper_32_bits(ring->wptr << 2)); WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR, lower_32_bits(ring->wptr << 2)); WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI, upper_32_bits(ring->wptr << 2)); } } /** * sdma_v4_0_page_ring_get_wptr - get the current write pointer * * @ring: amdgpu ring pointer * * Get the current wptr from the hardware (VEGA10+). */ static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u64 wptr; if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); } else { wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI); wptr = wptr << 32; wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR); } return wptr >> 2; } /** * sdma_v4_0_ring_set_wptr - commit the write pointer * * @ring: amdgpu ring pointer * * Write the wptr back to the hardware (VEGA10+). */ static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->use_doorbell) { u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; /* XXX check if swapping is necessary on BE */ WRITE_ONCE(*wb, (ring->wptr << 2)); WDOORBELL64(ring->doorbell_index, ring->wptr << 2); } else { uint64_t wptr = ring->wptr << 2; WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR, lower_32_bits(wptr)); WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI, upper_32_bits(wptr)); } } static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); int i; for (i = 0; i < count; i++) if (sdma && sdma->burst_nop && (i == 0)) amdgpu_ring_write(ring, ring->funcs->nop | SDMA_PKT_NOP_HEADER_COUNT(count - 1)); else amdgpu_ring_write(ring, ring->funcs->nop); } /** * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine * * @ring: amdgpu ring pointer * @ib: IB object to schedule * * Schedule an IB in the DMA ring (VEGA10). */ static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, bool ctx_switch) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); /* IB packet must end on a 8 DW boundary */ sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8); amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); /* base must be 32 byte aligned */ amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, ib->length_dw); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0); } static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring, int mem_space, int hdp, uint32_t addr0, uint32_t addr1, uint32_t ref, uint32_t mask, uint32_t inv) { amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ if (mem_space) { /* memory */ amdgpu_ring_write(ring, addr0); amdgpu_ring_write(ring, addr1); } else { /* registers */ amdgpu_ring_write(ring, addr0 << 2); amdgpu_ring_write(ring, addr1 << 2); } amdgpu_ring_write(ring, ref); /* reference */ amdgpu_ring_write(ring, mask); /* mask */ amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ } /** * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring * * @ring: amdgpu ring pointer * * Emit an hdp flush packet on the requested DMA ring. */ static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 ref_and_mask = 0; const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg; if (ring->me == 0) ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0; else ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1; sdma_v4_0_wait_reg_mem(ring, 0, 1, adev->nbio_funcs->get_hdp_flush_done_offset(adev), adev->nbio_funcs->get_hdp_flush_req_offset(adev), ref_and_mask, ref_and_mask, 10); } /** * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring * * @ring: amdgpu ring pointer * @fence: amdgpu fence object * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed (VEGA10). */ static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; /* write the fence */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); /* zero in first two bits */ BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); /* optionally write high bits as well */ if (write64bit) { addr += 4; amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); /* zero in first two bits */ BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(seq)); } /* generate an interrupt */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); } /** * sdma_v4_0_gfx_stop - stop the gfx async dma engines * * @adev: amdgpu_device pointer * * Stop the gfx async dma ring buffers (VEGA10). */ static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev) { struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; u32 rb_cntl, ib_cntl; int i; if ((adev->mman.buffer_funcs_ring == sdma0) || (adev->mman.buffer_funcs_ring == sdma1)) amdgpu_ttm_set_buffer_funcs_status(adev, false); for (i = 0; i < adev->sdma.num_instances; i++) { rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); } sdma0->sched.ready = false; sdma1->sched.ready = false; } /** * sdma_v4_0_rlc_stop - stop the compute async dma engines * * @adev: amdgpu_device pointer * * Stop the compute async dma queues (VEGA10). */ static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev) { /* XXX todo */ } /** * sdma_v4_0_page_stop - stop the page async dma engines * * @adev: amdgpu_device pointer * * Stop the page async dma ring buffers (VEGA10). */ static void sdma_v4_0_page_stop(struct amdgpu_device *adev) { struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page; struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page; u32 rb_cntl, ib_cntl; int i; if ((adev->mman.buffer_funcs_ring == sdma0) || (adev->mman.buffer_funcs_ring == sdma1)) amdgpu_ttm_set_buffer_funcs_status(adev, false); for (i = 0; i < adev->sdma.num_instances; i++) { rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 0); WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 0); WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); } sdma0->sched.ready = false; sdma1->sched.ready = false; } /** * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs context switch. * * Halt or unhalt the async dma engines context switch (VEGA10). */ static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) { u32 f32_cntl, phase_quantum = 0; int i; if (amdgpu_sdma_phase_quantum) { unsigned value = amdgpu_sdma_phase_quantum; unsigned unit = 0; while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { value = (value + 1) >> 1; unit++; } if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); WARN_ONCE(1, "clamping sdma_phase_quantum to %uK clock cycles\n", value << unit); } phase_quantum = value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; } for (i = 0; i < adev->sdma.num_instances; i++) { f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL); f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, AUTO_CTXSW_ENABLE, enable ? 1 : 0); if (enable && amdgpu_sdma_phase_quantum) { WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum); WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum); WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum); } WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl); } } /** * sdma_v4_0_enable - stop the async dma engines * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs. * * Halt or unhalt the async dma engines (VEGA10). */ static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable) { u32 f32_cntl; int i; if (enable == false) { sdma_v4_0_gfx_stop(adev); sdma_v4_0_rlc_stop(adev); if (adev->sdma.has_page_queue) sdma_v4_0_page_stop(adev); } for (i = 0; i < adev->sdma.num_instances; i++) { f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL); f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl); } } /** * sdma_v4_0_rb_cntl - get parameters for rb_cntl */ static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) { /* Set ring buffer size in dwords */ uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); #ifdef __BIG_ENDIAN rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_SWAP_ENABLE, 1); #endif return rb_cntl; } /** * sdma_v4_0_gfx_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * @i: instance to resume * * Set up the gfx DMA ring buffers and enable them (VEGA10). * Returns 0 for success, error for failure. */ static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i) { struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; u32 rb_cntl, ib_cntl, wptr_poll_cntl; u32 wb_offset; u32 doorbell; u32 doorbell_offset; u64 wptr_gpu_addr; wb_offset = (ring->rptr_offs * 4); rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0); WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0); WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0); WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0); /* set the wb address whether it's enabled or not */ WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI, upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO, lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8); WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40); ring->wptr = 0; /* before programing wptr to a less value, need set minor_ptr_update first */ WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1); doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL); doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET); doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, ring->use_doorbell); doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET, OFFSET, ring->doorbell_index); WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell); WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset); adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index); sdma_v4_0_ring_set_wptr(ring); /* set minor_ptr_update to 0 after wptr programed */ WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0); /* setup the wptr shadow polling */ wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL); wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, amdgpu_sriov_vf(adev)); WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); /* enable DMA RB */ rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); #ifdef __BIG_ENDIAN ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); #endif /* enable DMA IBs */ WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); ring->sched.ready = true; } /** * sdma_v4_0_page_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * @i: instance to resume * * Set up the page DMA ring buffers and enable them (VEGA10). * Returns 0 for success, error for failure. */ static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i) { struct