Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Francis | 1760 | 100.00% | 2 | 100.00% |
Total | 1760 | 2 |
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dce_i2c.h" #include "dce_i2c_sw.h" #include "include/gpio_service_interface.h" #define SCL false #define SDA true void dce_i2c_sw_construct( struct dce_i2c_sw *dce_i2c_sw, struct dc_context *ctx) { dce_i2c_sw->ctx = ctx; } static inline bool read_bit_from_ddc( struct ddc *ddc, bool data_nor_clock) { uint32_t value = 0; if (data_nor_clock) dal_gpio_get_value(ddc->pin_data, &value); else dal_gpio_get_value(ddc->pin_clock, &value); return (value != 0); } static inline void write_bit_to_ddc( struct ddc *ddc, bool data_nor_clock, bool bit) { uint32_t value = bit ? 1 : 0; if (data_nor_clock) dal_gpio_set_value(ddc->pin_data, value); else dal_gpio_set_value(ddc->pin_clock, value); } static void release_engine_dce_sw( struct resource_pool *pool, struct dce_i2c_sw *dce_i2c_sw) { dal_ddc_close(dce_i2c_sw->ddc); dce_i2c_sw->ddc = NULL; } static bool get_hw_supported_ddc_line( struct ddc *ddc, enum gpio_ddc_line *line) { enum gpio_ddc_line line_found; *line = GPIO_DDC_LINE_UNKNOWN; if (!ddc) { BREAK_TO_DEBUGGER(); return false; } if (!ddc->hw_info.hw_supported) return false; line_found = dal_ddc_get_line(ddc); if (line_found >= GPIO_DDC_LINE_COUNT) return false; *line = line_found; return true; } static bool wait_for_scl_high_sw( struct dc_context *ctx, struct ddc *ddc, uint16_t clock_delay_div_4) { uint32_t scl_retry = 0; uint32_t scl_retry_max = I2C_SW_TIMEOUT_DELAY / clock_delay_div_4; udelay(clock_delay_div_4); do { if (read_bit_from_ddc(ddc, SCL)) return true; udelay(clock_delay_div_4); ++scl_retry; } while (scl_retry <= scl_retry_max); return false; } static bool write_byte_sw( struct dc_context *ctx, struct ddc *ddc_handle, uint16_t clock_delay_div_4, uint8_t byte) { int32_t shift = 7; bool ack; /* bits are transmitted serially, starting from MSB */ do { udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SDA, (byte >> shift) & 1); udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SCL, true); if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4)) return false; write_bit_to_ddc(ddc_handle, SCL, false); --shift; } while (shift >= 0); /* The display sends ACK by preventing the SDA from going high * after the SCL pulse we use to send our last data bit. * If the SDA goes high after that bit, it's a NACK */ udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SDA, true); udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SCL, true); if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4)) return false; /* read ACK bit */ ack = !read_bit_from_ddc(ddc_handle, SDA); udelay(clock_delay_div_4 << 1); write_bit_to_ddc(ddc_handle, SCL, false); udelay(clock_delay_div_4 << 1); return ack; } static bool read_byte_sw( struct dc_context *ctx, struct ddc *ddc_handle, uint16_t clock_delay_div_4, uint8_t *byte, bool more) { int32_t shift = 7; uint8_t data = 0; /* The data bits are read from MSB to LSB; * bit is read while SCL is high */ do { write_bit_to_ddc(ddc_handle, SCL, true); if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4)) return false; if (read_bit_from_ddc(ddc_handle, SDA)) data |= (1 << shift); write_bit_to_ddc(ddc_handle, SCL, false); udelay(clock_delay_div_4 << 1); --shift; } while (shift >= 0); /* read only whole byte */ *byte = data; udelay(clock_delay_div_4); /* send the acknowledge bit: * SDA low means ACK, SDA high means NACK */ write_bit_to_ddc(ddc_handle, SDA, !more); udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SCL, true); if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4)) return false; write_bit_to_ddc(ddc_handle, SCL, false); udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SDA, true); udelay(clock_delay_div_4); return true; } static bool stop_sync_sw( struct dc_context *ctx, struct ddc *ddc_handle, uint16_t clock_delay_div_4) { uint32_t retry = 0; /* The I2C communications stop signal is: * the SDA going high from low, while the SCL is high. */ write_bit_to_ddc(ddc_handle, SCL, false); udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SDA, false); udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SCL, true); if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4)) return false; write_bit_to_ddc(ddc_handle, SDA, true); do { udelay(clock_delay_div_4); if (read_bit_from_ddc(ddc_handle, SDA)) return true; ++retry; } while (retry <= 2); return false; } static bool i2c_write_sw( struct dc_context *ctx, struct ddc *ddc_handle, uint16_t clock_delay_div_4, uint8_t address, uint32_t length, const uint8_t *data) { uint32_t i = 0; if (!write_byte_sw(ctx, ddc_handle, clock_delay_div_4, address)) return false; while (i < length) { if (!write_byte_sw(ctx, ddc_handle, clock_delay_div_4, data[i])) return false; ++i; } return true; } static bool