Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 3494 | 90.75% | 1 | 7.14% |
Eric Cook | 163 | 4.23% | 1 | 7.14% |
Andrey Grodzovsky | 71 | 1.84% | 1 | 7.14% |
Sylvia Tsai | 58 | 1.51% | 1 | 7.14% |
Yongqiang Sun | 31 | 0.81% | 2 | 14.29% |
Anthony Koo | 18 | 0.47% | 1 | 7.14% |
Tom St Denis | 5 | 0.13% | 1 | 7.14% |
Hawking Zhang | 4 | 0.10% | 1 | 7.14% |
Feifei Xu | 2 | 0.05% | 1 | 7.14% |
Dave Airlie | 2 | 0.05% | 2 | 14.29% |
Roman Li | 1 | 0.03% | 1 | 7.14% |
Jerry (Fangzhi) Zuo | 1 | 0.03% | 1 | 7.14% |
Total | 3850 | 14 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dce/dce_12_0_offset.h" #include "dce/dce_12_0_sh_mask.h" #include "soc15_hw_ip.h" #include "vega10_ip_offset.h" #include "dc_types.h" #include "dc_bios_types.h" #include "include/grph_object_id.h" #include "include/logger_interface.h" #include "dce120_timing_generator.h" #include "timing_generator.h" #define CRTC_REG_UPDATE_N(reg_name, n, ...) \ generic_reg_update_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__) #define CRTC_REG_SET_N(reg_name, n, ...) \ generic_reg_set_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__) #define CRTC_REG_UPDATE(reg, field, val) \ CRTC_REG_UPDATE_N(reg, 1, FD(reg##__##field), val) #define CRTC_REG_UPDATE_2(reg, field1, val1, field2, val2) \ CRTC_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2) #define CRTC_REG_UPDATE_3(reg, field1, val1, field2, val2, field3, val3) \ CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3) #define CRTC_REG_UPDATE_4(reg, field1, val1, field2, val2, field3, val3, field4, val4) \ CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4) #define CRTC_REG_UPDATE_5(reg, field1, val1, field2, val2, field3, val3, field4, val4, field5, val5) \ CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4, FD(reg##__##field5), val5) #define CRTC_REG_SET(reg, field, val) \ CRTC_REG_SET_N(reg, 1, FD(reg##__##field), val) #define CRTC_REG_SET_2(reg, field1, val1, field2, val2) \ CRTC_REG_SET_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2) #define CRTC_REG_SET_3(reg, field1, val1, field2, val2, field3, val3) \ CRTC_REG_SET_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3) /** ***************************************************************************** * Function: is_in_vertical_blank * * @brief * check the current status of CRTC to check if we are in Vertical Blank * regioneased" state * * @return * true if currently in blank region, false otherwise * ***************************************************************************** */ static bool dce120_timing_generator_is_in_vertical_blank( struct timing_generator *tg) { uint32_t field = 0; struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_STATUS, tg110->offsets.crtc); field = get_reg_field_value(value, CRTC0_CRTC_STATUS, CRTC_V_BLANK); return field == 1; } /* determine if given timing can be supported by TG */ bool dce120_timing_generator_validate_timing( struct timing_generator *tg, const struct dc_crtc_timing *timing, enum signal_type signal) { uint32_t interlace_factor = timing->flags.INTERLACE ? 2 : 1; uint32_t v_blank = (timing->v_total - timing->v_addressable - timing->v_border_top - timing->v_border_bottom) * interlace_factor; struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); if (!dce110_timing_generator_validate_timing( tg, timing, signal)) return false; if (v_blank < tg110->min_v_blank || timing->h_sync_width < tg110->min_h_sync_width || timing->v_sync_width < tg110->min_v_sync_width) return false; return true; } bool dce120_tg_validate_timing(struct timing_generator *tg, const struct dc_crtc_timing *timing) { return dce120_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE); } /******** HW programming ************/ /* Disable/Enable Timing Generator */ bool dce120_timing_generator_enable_crtc(struct timing_generator *tg) { enum bp_result result; struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); /* Set MASTER_UPDATE_MODE to 0 * This is needed for DRR, and also suggested to be default value by Syed.