amdgpu_ring *ring = &adev->sdma.instance[i].page; u32 rb_cntl, ib_cntl, wptr_poll_cntl; u32 wb_offset; u32 doorbell; u32 doorbell_offset; u64 wptr_gpu_addr; wb_offset = (ring->rptr_offs * 4); rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0); WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0); WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0); WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0); /* set the wb address whether it's enabled or not */ WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI, upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8); WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); ring->wptr = 0; /* before programing wptr to a less value, need set minor_ptr_update first */ WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1); doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL); doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET); doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE, ring->use_doorbell); doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_PAGE_DOORBELL_OFFSET, OFFSET, ring->doorbell_index); WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell); WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset); /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */ sdma_v4_0_page_ring_set_wptr(ring); /* set minor_ptr_update to 0 after wptr programed */ WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0); /* setup the wptr shadow polling */ wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL); wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_PAGE_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, amdgpu_sriov_vf(adev)); WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); /* enable DMA RB */ rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1); WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1); #ifdef __BIG_ENDIAN ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); #endif /* enable DMA IBs */ WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); ring->sched.ready = true; } static void sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable) { uint32_t def, data; if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) { /* enable idle interrupt */ def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; if (data != def) WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); } else { /* disable idle interrupt */ def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; if (data != def) WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); } } static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev) { uint32_t def, data; /* Enable HW based PG. */ def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK; if (data != def) WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); /* enable interrupt */ def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; if (data != def) WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); /* Configure hold time to filter in-valid power on/off request. Use default right now */ def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK; data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK); /* Configure switch time for hysteresis purpose. Use default right now */ data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK; data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK); if(data != def) WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); } static void sdma_v4_0_init_pg(struct amdgpu_device *adev) { if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA)) return; switch (adev->asic_type) { case CHIP_RAVEN: sdma_v4_1_init_power_gating(adev); sdma_v4_1_update_power_gating(adev, true); break; default: break; } } /** * sdma_v4_0_rlc_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the compute DMA queues and enable them (VEGA10). * Returns 0 for success, error for failure. */ static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev) { sdma_v4_0_init_pg(adev); return 0; } /** * sdma_v4_0_load_microcode - load the sDMA ME ucode * * @adev: amdgpu_device pointer * * Loads the sDMA0/1 ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int sdma_v4_0_load_microcode(struct amdgpu_device *adev) { const struct sdma_firmware_header_v1_0 *hdr; const __le32 *fw_data; u32 fw_size; int i, j; /* halt the MEs */ sdma_v4_0_enable(adev, false); for (i = 0; i < adev->sdma.num_instances; i++) { if (!adev->sdma.instance[i].fw) return -EINVAL; hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; amdgpu_ucode_print_sdma_hdr(&hdr->header); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; fw_data = (const __le32 *) (adev->sdma.instance[i].fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0); for (j = 0; j < fw_size; j++) WREG32_SDMA(i, mmSDMA0_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, adev->sdma.instance[i].fw_version); } return 0; } /** * sdma_v4_0_start - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the DMA engines and enable them (VEGA10). * Returns 0 for success, error for failure. */ static int sdma_v4_0_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring; int i, r; if (amdgpu_sriov_vf(adev)) { sdma_v4_0_ctx_switch_enable(adev, false); sdma_v4_0_enable(adev, false); } else { if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { r = sdma_v4_0_load_microcode(adev); if (r) return r; } /* unhalt the MEs */ sdma_v4_0_enable(adev, true); /* enable sdma ring preemption */ sdma_v4_0_ctx_switch_enable(adev, true); } /* start the gfx rings and rlc compute queues */ for (i = 0; i < adev->sdma.num_instances; i++) { uint32_t temp; WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0); sdma_v4_0_gfx_resume(adev, i); if (adev->sdma.has_page_queue) sdma_v4_0_page_resume(adev, i); /* set utc l1 enable flag always to 1 */ temp = RREG32_SDMA(i, mmSDMA0_CNTL); temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); WREG32_SDMA(i, mmSDMA0_CNTL, temp); if (!amdgpu_sriov_vf(adev)) { /* unhalt engine */ temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL); temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp); } } if (amdgpu_sriov_vf(adev)) { sdma_v4_0_ctx_switch_enable(adev, true); sdma_v4_0_enable(adev, true); } else { r = sdma_v4_0_rlc_resume(adev); if (r) return r; } for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; r = amdgpu_ring_test_helper(ring); if (r) return r; if (adev->sdma.has_page_queue) { struct amdgpu_ring *page = &adev->sdma.instance[i].page; r = amdgpu_ring_test_helper(page); if (r) return r; if (adev->mman.buffer_funcs_ring == page) amdgpu_ttm_set_buffer_funcs_status(adev, true); } if (adev->mman.buffer_funcs_ring == ring) amdgpu_ttm_set_buffer_funcs_status(adev, true); } return r; } /** * sdma_v4_0_ring_test_ring - simple async dma engine test * * @ring: amdgpu_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. (VEGA10). * Returns 0 for success, error for failure. */ static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; unsigned i; unsigned index; int r; u32 tmp; u64 gpu_addr; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); r = amdgpu_ring_alloc(ring, 5); if (r) goto error_free_wb; amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; error_free_wb: amdgpu_device_wb_free(adev, index); return r; } /** * sdma_v4_0_ring_test_ib - test an IB on the DMA engine * * @ring: amdgpu_ring structure holding ring information * * Test a simple IB in the DMA ring (VEGA10). * Returns 0 on success, error on failure. */ static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; unsigned index; long r; u32 tmp = 0; u64 gpu_addr; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 256, &ib); if (r) goto err0; ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); ib.ptr[1] = lower_32_bits(gpu_addr); ib.ptr[2] = upper_32_bits(gpu_addr); ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); ib.ptr[4] = 0xDEADBEEF; ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.length_dw = 8; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err1; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { r = -ETIMEDOUT; goto err1; } else if (r < 0) { goto err1; } tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) r = 0; else r = -EINVAL; err1: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err0: amdgpu_device_wb_free(adev, index); return r; } /** * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @src: src addr to copy from * @count: number of page entries to update * * Update PTEs by copying them from the GART using sDMA (VEGA10). */ static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t src, unsigned count) { unsigned bytes = count * 8; ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); ib->ptr[ib->length_dw++] = bytes - 1; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src); ib->ptr[ib->length_dw++] = upper_32_bits(src); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); } /** * sdma_v4_0_vm_write_pte - update PTEs by writing them manually * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update PTEs by writing them manually using sDMA (VEGA10). */ static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t value, unsigned count, uint32_t incr) { unsigned ndw = count * 2; ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = ndw - 1; for (; ndw > 0; ndw -= 2) { ib->ptr[ib->length_dw++] = lower_32_bits(value); ib->ptr[ib->length_dw++] = upper_32_bits(value); value += incr; } } /** * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update the page tables using sDMA (VEGA10). */ static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ ib->ptr[ib->length_dw++] = upper_32_bits(flags); ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(addr); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ } /** * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw * * @ib: indirect buffer to fill with padding * */ static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); u32 pad_count; int i; pad_count = (8 - (ib->length_dw & 0x7)) % 8; for (i = 0; i < pad_count; i++) if (sdma && sdma->burst_nop && (i == 0)) ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); else ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); } /** * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline * * @ring: amdgpu_ring pointer * * Make sure all