Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 1757 | 95.08% | 2 | 28.57% |
Charlene Liu | 61 | 3.30% | 1 | 14.29% |
Dave Airlie | 23 | 1.24% | 1 | 14.29% |
Bhawanpreet Lakha | 7 | 0.38% | 3 | 42.86% |
Total | 1848 | 7 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "include/logger_interface.h" /* * Pre-requisites: headers required by header of this unit */ #include "include/i2caux_interface.h" #include "../engine.h" #include "../i2c_engine.h" #include "../i2c_hw_engine.h" #include "../i2c_generic_hw_engine.h" /* * Header of this unit */ #include "i2c_hw_engine_dce110.h" /* * Post-requisites: headers required by this unit */ #include "reg_helper.h" /* * This unit */ #define DC_LOGGER \ hw_engine->base.base.base.ctx->logger enum dc_i2c_status { DC_I2C_STATUS__DC_I2C_STATUS_IDLE, DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_SW, DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_HW }; enum dc_i2c_arbitration { DC_I2C_ARBITRATION__DC_I2C_SW_PRIORITY_NORMAL, DC_I2C_ARBITRATION__DC_I2C_SW_PRIORITY_HIGH }; /* * @brief * Cast pointer to 'struct i2c_hw_engine *' * to pointer 'struct i2c_hw_engine_dce110 *' */ #define FROM_I2C_HW_ENGINE(ptr) \ container_of((ptr), struct i2c_hw_engine_dce110, base) /* * @brief * Cast pointer to 'struct i2c_engine *' * to pointer to 'struct i2c_hw_engine_dce110 *' */ #define FROM_I2C_ENGINE(ptr) \ FROM_I2C_HW_ENGINE(container_of((ptr), struct i2c_hw_engine, base)) /* * @brief * Cast pointer to 'struct engine *' * to 'pointer to struct i2c_hw_engine_dce110 *' */ #define FROM_ENGINE(ptr) \ FROM_I2C_ENGINE(container_of((ptr), struct i2c_engine, base)) #define CTX \ hw_engine->base.base.base.ctx #define REG(reg_name)\ (hw_engine->regs->reg_name) #undef FN #define FN(reg_name, field_name) \ hw_engine->i2c_shift->field_name, hw_engine->i2c_mask->field_name #include "reg_helper.h" static void disable_i2c_hw_engine( struct i2c_hw_engine_dce110 *hw_engine) { REG_UPDATE_N(SETUP, 1, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_ENABLE), 0); } static void release_engine( struct engine *engine) { struct i2c_hw_engine_dce110 *hw_engine = FROM_ENGINE(engine); struct i2c_engine *base = NULL; bool safe_to_reset; base = &hw_engine->base.base; /* Restore original HW engine speed */ base->funcs->set_speed(base, hw_engine->base.original_speed); /* Release I2C */ REG_UPDATE(DC_I2C_ARBITRATION, DC_I2C_SW_DONE_USING_I2C_REG, 1); /* Reset HW engine */ { uint32_t i2c_sw_status = 0; REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); /* if used by SW, safe to reset */ safe_to_reset = (i2c_sw_status == 1); } if (safe_to_reset) REG_UPDATE_2( DC_I2C_CONTROL, DC_I2C_SOFT_RESET, 1, DC_I2C_SW_STATUS_RESET, 1); else REG_UPDATE(DC_I2C_CONTROL, DC_I2C_SW_STATUS_RESET, 1); /* HW I2c engine - clock gating feature */ if (!hw_engine->engine_keep_power_up_count) disable_i2c_hw_engine(hw_engine); } static bool setup_engine( struct i2c_engine *i2c_engine) { struct i2c_hw_engine_dce110 *hw_engine = FROM_I2C_ENGINE(i2c_engine); uint32_t i2c_setup_limit = I2C_SETUP_TIME_LIMIT_DCE; uint32_t reset_length = 0; if (hw_engine->base.base.setup_limit != 0) i2c_setup_limit = hw_engine->base.base.setup_limit; /* Program pin select */ REG_UPDATE_6( DC_I2C_CONTROL, DC_I2C_GO, 0, DC_I2C_SOFT_RESET, 0, DC_I2C_SEND_RESET, 0, DC_I2C_SW_STATUS_RESET, 1, DC_I2C_TRANSACTION_COUNT, 0, DC_I2C_DDC_SELECT, hw_engine->engine_id); /* Program time limit */ if (hw_engine->base.base.send_reset_length == 0) { /*pre-dcn*/ REG_UPDATE_N( SETUP, 2, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_TIME_LIMIT), i2c_setup_limit, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_ENABLE), 1); } else { reset_length = hw_engine->base.base.send_reset_length; } /* Program HW priority * set to High - interrupt software I2C at any time * Enable restart of SW I2C that was interrupted by HW * disable queuing of software while I2C is in use by HW */ REG_UPDATE_2( DC_I2C_ARBITRATION, DC_I2C_NO_QUEUED_SW_GO, 0, DC_I2C_SW_PRIORITY, DC_I2C_ARBITRATION__DC_I2C_SW_PRIORITY_NORMAL); return true; } static uint32_t get_speed( const struct i2c_engine *i2c_engine) { const struct i2c_hw_engine_dce110 *hw_engine = FROM_I2C_ENGINE(i2c_engine); uint32_t pre_scale = 0; REG_GET(SPEED, DC_I2C_DDC1_PRESCALE, &pre_scale); /* [anaumov] it seems following is unnecessary */ /*ASSERT(value.bits.DC_I2C_DDC1_PRESCALE);*/ return pre_scale ? hw_engine->reference_frequency / pre_scale : hw_engine->base.default_speed; } static void set_speed( struct i2c_engine *i2c_engine, uint32_t speed) { struct i2c_hw_engine_dce110 *hw_engine = FROM_I2C_ENGINE(i2c_engine); if (speed) { if (hw_engine->i2c_mask->DC_I2C_DDC1_START_STOP_TIMING_CNTL) REG_UPDATE_N( SPEED, 3, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_PRESCALE), hw_engine->reference_frequency / speed, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_THRESHOLD), 2, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_START_STOP_TIMING_CNTL), speed > 50 ? 2:1); else REG_UPDATE_N( SPEED, 2, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_PRESCALE), hw_engine->reference_frequency / speed, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_THRESHOLD), 2); } } static inline void reset_hw_engine(struct engine *engine) { struct i2c_hw_engine_dce110 *hw_engine = FROM_ENGINE(engine); REG_UPDATE_2( DC_I2C_CONTROL, DC_I2C_SW_STATUS_RESET, 1, DC_I2C_SW_STATUS_RESET, 1); } static bool is_hw_busy(struct engine *engine) { struct i2c_hw_engine_dce110 *hw_engine = FROM_ENGINE(engine); uint32_t i2c_sw_status = 0; REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_IDLE) return false; reset_hw_engine(engine); REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); return i2c_sw_status != DC_I2C_STATUS__DC_I2C_STATUS_IDLE; } #define STOP_TRANS_PREDICAT \ ((hw_engine->transaction_count == 3) || \ (request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) || \ (request->action & I2CAUX_TRANSACTION_ACTION_I2C_READ)) #define SET_I2C_TRANSACTION(id) \ do { \ REG_UPDATE_N(DC_I2C_TRANSACTION##id, 5, \ FN(DC_I2C_TRANSACTION0, DC_I2C_STOP_ON_NACK0), 1, \ FN(DC_I2C_TRANSACTION0, DC_I2C_START0), 1, \ FN(DC_I2C_TRANSACTION0, DC_I2C_STOP0), STOP_TRANS_PREDICAT ? 1:0, \ FN(DC_I2C_TRANSACTION0, DC_I2C_RW0), (0 != (request->action & I2CAUX_TRANSACTION_ACTION_I2C_READ)), \ FN(DC_I2C_TRANSACTION0, DC_I2C_COUNT0), length); \ if (STOP_TRANS_PREDICAT) \ last_transaction = true; \ } while (false) static bool process_transaction( struct i2c_hw_engine_dce110 *hw_engine, struct i2c_request_transaction_data *request) { uint32_t length = request->length; uint8_t *buffer = request->data; uint32_t value = 0; bool last_transaction = false; struct dc_context *ctx = NULL; ctx = hw_engine->base.base.base.ctx; switch (hw_engine->transaction_count) { case 0: SET_I2C_TRANSACTION(0); break; case 1: SET_I2C_TRANSACTION(1); break; case 2: SET_I2C_TRANSACTION(2); break; case 3: SET_I2C_TRANSACTION(3); break; default: /* TODO Warning ? */ break; } /* Write the I2C address and I2C data * into the hardware circular buffer, one byte per entry. * As an example, the 7-bit I2C slave