Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 7332 | 99.97% | 2 | 66.67% |
Thierry Reding | 2 | 0.03% | 1 | 33.33% |
Total | 7334 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright: 2017 Cadence Design Systems, Inc. * * Author: Boris Brezillon <boris.brezillon@bootlin.com> */ #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_panel.h> #include <video/mipi_display.h> #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_graph.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #define IP_CONF 0x0 #define SP_HS_FIFO_DEPTH(x) (((x) & GENMASK(30, 26)) >> 26) #define SP_LP_FIFO_DEPTH(x) (((x) & GENMASK(25, 21)) >> 21) #define VRS_FIFO_DEPTH(x) (((x) & GENMASK(20, 16)) >> 16) #define DIRCMD_FIFO_DEPTH(x) (((x) & GENMASK(15, 13)) >> 13) #define SDI_IFACE_32 BIT(12) #define INTERNAL_DATAPATH_32 (0 << 10) #define INTERNAL_DATAPATH_16 (1 << 10) #define INTERNAL_DATAPATH_8 (3 << 10) #define INTERNAL_DATAPATH_SIZE ((x) & GENMASK(11, 10)) #define NUM_IFACE(x) ((((x) & GENMASK(9, 8)) >> 8) + 1) #define MAX_LANE_NB(x) (((x) & GENMASK(7, 6)) >> 6) #define RX_FIFO_DEPTH(x) ((x) & GENMASK(5, 0)) #define MCTL_MAIN_DATA_CTL 0x4 #define TE_MIPI_POLLING_EN BIT(25) #define TE_HW_POLLING_EN BIT(24) #define DISP_EOT_GEN BIT(18) #define HOST_EOT_GEN BIT(17) #define DISP_GEN_CHECKSUM BIT(16) #define DISP_GEN_ECC BIT(15) #define BTA_EN BIT(14) #define READ_EN BIT(13) #define REG_TE_EN BIT(12) #define IF_TE_EN(x) BIT(8 + (x)) #define TVG_SEL BIT(6) #define VID_EN BIT(5) #define IF_VID_SELECT(x) ((x) << 2) #define IF_VID_SELECT_MASK GENMASK(3, 2) #define IF_VID_MODE BIT(1) #define LINK_EN BIT(0) #define MCTL_MAIN_PHY_CTL 0x8 #define HS_INVERT_DAT(x) BIT(19 + ((x) * 2)) #define SWAP_PINS_DAT(x) BIT(18 + ((x) * 2)) #define HS_INVERT_CLK BIT(17) #define SWAP_PINS_CLK BIT(16) #define HS_SKEWCAL_EN BIT(15) #define WAIT_BURST_TIME(x) ((x) << 10) #define DATA_ULPM_EN(x) BIT(6 + (x)) #define CLK_ULPM_EN BIT(5) #define CLK_CONTINUOUS BIT(4) #define DATA_LANE_EN(x) BIT((x) - 1) #define MCTL_MAIN_EN 0xc #define DATA_FORCE_STOP BIT(17) #define CLK_FORCE_STOP BIT(16) #define IF_EN(x) BIT(13 + (x)) #define DATA_LANE_ULPM_REQ(l) BIT(9 + (l)) #define CLK_LANE_ULPM_REQ BIT(8) #define DATA_LANE_START(x) BIT(4 + (x)) #define CLK_LANE_EN BIT(3) #define PLL_START BIT(0) #define MCTL_DPHY_CFG0 0x10 #define DPHY_C_RSTB BIT(20) #define DPHY_D_RSTB(x) GENMASK(15 + (x), 16) #define DPHY_PLL_PDN BIT(10) #define DPHY_CMN_PDN BIT(9) #define DPHY_C_PDN BIT(8) #define DPHY_D_PDN(x) GENMASK(3 + (x), 4) #define DPHY_ALL_D_PDN GENMASK(7, 4) #define DPHY_PLL_PSO BIT(1) #define DPHY_CMN_PSO BIT(0) #define MCTL_DPHY_TIMEOUT1 0x14 #define HSTX_TIMEOUT(x) ((x) << 4) #define HSTX_TIMEOUT_MAX GENMASK(17, 0) #define CLK_DIV(x) (x) #define CLK_DIV_MAX GENMASK(3, 0) #define MCTL_DPHY_TIMEOUT2 