previous operations are completed (CIK). */ static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; /* wait for idle */ sdma_v4_0_wait_reg_mem(ring, 1, 0, addr & 0xfffffffc, upper_32_bits(addr) & 0xffffffff, seq, 0xffffffff, 4); } /** * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA * * @ring: amdgpu_ring pointer * @vm: amdgpu_vm pointer * * Update the page table base and flush the VM TLB * using sDMA (VEGA10). */ static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); } static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, val); } static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, uint32_t val, uint32_t mask) { sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); } static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev) { uint fw_version = adev->sdma.instance[0].fw_version; switch (adev->asic_type) { case CHIP_VEGA10: return fw_version >= 430; case CHIP_VEGA12: /*return fw_version >= 31;*/ return false; case CHIP_VEGA20: return fw_version >= 123; default: return false; } } static int sdma_v4_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; if (adev->asic_type == CHIP_RAVEN) adev->sdma.num_instances = 1; else adev->sdma.num_instances = 2; r = sdma_v4_0_init_microcode(adev); if (r) { DRM_ERROR("Failed to load sdma firmware!\n"); return r; } /* TODO: Page queue breaks driver reload under SRIOV */ if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev))) adev->sdma.has_page_queue = false; else if (sdma_v4_0_fw_support_paging_queue(adev)) adev->sdma.has_page_queue = true; sdma_v4_0_set_ring_funcs(adev); sdma_v4_0_set_buffer_funcs(adev); sdma_v4_0_set_vm_pte_funcs(adev); sdma_v4_0_set_irq_funcs(adev); return 0; } static int sdma_v4_0_sw_init(void *handle) { struct amdgpu_ring *ring; int r, i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* SDMA trap event */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP, &adev->sdma.trap_irq); if (r) return r; /* SDMA trap event */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP, &adev->sdma.trap_irq); if (r) return r; for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; ring->ring_obj = NULL; ring->use_doorbell = true; DRM_INFO("use_doorbell being set to: [%s]\n", ring->use_doorbell?"true":"false"); /* doorbell size is 2 dwords, get DWORD offset */ ring->doorbell_index = (i == 0) ? (adev->doorbell_index.sdma_engine0 << 1) : (adev->doorbell_index.sdma_engine1 << 1); sprintf(ring->name, "sdma%d", i); r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, (i == 0) ? AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1); if (r) return r; if (adev->sdma.has_page_queue) { ring = &adev->sdma.instance[i].page; ring->ring_obj = NULL; ring->use_doorbell = true; /* paging queue use same doorbell index/routing as gfx queue * with 0x400 (4096 dwords) offset on second doorbell page */ ring->doorbell_index = (i == 0) ? (adev->doorbell_index.sdma_engine0 << 1) : (adev->doorbell_index.sdma_engine1 << 1); ring->doorbell_index += 0x400; sprintf(ring->name, "page%d", i); r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, (i == 0) ? AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1); if (r) return r; } } return r; } static int sdma_v4_0_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i; for (i = 0; i < adev->sdma.num_instances; i++) { amdgpu_ring_fini(&adev->sdma.instance[i].ring); if (adev->sdma.has_page_queue) amdgpu_ring_fini(&adev->sdma.instance[i].page); } for (i = 0; i < adev->sdma.num_instances; i++) { release_firmware(adev->sdma.instance[i].fw); adev->sdma.instance[i].fw = NULL; } return 0; } static int sdma_v4_0_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->set_powergating_by_smu) amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false); sdma_v4_0_init_golden_registers(adev); r = sdma_v4_0_start(adev); return r; } static int sdma_v4_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) return 0; sdma_v4_0_ctx_switch_enable(adev, false); sdma_v4_0_enable(adev, false); if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->set_powergating_by_smu) amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true); return 0; } static int sdma_v4_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return sdma_v4_0_hw_fini(adev); } static int sdma_v4_0_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return sdma_v4_0_hw_init(adev); } static bool sdma_v4_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 i; for (i = 0; i < adev->sdma.num_instances; i++) { u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG); if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) return false; } return true; } static int sdma_v4_0_wait_for_idle(void *handle) { unsigned i; u32 sdma0, sdma1; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG); sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG); if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK) return 0; udelay(1); } return -ETIMEDOUT; } static int sdma_v4_0_soft_reset(void *handle) { /* todo */ return 0; } static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { unsigned int instance = (type == AMDGPU_SDMA_IRQ_TRAP0) ? 