*/ CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_MODE, MASTER_UPDATE_MODE, 0); CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_LOCK, UNDERFLOW_UPDATE_LOCK, 0); /* TODO API for AtomFirmware didn't change*/ result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true); return result == BP_RESULT_OK; } void dce120_timing_generator_set_early_control( struct timing_generator *tg, uint32_t early_cntl) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); CRTC_REG_UPDATE(CRTC0_CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL, early_cntl); } /**************** TG current status ******************/ /* return the current frame counter. Used by Linux kernel DRM */ uint32_t dce120_timing_generator_get_vblank_counter( struct timing_generator *tg) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_STATUS_FRAME_COUNT, tg110->offsets.crtc); uint32_t field = get_reg_field_value( value, CRTC0_CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT); return field; } /* Get current H and V position */ void dce120_timing_generator_get_crtc_position( struct timing_generator *tg, struct crtc_position *position) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_STATUS_POSITION, tg110->offsets.crtc); position->horizontal_count = get_reg_field_value(value, CRTC0_CRTC_STATUS_POSITION, CRTC_HORZ_COUNT); position->vertical_count = get_reg_field_value(value, CRTC0_CRTC_STATUS_POSITION, CRTC_VERT_COUNT); value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_NOM_VERT_POSITION, tg110->offsets.crtc); position->nominal_vcount = get_reg_field_value(value, CRTC0_CRTC_NOM_VERT_POSITION, CRTC_VERT_COUNT_NOM); } /* wait until TG is in beginning of vertical blank region */ void dce120_timing_generator_wait_for_vblank(struct timing_generator *tg) { /* We want to catch beginning of VBlank here, so if the first try are * in VBlank, we might be very close to Active, in this case wait for * another frame */ while (dce120_timing_generator_is_in_vertical_blank(tg)) { if (!tg->funcs->is_counter_moving(tg)) { /* error - no point to wait if counter is not moving */ break; } } while (!dce120_timing_generator_is_in_vertical_blank(tg)) { if (!tg->funcs->is_counter_moving(tg)) { /* error - no point to wait if counter is not moving */ break; } } } /* wait until TG is in beginning of active region */ void dce120_timing_generator_wait_for_vactive(struct timing_generator *tg) { while (dce120_timing_generator_is_in_vertical_blank(tg)) { if (!tg->funcs->is_counter_moving(tg)) { /* error - no point to wait if counter is not moving */ break; } } } /*********** Timing Generator Synchronization routines ****/ /* Setups Global Swap Lock group, TimingServer or TimingClient*/ void dce120_timing_generator_setup_global_swap_lock( struct timing_generator *tg, const struct dcp_gsl_params *gsl_params) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t value_crtc_vtotal = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_V_TOTAL, tg110->offsets.crtc); /* Checkpoint relative to end of frame */ uint32_t check_point = get_reg_field_value(value_crtc_vtotal, CRTC0_CRTC_V_TOTAL, CRTC_V_TOTAL); dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_GSL_WINDOW, tg110->offsets.crtc, 0); CRTC_REG_UPDATE_N(DCP0_DCP_GSL_CONTROL, 6, /* This pipe will belong to GSL Group zero. */ FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 1, FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), gsl_params->gsl_master == tg->inst, FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY, /* Keep signal low (pending high) during 6 lines. * Also defines minimum interval before re-checking signal. */ FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY, /* DCP_GSL_PURPOSE_SURFACE_FLIP */ FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0, FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 1); CRTC_REG_SET_2( CRTC0_CRTC_GSL_CONTROL, CRTC_GSL_CHECK_LINE_NUM, check_point - FLIP_READY_BACK_LOOKUP, CRTC_GSL_FORCE_DELAY, VFLIP_READY_DELAY); } /* Clear all the register writes done by setup_global_swap_lock */ void dce120_timing_generator_tear_down_global_swap_lock( struct