0x18 #define LPRX_TIMEOUT(x) (x) #define MCTL_ULPOUT_TIME 0x1c #define DATA_LANE_ULPOUT_TIME(x) ((x) << 9) #define CLK_LANE_ULPOUT_TIME(x) (x) #define MCTL_3DVIDEO_CTL 0x20 #define VID_VSYNC_3D_EN BIT(7) #define VID_VSYNC_3D_LR BIT(5) #define VID_VSYNC_3D_SECOND_EN BIT(4) #define VID_VSYNC_3DFORMAT_LINE (0 << 2) #define VID_VSYNC_3DFORMAT_FRAME (1 << 2) #define VID_VSYNC_3DFORMAT_PIXEL (2 << 2) #define VID_VSYNC_3DMODE_OFF 0 #define VID_VSYNC_3DMODE_PORTRAIT 1 #define VID_VSYNC_3DMODE_LANDSCAPE 2 #define MCTL_MAIN_STS 0x24 #define MCTL_MAIN_STS_CTL 0x130 #define MCTL_MAIN_STS_CLR 0x150 #define MCTL_MAIN_STS_FLAG 0x170 #define HS_SKEWCAL_DONE BIT(11) #define IF_UNTERM_PKT_ERR(x) BIT(8 + (x)) #define LPRX_TIMEOUT_ERR BIT(7) #define HSTX_TIMEOUT_ERR BIT(6) #define DATA_LANE_RDY(l) BIT(2 + (l)) #define CLK_LANE_RDY BIT(1) #define PLL_LOCKED BIT(0) #define MCTL_DPHY_ERR 0x28 #define MCTL_DPHY_ERR_CTL1 0x148 #define MCTL_DPHY_ERR_CLR 0x168 #define MCTL_DPHY_ERR_FLAG 0x188 #define ERR_CONT_LP(x, l) BIT(18 + ((x) * 4) + (l)) #define ERR_CONTROL(l) BIT(14 + (l)) #define ERR_SYNESC(l) BIT(10 + (l)) #define ERR_ESC(l) BIT(6 + (l)) #define MCTL_DPHY_ERR_CTL2 0x14c #define ERR_CONT_LP_EDGE(x, l) BIT(12 + ((x) * 4) + (l)) #define ERR_CONTROL_EDGE(l) BIT(8 + (l)) #define ERR_SYN_ESC_EDGE(l) BIT(4 + (l)) #define ERR_ESC_EDGE(l) BIT(0 + (l)) #define MCTL_LANE_STS 0x2c #define PPI_C_TX_READY_HS BIT(18) #define DPHY_PLL_LOCK BIT(17) #define PPI_D_RX_ULPS_ESC(x) (((x) & GENMASK(15, 12)) >> 12) #define LANE_STATE_START 0 #define LANE_STATE_IDLE 1 #define LANE_STATE_WRITE 2 #define LANE_STATE_ULPM 3 #define LANE_STATE_READ 4 #define DATA_LANE_STATE(l, val) \ (((val) >> (2 + 2 * (l) + ((l) ? 1 : 0))) & GENMASK((l) ? 1 : 2, 0)) #define CLK_LANE_STATE_HS 2 #define CLK_LANE_STATE(val) ((val) & GENMASK(1, 0)) #define DSC_MODE_CTL 0x30 #define DSC_MODE_EN BIT(0) #define DSC_CMD_SEND 0x34 #define DSC_SEND_PPS BIT(0) #define DSC_EXECUTE_QUEUE BIT(1) #define DSC_PPS_WRDAT 0x38 #define DSC_MODE_STS 0x3c #define DSC_PPS_DONE BIT(1) #define DSC_EXEC_DONE BIT(2) #define CMD_MODE_CTL 0x70 #define IF_LP_EN(x) BIT(9 + (x)) #define IF_VCHAN_ID(x, c) ((c) << ((x) * 2)) #define CMD_MODE_CTL2 0x74 #define TE_TIMEOUT(x) ((x) << 11) #define FILL_VALUE(x) ((x) << 3) #define ARB_IF_WITH_HIGHEST_PRIORITY(x) ((x) << 1) #define ARB_ROUND_ROBIN_MODE BIT(0) #define CMD_MODE_STS 0x78 #define CMD_MODE_STS_CTL 0x134 #define CMD_MODE_STS_CLR 0x154 #define CMD_MODE_STS_FLAG 0x174 #define ERR_IF_UNDERRUN(x) BIT(4 + (x)) #define ERR_UNWANTED_READ BIT(3) #define ERR_TE_MISS BIT(2) #define ERR_NO_TE BIT(1) #define CSM_RUNNING BIT(0) #define DIRECT_CMD_SEND 0x80 #define DIRECT_CMD_MAIN_SETTINGS 0x84 #define TRIGGER_VAL(x) ((x) << 25) #define CMD_LP_EN BIT(24) #define CMD_SIZE(x) ((x) << 