0 : 1; u32 sdma_cntl; sdma_cntl = RREG32_SDMA(instance, mmSDMA0_CNTL); sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); WREG32_SDMA(instance, mmSDMA0_CNTL, sdma_cntl); return 0; } static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { uint32_t instance; DRM_DEBUG("IH: SDMA trap\n"); switch (entry->client_id) { case SOC15_IH_CLIENTID_SDMA0: instance = 0; break; case SOC15_IH_CLIENTID_SDMA1: instance = 1; break; default: return 0; } switch (entry->ring_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[instance].ring); break; case 1: if (adev->asic_type == CHIP_VEGA20) amdgpu_fence_process(&adev->sdma.instance[instance].page); break; case 2: /* XXX compute */ break; case 3: if (adev->asic_type != CHIP_VEGA20) amdgpu_fence_process(&adev->sdma.instance[instance].page); break; } return 0; } static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { int instance; DRM_ERROR("Illegal instruction in SDMA command stream\n"); switch (entry->client_id) { case SOC15_IH_CLIENTID_SDMA0: instance = 0; break; case SOC15_IH_CLIENTID_SDMA1: instance = 1; break; default: return 0; } switch (entry->ring_id) { case 0: drm_sched_fault(&adev->sdma.instance[instance].ring.sched); break; } return 0; } static void sdma_v4_0_update_medium_grain_clock_gating( struct amdgpu_device *adev, bool enable) { uint32_t data, def; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { /* enable sdma0 clock gating */ def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); if (def != data) WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data); if (adev->sdma.num_instances > 1) { def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL)); data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK); if (def != data) WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data); } } else { /* disable sdma0 clock gating */ def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); if (def != data) WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data); if (adev->sdma.num_instances > 1) { def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL)); data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK); if (def != data) WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data); } } } static void sdma_v4_0_update_medium_grain_light_sleep( struct amdgpu_device *adev, bool enable) { uint32_t data, def; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { /* 1-not override: enable sdma0 mem light sleep */ def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (def != data) WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); /* 1-not override: enable sdma1 mem light sleep */ if (adev->sdma.num_instances > 1) { def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL)); data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (def != data) WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data); } } else { /* 0-override:disable sdma0 mem light sleep */ def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (def != data) WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); /* 0-override:disable sdma1 mem light sleep */ if (adev->sdma.num_instances > 1) { def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL)); data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (def != data) WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data); } } } static int sdma_v4_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) return 0; switch (adev->asic_type) { case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: case CHIP_RAVEN: sdma_v4_0_update_medium_grain_clock_gating(adev, state == AMD_CG_STATE_GATE ? true : false); sdma_v4_0_update_medium_grain_light_sleep(adev, state == AMD_CG_STATE_GATE ? true : false); break; default: break; } return 0; } static int sdma_v4_0_set_powergating_state(void *handle, enum amd_powergating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; switch (adev->asic_type) { case CHIP_RAVEN: sdma_v4_1_update_power_gating(adev, state == AMD_PG_STATE_GATE ? true : false); break; default: break; } return 0; } static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; if (amdgpu_sriov_vf(adev)) *flags = 0; /* AMD_CG_SUPPORT_SDMA_MGCG */ data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) *flags |= AMD_CG_SUPPORT_SDMA_MGCG; /* AMD_CG_SUPPORT_SDMA_LS */ data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) *flags |= AMD_CG_SUPPORT_SDMA_LS; } const struct amd_ip_funcs sdma_v4_0_ip_funcs = { .name = "sdma_v4_0", .early_init = sdma_v4_0_early_init, .late_init = NULL, .sw_init = sdma_v4_0_sw_init, .sw_fini = sdma_v4_0_sw_fini, .hw_init = sdma_v4_0_hw_init, .hw_fini = sdma_v4_0_hw_fini, .suspend = sdma_v4_0_suspend, .resume = sdma_v4_0_resume, .is_idle = sdma_v4_0_is_idle, .wait_for_idle = sdma_v4_0_wait_for_idle, .soft_reset = sdma_v4_0_soft_reset, .set_clockgating_state = sdma_v4_0_set_clockgating_state, .set_powergating_state = sdma_v4_0_set_powergating_state, .get_clockgating_state = sdma_v4_0_get_clockgating_state, }; static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = { .type = AMDGPU_RING_TYPE_SDMA, .align_mask = 0xf, .