timing_generator *tg) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); /* Settig HW default values from reg specs */ CRTC_REG_SET_N(DCP0_DCP_GSL_CONTROL, 6, FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 0, FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), 0, FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY, FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY, /* DCP_GSL_PURPOSE_SURFACE_FLIP */ FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0, FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 0); CRTC_REG_SET_2(CRTC0_CRTC_GSL_CONTROL, CRTC_GSL_CHECK_LINE_NUM, 0, CRTC_GSL_FORCE_DELAY, 0x2); /*TODO Why this value here ?*/ } /* Reset slave controllers on master VSync */ void dce120_timing_generator_enable_reset_trigger( struct timing_generator *tg, int source) { enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO; struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t rising_edge = 0; uint32_t falling_edge = 0; /* Setup trigger edge */ uint32_t pol_value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_V_SYNC_A_CNTL, tg110->offsets.crtc); /* Register spec has reversed definition: * 0 for positive, 1 for negative */ if (get_reg_field_value(pol_value, CRTC0_CRTC_V_SYNC_A_CNTL, CRTC_V_SYNC_A_POL) == 0) { rising_edge = 1; } else { falling_edge = 1; } /* TODO What about other sources ?*/ trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0; CRTC_REG_UPDATE_N(CRTC0_CRTC_TRIGB_CNTL, 7, FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_SOURCE_SELECT), trig_src_select, FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_POLARITY_SELECT), TRIGGER_POLARITY_SELECT_LOGIC_ZERO, FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_RISING_EDGE_DETECT_CNTL), rising_edge, FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL), falling_edge, /* send every signal */ FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FREQUENCY_SELECT), 0, /* no delay */ FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_DELAY), 0, /* clear trigger status */ FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_CLEAR), 1); CRTC_REG_UPDATE_3( CRTC0_CRTC_FORCE_COUNT_NOW_CNTL, CRTC_FORCE_COUNT_NOW_MODE, 2, CRTC_FORCE_COUNT_NOW_TRIG_SEL, 1, CRTC_FORCE_COUNT_NOW_CLEAR, 1); } /* disabling trigger-reset */ void dce120_timing_generator_disable_reset_trigger( struct timing_generator *tg) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); CRTC_REG_UPDATE_2( CRTC0_CRTC_FORCE_COUNT_NOW_CNTL, CRTC_FORCE_COUNT_NOW_MODE, 0, CRTC_FORCE_COUNT_NOW_CLEAR, 1); CRTC_REG_UPDATE_3( CRTC0_CRTC_TRIGB_CNTL, CRTC_TRIGB_SOURCE_SELECT, TRIGGER_SOURCE_SELECT_LOGIC_ZERO, CRTC_TRIGB_POLARITY_SELECT, TRIGGER_POLARITY_SELECT_LOGIC_ZERO, /* clear trigger status */ CRTC_TRIGB_CLEAR, 1); } /* Checks whether CRTC triggered reset occurred */ bool dce120_timing_generator_did_triggered_reset_occur( struct timing_generator *tg) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_FORCE_COUNT_NOW_CNTL, tg110->offsets.crtc); return get_reg_field_value(value, CRTC0_CRTC_FORCE_COUNT_NOW_CNTL, CRTC_FORCE_COUNT_NOW_OCCURRED) != 0; } /******** Stuff to move to other virtual HW objects *****************/ /* Move to enable accelerated mode */ void dce120_timing_generator_disable_vga(struct timing_generator *tg) { uint32_t offset = 0; uint32_t value = 0; struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); switch (tg110->controller_id) { case CONTROLLER_ID_D0: offset = 0; break; case CONTROLLER_ID_D1: offset = mmD2VGA_CONTROL - mmD1VGA_CONTROL; break; case CONTROLLER_ID_D2: offset = mmD3VGA_CONTROL - mmD1VGA_CONTROL; break; case CONTROLLER_ID_D3: offset = mmD4VGA_CONTROL - mmD1VGA_CONTROL; break; case CONTROLLER_ID_D4: offset = mmD5VGA_CONTROL - mmD1VGA_CONTROL; break; case CONTROLLER_ID_D5: offset = mmD6VGA_CONTROL - mmD1VGA_CONTROL; break; default: break; } value = dm_read_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset); set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE); set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT); set_reg_field_value( value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT); set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN); dm_write_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset, value); } /* TODO: Should we move it to transform */ /* Fully program CRTC timing in timing generator */ void dce120_timing_generator_program_blanking( struct timing_generator *tg, const struct dc_crtc_timing *timing) { uint32_t tmp1 = 0; uint32_t tmp2 = 0; uint32_t vsync_offset = timing->v_border_bottom + timing->v_front_porch; uint32_t v_sync_start = timing->v_addressable + vsync_offset; uint32_t hsync_offset = timing->h_border_right + timing->h_front_porch; uint32_t h_sync_start = timing->h_addressable + hsync_offset; struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); CRTC_REG_UPDATE( CRTC0_CRTC_H_TOTAL, CRTC_H_TOTAL, timing->h_total - 1); CRTC_REG_UPDATE( CRTC0_CRTC_V_TOTAL, CRTC_V_TOTAL, timing->v_total - 1); /* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and * V_TOTAL_MIN are equal to V_TOTAL. */ CRTC_REG_UPDATE( CRTC0_CRTC_V_TOTAL_MAX, CRTC_V_TOTAL_MAX, timing->v_total - 1); CRTC_REG_UPDATE( CRTC0_CRTC_V_TOTAL_MIN, CRTC_V_TOTAL_MIN, timing->v_total - 1); tmp1 = timing->h_total - (h_sync_start + timing->h_border_left); tmp2 = tmp1 + timing->h_addressable + timing->h_border_left + timing->h_border_right; CRTC_REG_UPDATE_2( CRTC0_CRTC_H_BLANK_START_END, CRTC_H_BLANK_END, tmp1, CRTC_H_BLANK_START, tmp2); tmp1 = timing->v_total - (v_sync_start + timing->v_border_top); tmp2 = tmp1 + timing->v_addressable + timing->v_border_top + timing->v_border_bottom; CRTC_REG_UPDATE_2( CRTC0_CRTC_V_BLANK_START_END, CRTC_V_BLANK_END, tmp1, CRTC_V_BLANK_START, tmp2); } /* TODO: Should we move it to opp? */ /* Combine with below and move YUV/RGB color conversion to SW layer */ void dce120_timing_generator_program_blank_color( struct timing_generator *tg, const struct tg_color *black_color) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); CRTC_REG_UPDATE_3( CRTC0_CRTC_BLACK_COLOR, CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb, CRTC_BLACK_COLOR_G_Y, black_color->color_g_y, CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr); } /* Combine with above and move YUV/RGB color conversion to SW layer */ void dce120_timing_generator_set_overscan_color_black( struct timing_generator *tg, const struct tg_color *color) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t value = 0; CRTC_REG_SET_3( CRTC0_CRTC_OVERSCAN_COLOR, CRTC_OVERSCAN_COLOR_BLUE, color->color_b_cb, CRTC_OVERSCAN_COLOR_GREEN, color->color_g_y, CRTC_OVERSCAN_COLOR_RED, color->color_r_cr); value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_OVERSCAN_COLOR, tg110->offsets.crtc); dm_write_reg_soc15( tg->ctx, mmCRTC0_CRTC_BLACK_COLOR, tg110->offsets.crtc, value); /* This is desirable to have a constant DAC output voltage during the * blank time that is higher than the 0 volt reference level that the * DAC outputs when the NBLANK signal * is asserted low, such as for output to an analog TV. */ dm_write_reg_soc15( tg->ctx, mmCRTC0_CRTC_BLANK_DATA_COLOR, tg110->offsets.crtc, value); /* TO DO we have to program EXT registers and we need to know LB DATA * format because it is used when more 10 , i.e. 12 bits per color * * m_mmDxCRTC_OVERSCAN_COLOR_EXT * m_mmDxCRTC_BLACK_COLOR_EXT * m_mmDxCRTC_BLANK_DATA_COLOR_EXT */ } void dce120_timing_generator_set_drr( struct timing_generator *tg, const struct drr_params *params) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); if (params != NULL && params->vertical_total_max > 0 && params->vertical_total_min > 0) { CRTC_REG_UPDATE( CRTC0_CRTC_V_TOTAL_MIN, CRTC_V_TOTAL_MIN, params->vertical_total_min - 1); CRTC_REG_UPDATE( CRTC0_CRTC_V_TOTAL_MAX, CRTC_V_TOTAL_MAX, params->vertical_total_max - 1); CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 6, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 1, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 1, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK_EN), 0, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0); CRTC_REG_UPDATE( CRTC0_CRTC_STATIC_SCREEN_CONTROL, CRTC_STATIC_SCREEN_EVENT_MASK, 