address for CRT monitor * for reading DDC/EDID information is 0b1010001. * For an I2C send operation, the LSB must be programmed to 0; * for I2C receive operation, the LSB must be programmed to 1. */ if (hw_engine->transaction_count == 0) { value = REG_SET_4(DC_I2C_DATA, 0, DC_I2C_DATA_RW, false, DC_I2C_DATA, request->address, DC_I2C_INDEX, 0, DC_I2C_INDEX_WRITE, 1); hw_engine->buffer_used_write = 0; } else value = REG_SET_2(DC_I2C_DATA, 0, DC_I2C_DATA_RW, false, DC_I2C_DATA, request->address); hw_engine->buffer_used_write++; if (!(request->action & I2CAUX_TRANSACTION_ACTION_I2C_READ)) { while (length) { REG_SET_2(DC_I2C_DATA, value, DC_I2C_INDEX_WRITE, 0, DC_I2C_DATA, *buffer++); hw_engine->buffer_used_write++; --length; } } ++hw_engine->transaction_count; hw_engine->buffer_used_bytes += length + 1; return last_transaction; } static void execute_transaction( struct i2c_hw_engine_dce110 *hw_engine) { REG_UPDATE_N(SETUP, 5, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_DATA_DRIVE_EN), 0, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_CLK_DRIVE_EN), 0, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_DATA_DRIVE_SEL), 0, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_INTRA_TRANSACTION_DELAY), 0, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_INTRA_BYTE_DELAY), 0); REG_UPDATE_5(DC_I2C_CONTROL, DC_I2C_SOFT_RESET, 0, DC_I2C_SW_STATUS_RESET, 0, DC_I2C_SEND_RESET, 0, DC_I2C_GO, 0, DC_I2C_TRANSACTION_COUNT, hw_engine->transaction_count - 1); /* start I2C transfer */ REG_UPDATE(DC_I2C_CONTROL, DC_I2C_GO, 1); /* all transactions were executed and HW buffer became empty * (even though it actually happens when status becomes DONE) */ hw_engine->transaction_count = 0; hw_engine->buffer_used_bytes = 0; } static void submit_channel_request( struct i2c_engine *engine, struct i2c_request_transaction_data *request) { request->status = I2C_CHANNEL_OPERATION_SUCCEEDED; if (!process_transaction(FROM_I2C_ENGINE(engine), request)) return; if (is_hw_busy(&engine->base)) { request->status = I2C_CHANNEL_OPERATION_ENGINE_BUSY; return; } execute_transaction(FROM_I2C_ENGINE(engine)); } static void process_channel_reply( struct i2c_engine *engine, struct i2c_reply_transaction_data *reply) { uint32_t length = reply->length; uint8_t *buffer = reply->data; struct i2c_hw_engine_dce110 *hw_engine = FROM_I2C_ENGINE(engine); REG_SET_3(DC_I2C_DATA, 0, DC_I2C_INDEX, hw_engine->buffer_used_write, DC_I2C_DATA_RW, 1, DC_I2C_INDEX_WRITE, 1); while (length) { /* after reading the status, * if the I2C operation executed successfully * (i.e. DC_I2C_STATUS_DONE = 1) then the I2C controller * should read data bytes from I2C circular data buffer */ uint32_t i2c_data; REG_GET(DC_I2C_DATA, DC_I2C_DATA, &i2c_data); *buffer++ = i2c_data; --length; } } static enum i2c_channel_operation_result get_channel_status( struct i2c_engine *i2c_engine, uint8_t *returned_bytes) { uint32_t i2c_sw_status = 0; struct i2c_hw_engine_dce110 *hw_engine = FROM_I2C_ENGINE(i2c_engine); uint32_t value = REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_SW) return I2C_CHANNEL_OPERATION_ENGINE_BUSY; else if (value & hw_engine->i2c_mask->DC_I2C_SW_STOPPED_ON_NACK) return I2C_CHANNEL_OPERATION_NO_RESPONSE; else if (value & hw_engine->i2c_mask->DC_I2C_SW_TIMEOUT) return I2C_CHANNEL_OPERATION_TIMEOUT; else if (value & hw_engine->i2c_mask->DC_I2C_SW_ABORTED) return I2C_CHANNEL_OPERATION_FAILED; else if (value & hw_engine->i2c_mask->DC_I2C_SW_DONE) return I2C_CHANNEL_OPERATION_SUCCEEDED; /* * this is the case when HW used for