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), .support_64bit_ptrs = true, .vmhub = AMDGPU_MMHUB, .get_rptr = sdma_v4_0_ring_get_rptr, .get_wptr = sdma_v4_0_ring_get_wptr, .set_wptr = sdma_v4_0_ring_set_wptr, .emit_frame_size = 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 3 + /* hdp invalidate */ 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ /* sdma_v4_0_ring_emit_vm_flush */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ .emit_ib = sdma_v4_0_ring_emit_ib, .emit_fence = sdma_v4_0_ring_emit_fence, .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, .test_ring = sdma_v4_0_ring_test_ring, .test_ib = sdma_v4_0_ring_test_ib, .insert_nop = sdma_v4_0_ring_insert_nop, .pad_ib = sdma_v4_0_ring_pad_ib, .emit_wreg = sdma_v4_0_ring_emit_wreg, .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, }; static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = { .type = AMDGPU_RING_TYPE_SDMA, .align_mask = 0xf, .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), .support_64bit_ptrs = true, .vmhub = AMDGPU_MMHUB, .get_rptr = sdma_v4_0_ring_get_rptr, .get_wptr = sdma_v4_0_page_ring_get_wptr, .set_wptr = sdma_v4_0_page_ring_set_wptr, .emit_frame_size = 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 3 + /* hdp invalidate */ 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ /* sdma_v4_0_ring_emit_vm_flush */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ .emit_ib = sdma_v4_0_ring_emit_ib, .emit_fence = sdma_v4_0_ring_emit_fence, .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, .test_ring = sdma_v4_0_ring_test_ring, .test_ib = sdma_v4_0_ring_test_ib, .insert_nop = sdma_v4_0_ring_insert_nop, .pad_ib = sdma_v4_0_ring_pad_ib, .emit_wreg = sdma_v4_0_ring_emit_wreg, .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, }; static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->sdma.num_instances; i++) { adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs; adev->sdma.instance[i].ring.me = i; if (adev->sdma.has_page_queue) { adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs; adev->sdma.instance[i].page.me = i; } } } static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = { .set = sdma_v4_0_set_trap_irq_state, .process = sdma_v4_0_process_trap_irq, }; static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = { .process = sdma_v4_0_process_illegal_inst_irq, }; static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev) { adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs; adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs; } /** * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine * * @ring: amdgpu_ring structure holding ring information * @src_offset: src GPU address * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * * Copy GPU buffers using the DMA engine (VEGA10/12). * Used by the amdgpu ttm implementation to move pages if * registered as the asic copy callback. */ static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib, uint64_t src_offset, uint64_t dst_offset, uint32_t byte_count) { ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); ib->ptr[ib->length_dw++] = byte_count - 1; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); } /** * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine * * @ring: amdgpu_ring structure holding ring information * @src_data: value to write to buffer * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * * Fill GPU buffers using the DMA engine (VEGA10/12). */ static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib, uint32_t src_data, uint64_t dst_offset, uint32_t byte_count) { ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); ib->ptr[ib->length_dw++] = src_data; ib->ptr[ib->length_dw++] = byte_count - 1; } static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = { .copy_max_bytes = 0x400000, .copy_num_dw = 7, .emit_copy_buffer = sdma_v4_0_emit_copy_buffer, .fill_max_bytes = 0x400000, .fill_num_dw = 5, .emit_fill_buffer = sdma_v4_0_emit_fill_buffer, }; static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev) { adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs; if (adev->sdma.has_page_queue) adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; else adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; } static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = { .copy_pte_num_dw = 7, .copy_pte = sdma_v4_0_vm_copy_pte, .write_pte = sdma_v4_0_vm_write_pte, .set_pte_pde = sdma_v4_0_vm_set_pte_pde, }; static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev) { struct drm_gpu_scheduler *sched; unsigned i; adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs; for (i = 0; i < adev->sdma.num_instances; i++) { if (adev->sdma.has_page_queue) sched = &adev->sdma.instance[i].page.sched; else sched = &adev->sdma.instance[i].ring.sched; adev->vm_manager.vm_pte_rqs[i] = &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL]; } adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances; } const struct amdgpu_ip_block_version sdma_v4_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SDMA, .major = 4, .minor = 0, .rev = 0, .funcs = &sdma_v4_0_ip_funcs, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1