0x180); } else { CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 5, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 0, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 0, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0, FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0); CRTC_REG_UPDATE( CRTC0_CRTC_V_TOTAL_MIN, CRTC_V_TOTAL_MIN, 0); CRTC_REG_UPDATE( CRTC0_CRTC_V_TOTAL_MAX, CRTC_V_TOTAL_MAX, 0); CRTC_REG_UPDATE( CRTC0_CRTC_STATIC_SCREEN_CONTROL, CRTC_STATIC_SCREEN_EVENT_MASK, 0); } } /** ***************************************************************************** * Function: dce120_timing_generator_get_position * * @brief * Returns CRTC vertical/horizontal counters * * @param [out] position ***************************************************************************** */ void dce120_timing_generator_get_position(struct timing_generator *tg, struct crtc_position *position) { uint32_t value; struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_STATUS_POSITION, tg110->offsets.crtc); position->horizontal_count = get_reg_field_value( value, CRTC0_CRTC_STATUS_POSITION, CRTC_HORZ_COUNT); position->vertical_count = get_reg_field_value( value, CRTC0_CRTC_STATUS_POSITION, CRTC_VERT_COUNT); value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_NOM_VERT_POSITION, tg110->offsets.crtc); position->nominal_vcount = get_reg_field_value( value, CRTC0_CRTC_NOM_VERT_POSITION, CRTC_VERT_COUNT_NOM); } void dce120_timing_generator_get_crtc_scanoutpos( struct timing_generator *tg, uint32_t *v_blank_start, uint32_t *v_blank_end, uint32_t *h_position, uint32_t *v_position) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); struct crtc_position position; uint32_t v_blank_start_end = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_V_BLANK_START_END, tg110->offsets.crtc); *v_blank_start = get_reg_field_value(v_blank_start_end, CRTC0_CRTC_V_BLANK_START_END, CRTC_V_BLANK_START); *v_blank_end = get_reg_field_value(v_blank_start_end, CRTC0_CRTC_V_BLANK_START_END, CRTC_V_BLANK_END); dce120_timing_generator_get_crtc_position( tg, &position); *h_position = position.horizontal_count; *v_position = position.vertical_count; } void dce120_timing_generator_enable_advanced_request( struct timing_generator *tg, bool enable, const struct dc_crtc_timing *timing) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t v_sync_width_and_b_porch = timing->v_total - timing->v_addressable - timing->v_border_bottom - timing->v_front_porch; uint32_t value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_START_LINE_CONTROL, tg110->offsets.crtc); set_reg_field_value( value, enable ? 0 : 1, CRTC0_CRTC_START_LINE_CONTROL, CRTC_LEGACY_REQUESTOR_EN); /* Program advanced line position acc.to the best case from fetching data perspective to hide MC latency * and prefilling Line Buffer in V Blank (to 10 lines as LB can store max 10 lines) */ if (v_sync_width_and_b_porch > 10) v_sync_width_and_b_porch = 10; set_reg_field_value( value, v_sync_width_and_b_porch, CRTC0_CRTC_START_LINE_CONTROL, CRTC_ADVANCED_START_LINE_POSITION); dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_START_LINE_CONTROL, tg110->offsets.crtc, value); } void dce120_tg_program_blank_color(struct timing_generator *tg, const struct tg_color *black_color) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t value = 0; CRTC_REG_UPDATE_3( CRTC0_CRTC_BLACK_COLOR, CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb, CRTC_BLACK_COLOR_G_Y, black_color->color_g_y, CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr); value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_BLACK_COLOR, tg110->offsets.crtc); dm_write_reg_soc15( tg->ctx, mmCRTC0_CRTC_BLANK_DATA_COLOR, tg110->offsets.crtc, value); } void dce120_tg_set_overscan_color(struct timing_generator *tg, const struct tg_color *overscan_color) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); CRTC_REG_SET_3( CRTC0_CRTC_OVERSCAN_COLOR, CRTC_OVERSCAN_COLOR_BLUE, overscan_color->color_b_cb, CRTC_OVERSCAN_COLOR_GREEN, overscan_color->color_g_y, CRTC_OVERSCAN_COLOR_RED, overscan_color->color_r_cr); } void