i2c_read_sw( struct dc_context *ctx, struct ddc *ddc_handle, uint16_t clock_delay_div_4, uint8_t address, uint32_t length, uint8_t *data) { uint32_t i = 0; if (!write_byte_sw(ctx, ddc_handle, clock_delay_div_4, address)) return false; while (i < length) { if (!read_byte_sw(ctx, ddc_handle, clock_delay_div_4, data + i, i < length - 1)) return false; ++i; } return true; } static bool start_sync_sw( struct dc_context *ctx, struct ddc *ddc_handle, uint16_t clock_delay_div_4) { uint32_t retry = 0; /* The I2C communications start signal is: * the SDA going low from high, while the SCL is high. */ write_bit_to_ddc(ddc_handle, SCL, true); udelay(clock_delay_div_4); do { write_bit_to_ddc(ddc_handle, SDA, true); if (!read_bit_from_ddc(ddc_handle, SDA)) { ++retry; continue; } udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SCL, true); if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4)) break; write_bit_to_ddc(ddc_handle, SDA, false); udelay(clock_delay_div_4); write_bit_to_ddc(ddc_handle, SCL, false); udelay(clock_delay_div_4); return true; } while (retry <= I2C_SW_RETRIES); return false; } void dce_i2c_sw_engine_set_speed( struct dce_i2c_sw *engine, uint32_t speed) { ASSERT(speed); engine->speed = speed ? speed : DCE_I2C_DEFAULT_I2C_SW_SPEED; engine->clock_delay = 1000 / engine->speed; if (engine->clock_delay < 12) engine->clock_delay = 12; } bool dce_i2c_sw_engine_acquire_engine( struct dce_i2c_sw *engine, struct ddc *ddc) { enum gpio_result result; result = dal_ddc_open(ddc, GPIO_MODE_FAST_OUTPUT, GPIO_DDC_CONFIG_TYPE_MODE_I2C); if (result != GPIO_RESULT_OK) return false; engine->ddc = ddc; return true; } bool dce_i2c_engine_acquire_sw( struct dce_i2c_sw *dce_i2c_sw, struct ddc *ddc_handle) { uint32_t counter = 0; bool result; do { result = dce_i2c_sw_engine_acquire_engine( dce_i2c_sw, ddc_handle); if (result) break; /* i2c_engine is busy by VBios, lets wait and retry */ udelay(10); ++counter; } while (counter < 2); return result; } void dce_i2c_sw_engine_submit_channel_request( struct dce_i2c_sw *engine, struct i2c_request_transaction_data *req) { struct ddc *ddc = engine->ddc; uint16_t clock_delay_div_4 = engine->clock_delay >> 2; /* send sync (start / repeated start) */ bool result = start_sync_sw(engine->ctx, ddc, clock_delay_div_4); /* process payload */ if (result) { switch (req->action) { case DCE_I2C_TRANSACTION_ACTION_I2C_WRITE: case DCE_I2C_TRANSACTION_ACTION_I2C_WRITE_MOT: result = i2c_write_sw(engine->ctx, ddc, clock_delay_div_4, req->address, req->length, req->data); break; case DCE_I2C_TRANSACTION_ACTION_I2C_READ: case DCE_I2C_TRANSACTION_ACTION_I2C_READ_MOT: result = i2c_read_sw(engine->ctx, ddc, clock_delay_div_4, req->address, req->length, req->data); break; default: result = false; break; } } /* send stop if not 'mot' or operation failed */ if (!result || (req->action == DCE_I2C_TRANSACTION_ACTION_I2C_WRITE) || (req->action == DCE_I2C_TRANSACTION_ACTION_I2C_READ)) if (!stop_sync_sw(engine->ctx, ddc, clock_delay_div_4)) result = false; req->status = result ? I2C_CHANNEL_OPERATION_SUCCEEDED : I2C_CHANNEL_OPERATION_FAILED; } bool dce_i2c_sw_engine_submit_payload( struct dce_i2c_sw *engine, struct i2c_payload *payload, bool middle_of_transaction) { struct i2c_request_transaction_data request; if (!payload->write) request.action = middle_of_transaction ? DCE_I2C_TRANSACTION_ACTION_I2C_READ_MOT : DCE_I2C_TRANSACTION_ACTION_I2C_READ; else request.action = middle_of_transaction ? DCE_I2C_TRANSACTION_ACTION_I2C_WRITE_MOT : DCE_I2C_TRANSACTION_ACTION_I2C_WRITE; request.address = (uint8_t) ((payload->address << 1) | !payload->write); request.length = payload->length; request.data = payload->data; dce_i2c_sw_engine_submit_channel_request(engine, &request); if ((request.status == I2C_CHANNEL_OPERATION_ENGINE_BUSY) || (request.status == I2C_CHANNEL_OPERATION_FAILED)) return false; return true; } bool dce_i2c_submit_command_sw( struct resource_pool *pool, struct ddc *ddc, struct i2c_command *cmd, struct dce_i2c_sw *dce_i2c_sw) { uint8_t index_of_payload = 0; bool result; dce_i2c_sw_engine_set_speed(dce_i2c_sw, cmd->speed); result = true; while (index_of_payload < cmd->number_of_payloads) { bool mot = (index_of_payload != cmd->number_of_payloads - 1); struct i2c_payload *payload = cmd->payloads + index_of_payload; if (!dce_i2c_sw_engine_submit_payload( dce_i2c_sw, payload, mot)) { result = false; break; } ++index_of_payload; } release_engine_dce_sw(pool, dce_i2c_sw); return result; } struct dce_i2c_sw *dce_i2c_acquire_i2c_sw_engine( struct resource_pool *pool, struct ddc *ddc) { enum gpio_ddc_line line; struct dce_i2c_sw *engine = NULL; if (get_hw_supported_ddc_line(ddc, &line)) engine = pool->sw_i2cs[line]; if (!engine) return NULL; if (!dce_i2c_engine_acquire_sw(engine, ddc)) return NULL; return engine; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1