communication, I2C_SW_STATUS * could be zero */ return I2C_CHANNEL_OPERATION_SUCCEEDED; } static uint32_t get_hw_buffer_available_size( const struct i2c_hw_engine *engine) { return I2C_HW_BUFFER_SIZE - FROM_I2C_HW_ENGINE(engine)->buffer_used_bytes; } static uint32_t get_transaction_timeout( const struct i2c_hw_engine *engine, uint32_t length) { uint32_t speed = engine->base.funcs->get_speed(&engine->base); uint32_t period_timeout; uint32_t num_of_clock_stretches; if (!speed) return 0; period_timeout = (1000 * TRANSACTION_TIMEOUT_IN_I2C_CLOCKS) / speed; num_of_clock_stretches = 1 + (length << 3) + 1; num_of_clock_stretches += (FROM_I2C_HW_ENGINE(engine)->buffer_used_bytes << 3) + (FROM_I2C_HW_ENGINE(engine)->transaction_count << 1); return period_timeout * num_of_clock_stretches; } static void destroy( struct i2c_engine **i2c_engine) { struct i2c_hw_engine_dce110 *engine_dce110 = FROM_I2C_ENGINE(*i2c_engine); dal_i2c_hw_engine_destruct(&engine_dce110->base); kfree(engine_dce110); *i2c_engine = NULL; } static const struct i2c_engine_funcs i2c_engine_funcs = { .destroy = destroy, .get_speed = get_speed, .set_speed = set_speed, .setup_engine = setup_engine, .submit_channel_request = submit_channel_request, .process_channel_reply = process_channel_reply, .get_channel_status = get_channel_status, .acquire_engine = dal_i2c_hw_engine_acquire_engine, }; static const struct engine_funcs engine_funcs = { .release_engine = release_engine, .get_engine_type = dal_i2c_hw_engine_get_engine_type, .acquire = dal_i2c_engine_acquire, .submit_request = dal_i2c_hw_engine_submit_request, }; static const struct i2c_hw_engine_funcs i2c_hw_engine_funcs = { .get_hw_buffer_available_size = get_hw_buffer_available_size, .get_transaction_timeout = get_transaction_timeout, .wait_on_operation_result = dal_i2c_hw_engine_wait_on_operation_result, }; static void construct( struct i2c_hw_engine_dce110 *hw_engine, const struct i2c_hw_engine_dce110_create_arg *arg) { uint32_t xtal_ref_div = 0; dal_i2c_hw_engine_construct(&hw_engine->base, arg->ctx); hw_engine->base.base.base.funcs = &engine_funcs; hw_engine->base.base.funcs = &i2c_engine_funcs; hw_engine->base.funcs = &i2c_hw_engine_funcs; hw_engine->base.default_speed = arg->default_speed; hw_engine->regs = arg->regs; hw_engine->i2c_shift = arg->i2c_shift; hw_engine->i2c_mask = arg->i2c_mask; hw_engine->engine_id = arg->engine_id; hw_engine->buffer_used_bytes = 0; hw_engine->transaction_count = 0; hw_engine->engine_keep_power_up_count = 1; REG_GET(MICROSECOND_TIME_BASE_DIV, XTAL_REF_DIV, &xtal_ref_div); if (xtal_ref_div == 0) { DC_LOG_WARNING("Invalid base timer divider [%s]\n", __func__); xtal_ref_div = 2; } /*Calculating Reference Clock by divding original frequency by * XTAL_REF_DIV. * At upper level, uint32_t reference_frequency = * dal_i2caux_get_reference_clock(as) >> 1 * which already divided by 2. So we need x2 to get original * reference clock from ppll_info */ hw_engine->reference_frequency = (arg->reference_frequency * 2) / xtal_ref_div; } struct i2c_engine *dal_i2c_hw_engine_dce110_create( const struct i2c_hw_engine_dce110_create_arg *arg) { struct i2c_hw_engine_dce110 *engine_dce10; if (!arg) { ASSERT_CRITICAL(false); return NULL; } if (!arg->reference_frequency) { ASSERT_CRITICAL(false); return NULL; } engine_dce10 = kzalloc(sizeof(struct i2c_hw_engine_dce110), GFP_KERNEL); if (!engine_dce10) { ASSERT_CRITICAL(false); return NULL; } construct(engine_dce10, arg); return &engine_dce10->base.base; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1