dce120_tg_program_timing(struct timing_generator *tg, const struct dc_crtc_timing *timing, bool use_vbios) { if (use_vbios) dce110_timing_generator_program_timing_generator(tg, timing); else dce120_timing_generator_program_blanking(tg, timing); } bool dce120_tg_is_blanked(struct timing_generator *tg) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t value = dm_read_reg_soc15( tg->ctx, mmCRTC0_CRTC_BLANK_CONTROL, tg110->offsets.crtc); if (get_reg_field_value( value, CRTC0_CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN) == 1 && get_reg_field_value( value, CRTC0_CRTC_BLANK_CONTROL, CRTC_CURRENT_BLANK_STATE) == 1) return true; return false; } void dce120_tg_set_blank(struct timing_generator *tg, bool enable_blanking) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); CRTC_REG_SET( CRTC0_CRTC_DOUBLE_BUFFER_CONTROL, CRTC_BLANK_DATA_DOUBLE_BUFFER_EN, 1); if (enable_blanking) CRTC_REG_SET(CRTC0_CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1); else dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_BLANK_CONTROL, tg110->offsets.crtc, 0); } bool dce120_tg_validate_timing(struct timing_generator *tg, const struct dc_crtc_timing *timing); void dce120_tg_wait_for_state(struct timing_generator *tg, enum crtc_state state) { switch (state) { case CRTC_STATE_VBLANK: dce120_timing_generator_wait_for_vblank(tg); break; case CRTC_STATE_VACTIVE: dce120_timing_generator_wait_for_vactive(tg); break; default: break; } } void dce120_tg_set_colors(struct timing_generator *tg, const struct tg_color *blank_color, const struct tg_color *overscan_color) { if (blank_color != NULL) dce120_tg_program_blank_color(tg, blank_color); if (overscan_color != NULL) dce120_tg_set_overscan_color(tg, overscan_color); } static void dce120_timing_generator_set_static_screen_control( struct timing_generator *tg, uint32_t value) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); CRTC_REG_UPDATE_2(CRTC0_CRTC_STATIC_SCREEN_CONTROL, CRTC_STATIC_SCREEN_EVENT_MASK, value, CRTC_STATIC_SCREEN_FRAME_COUNT, 2); } void dce120_timing_generator_set_test_pattern( struct timing_generator *tg, /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode' * because this is not DP-specific (which is probably somewhere in DP * encoder) */ enum controller_dp_test_pattern test_pattern, enum dc_color_depth color_depth) { struct dc_context *ctx = tg->ctx; uint32_t value; struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); enum test_pattern_color_format bit_depth; enum test_pattern_dyn_range dyn_range; enum test_pattern_mode mode; /* color ramp generator mixes 16-bits color */ uint32_t src_bpc = 16; /* requested bpc */ uint32_t dst_bpc; uint32_t index; /* RGB values of the color bars. * Produce two RGB colors: RGB0 - white (all Fs) * and RGB1 - black (all 0s) * (three RGB components for two colors) */ uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000}; /* dest color (converted to the specified color format) */ uint16_t dst_color[6]; uint32_t inc_base; /* translate to bit depth */ switch (color_depth) { case COLOR_DEPTH_666: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6; break; case COLOR_DEPTH_888: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; break; case COLOR_DEPTH_101010: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10; break; case COLOR_DEPTH_121212: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12; break; default: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; break; } switch (test_pattern) { case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES: case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA: { dyn_range = (test_pattern == CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ? TEST_PATTERN_DYN_RANGE_CEA : TEST_PATTERN_DYN_RANGE_VESA); mode = TEST_PATTERN_MODE_COLORSQUARES_RGB; CRTC_REG_UPDATE_2(CRTC0_CRTC_TEST_PATTERN_PARAMETERS, CRTC_TEST_PATTERN_VRES, 6, CRTC_TEST_PATTERN_HRES, 6); CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL, CRTC_TEST_PATTERN_EN, 1, CRTC_TEST_PATTERN_MODE, mode, CRTC_TEST_PATTERN_DYNAMIC_RANGE, dyn_range, CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth); } break; case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS: case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS: { mode = (test_pattern == CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ? TEST_PATTERN_MODE_VERTICALBARS : TEST_PATTERN_MODE_HORIZONTALBARS); switch (bit_depth) { case TEST_PATTERN_COLOR_FORMAT_BPC_6: dst_bpc = 6; break; case TEST_PATTERN_COLOR_FORMAT_BPC_8: dst_bpc = 8; break; case TEST_PATTERN_COLOR_FORMAT_BPC_10: dst_bpc = 10; break; default: dst_bpc = 8; break; } /* adjust color to the required colorFormat */ for (index = 0; index < 6; index++) { /* dst = 2^dstBpc * src / 2^srcBpc = src >> * (srcBpc - dstBpc); */ dst_color[index] = src_color[index] >> (src_bpc - dst_bpc); /* CRTC_TEST_PATTERN_DATA has 16 bits, * lowest 6 are hardwired to ZERO * color bits should be left aligned aligned to MSB * XXXXXXXXXX000000 for 10 bit, * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6 */ dst_color[index] <<= (16 - dst_bpc); } dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, 0); /* We have to write the mask before data, similar to pipeline. * For example, for 8 bpc, if we want RGB0 to be magenta, * and RGB1 to be cyan, * we need to make 7 writes: * MASK DATA * 000001 00000000 00000000 set mask to R0 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1 * 100000 11111111 00000000 B1 255, 0xFF00 * * we will make a loop of 6 in which we prepare the mask, * then write, then prepare the color for next write. * first iteration will write mask only, * but each next iteration color prepared in * previous iteration will be written within new mask, * the last component will written separately, * mask is not changing between 6th and 7th write * and color will be prepared by last iteration */ /* write color, color values mask in CRTC_TEST_PATTERN_MASK * is B1, G1, R1, B0, G0, R0 */ value = 0; for (index = 0; index < 6; index++) { /* prepare color mask, first write PATTERN_DATA * will have all zeros */ set_reg_field_value( value, (1 << index), CRTC0_CRTC_TEST_PATTERN_COLOR, CRTC_TEST_PATTERN_MASK); /* write color component */ dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value); /* prepare next color component, * will be written in the next iteration */ set_reg_field_value( value, dst_color[index], CRTC0_CRTC_TEST_PATTERN_COLOR, CRTC_TEST_PATTERN_DATA); } /* write last color component, * it's been already prepared in the loop */ dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value); /* enable test pattern */ CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL, CRTC_TEST_PATTERN_EN, 1, CRTC_TEST_PATTERN_MODE, mode, CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0, CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth); } break; case CONTROLLER_DP_TEST_PATTERN_COLORRAMP: { mode = (bit_depth == TEST_PATTERN_COLOR_FORMAT_BPC_10 ? TEST_PATTERN_MODE_DUALRAMP_RGB : TEST_PATTERN_MODE_SINGLERAMP_RGB); switch (bit_depth) { case TEST_PATTERN_COLOR_FORMAT_BPC_6: dst_bpc = 6; break; case TEST_PATTERN_COLOR_FORMAT_BPC_8: dst_bpc = 8; break; case TEST_PATTERN_COLOR_FORMAT_BPC_10: dst_bpc = 10; break; default: dst_bpc = 8; break; } /* increment for the first ramp for one color gradation * 1 gradation for 6-bit color is 2^10 * gradations in 16-bit color */ inc_base = (src_bpc - dst_bpc); switch (bit_depth) { case TEST_PATTERN_COLOR_FORMAT_BPC_6: { CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS, CRTC_TEST_PATTERN_INC0, inc_base, CRTC_TEST_PATTERN_INC1, 0, CRTC_TEST_PATTERN_HRES, 6, CRTC_TEST_PATTERN_VRES, 6, CRTC_TEST_PATTERN_RAMP0_OFFSET, 0); } break; case TEST_PATTERN_COLOR_FORMAT_BPC_8: { CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS, CRTC_TEST_PATTERN_INC0, inc_base, CRTC_TEST_PATTERN_INC1, 0, CRTC_TEST_PATTERN_HRES, 8, CRTC_TEST_PATTERN_VRES, 6, CRTC_TEST_PATTERN_RAMP0_OFFSET, 0); } break; case TEST_PATTERN_COLOR_FORMAT_BPC_10: { CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS, CRTC_TEST_PATTERN_INC0, inc_base, CRTC_TEST_PATTERN_INC1, inc_base + 2, CRTC_TEST_PATTERN_HRES, 8, CRTC_TEST_PATTERN_VRES, 5, CRTC_TEST_PATTERN_RAMP0_OFFSET, 384 << 6); } break; default: break; } dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, 0); /* enable test pattern */ dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, 0); CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL, CRTC_TEST_PATTERN_EN, 1, CRTC_TEST_PATTERN_MODE, mode, CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0, CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth); } break; case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE: { value = 0; dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, value); dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value); dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, value); } break; default: break; } } static bool dce120_arm_vert_intr( struct timing_generator *tg, uint8_t width) { struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); uint32_t v_blank_start, v_blank_end, h_position, v_position; tg->funcs->get_scanoutpos( tg, &v_blank_start, &v_blank_end, &h_position, &v_position); if (v_blank_start == 0 || v_blank_end == 0) return false; CRTC_REG_SET_2( CRTC0_CRTC_VERTICAL_INTERRUPT0_POSITION, CRTC_VERTICAL_INTERRUPT0_LINE_START, v_blank_start, CRTC_VERTICAL_INTERRUPT0_LINE_END, v_blank_start + width); return true; } static const struct timing_generator_funcs dce120_tg_funcs = { .validate_timing = dce120_tg_validate_timing, .program_timing = dce120_tg_program_timing, .enable_crtc = dce120_timing_generator_enable_crtc, .disable_crtc = dce110_timing_generator_disable_crtc, /* used by enable_timing_synchronization. Not need for FPGA */ .is_counter_moving = dce110_timing_generator_is_counter_moving, /* never be called */ .get_position = dce120_timing_generator_get_crtc_position, .get_frame_count = dce120_timing_generator_get_vblank_counter, .get_scanoutpos = dce120_timing_generator_get_crtc_scanoutpos, .set_early_control = dce120_timing_generator_set_early_control, /* used by enable_timing_synchronization. Not need for FPGA */ .wait_for_state = dce120_tg_wait_for_state, .set_blank = dce120_tg_set_blank, .is_blanked = dce120_tg_is_blanked, /* never be called */ .set_colors = dce120_tg_set_colors, .set_overscan_blank_color = dce120_timing_generator_set_overscan_color_black, .set_blank_color = dce120_timing_generator_program_blank_color, .disable_vga = dce120_timing_generator_disable_vga, .did_triggered_reset_occur = dce120_timing_generator_did_triggered_reset_occur, .setup_global_swap_lock = dce120_timing_generator_setup_global_swap_lock, .enable_reset_trigger = dce120_timing_generator_enable_reset_trigger, .disable_reset_trigger = dce120_timing_generator_disable_reset_trigger, .tear_down_global_swap_lock = dce120_timing_generator_tear_down_global_swap_lock, .enable_advanced_request = dce120_timing_generator_enable_advanced_request, .set_drr = dce120_timing_generator_set_drr, .set_static_screen_control = dce120_timing_generator_set_static_screen_control, .set_test_pattern = dce120_timing_generator_set_test_pattern, .arm_vert_intr = dce120_arm_vert_intr, }; void dce120_timing_generator_construct( struct dce110_timing_generator *tg110, struct dc_context *ctx, uint32_t instance, const struct dce110_timing_generator_offsets *offsets) { tg110->controller_id = CONTROLLER_ID_D0 + instance; tg110->base.inst = instance; tg110->offsets = *offsets; tg110->base.funcs = &dce120_tg_funcs; tg110->base.ctx = ctx; tg110->base.bp = ctx->dc_bios; tg110->max_h_total = CRTC0_CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1; tg110->max_v_total = CRTC0_CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1; /*//CRTC requires a minimum HBLANK = 32 pixels and o * Minimum HSYNC = 8 pixels*/ tg110->min_h_blank = 32; /*DCE12_CRTC_Block_ARch.doc*/ tg110->min_h_front_porch = 0; tg110->min_h_back_porch = 0; tg110->min_h_sync_width = 8; tg110->min_v_sync_width = 1; tg110->min_v_blank = 3; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1