16) #define CMD_VCHAN_ID(x) ((x) << 14) #define CMD_DATATYPE(x) ((x) << 8) #define CMD_LONG BIT(3) #define WRITE_CMD 0 #define READ_CMD 1 #define TE_REQ 4 #define TRIGGER_REQ 5 #define BTA_REQ 6 #define DIRECT_CMD_STS 0x88 #define DIRECT_CMD_STS_CTL 0x138 #define DIRECT_CMD_STS_CLR 0x158 #define DIRECT_CMD_STS_FLAG 0x178 #define RCVD_ACK_VAL(val) ((val) >> 16) #define RCVD_TRIGGER_VAL(val) (((val) & GENMASK(14, 11)) >> 11) #define READ_COMPLETED_WITH_ERR BIT(10) #define BTA_FINISHED BIT(9) #define BTA_COMPLETED BIT(8) #define TE_RCVD BIT(7) #define TRIGGER_RCVD BIT(6) #define ACK_WITH_ERR_RCVD BIT(5) #define ACK_RCVD BIT(4) #define READ_COMPLETED BIT(3) #define TRIGGER_COMPLETED BIT(2) #define WRITE_COMPLETED BIT(1) #define SENDING_CMD BIT(0) #define DIRECT_CMD_STOP_READ 0x8c #define DIRECT_CMD_WRDATA 0x90 #define DIRECT_CMD_FIFO_RST 0x94 #define DIRECT_CMD_RDDATA 0xa0 #define DIRECT_CMD_RD_PROPS 0xa4 #define RD_DCS BIT(18) #define RD_VCHAN_ID(val) (((val) >> 16) & GENMASK(1, 0)) #define RD_SIZE(val) ((val) & GENMASK(15, 0)) #define DIRECT_CMD_RD_STS 0xa8 #define DIRECT_CMD_RD_STS_CTL 0x13c #define DIRECT_CMD_RD_STS_CLR 0x15c #define DIRECT_CMD_RD_STS_FLAG 0x17c #define ERR_EOT_WITH_ERR BIT(8) #define ERR_MISSING_EOT BIT(7) #define ERR_WRONG_LENGTH BIT(6) #define ERR_OVERSIZE BIT(5) #define ERR_RECEIVE BIT(4) #define ERR_UNDECODABLE BIT(3) #define ERR_CHECKSUM BIT(2) #define ERR_UNCORRECTABLE BIT(1) #define ERR_FIXED BIT(0) #define VID_MAIN_CTL 0xb0 #define VID_IGNORE_MISS_VSYNC BIT(31) #define VID_FIELD_SW BIT(28) #define VID_INTERLACED_EN BIT(27) #define RECOVERY_MODE(x) ((x) << 25) #define RECOVERY_MODE_NEXT_HSYNC 0 #define RECOVERY_MODE_NEXT_STOP_POINT 2 #define RECOVERY_MODE_NEXT_VSYNC 3 #define REG_BLKEOL_MODE(x) ((x) << 23) #define REG_BLKLINE_MODE(x) ((x) << 21) #define REG_BLK_MODE_NULL_PKT 0 #define REG_BLK_MODE_BLANKING_PKT 1 #define REG_BLK_MODE_LP 2 #define SYNC_PULSE_HORIZONTAL BIT(20) #define SYNC_PULSE_ACTIVE BIT(19) #define BURST_MODE BIT(18) #define VID_PIXEL_MODE_MASK GENMASK(17, 14) #define VID_PIXEL_MODE_RGB565 (0 << 14) #define VID_PIXEL_MODE_RGB666_PACKED (1 << 14) #define VID_PIXEL_MODE_RGB666 (2 << 14) #define VID_PIXEL_MODE_RGB888 (3 << 14) #define VID_PIXEL_MODE_RGB101010 (4 << 14) #define VID_PIXEL_MODE_RGB121212 (5 << 14) #define VID_PIXEL_MODE_YUV420 (8 << 14) #define VID_PIXEL_MODE_YUV422_PACKED (9 << 14) #define VID_PIXEL_MODE_YUV422 (10 << 14) #define VID_PIXEL_MODE_YUV422_24B (11 << 14) #define VID_PIXEL_MODE_DSC_COMP (12 << 14) #define VID_DATATYPE(x) ((x) << 8) #define VID_VIRTCHAN_ID(iface, x) ((x) << (4 + (iface) * 2)) #define STOP_MODE(x) ((x) << 2) #define START_MODE(x) (x) #define VID_VSIZE1 0xb4 #define VFP_LEN(x) ((x) << 12) #define VBP_LEN(x) ((x) << 6) #define VSA_LEN(x) (x) #define VID_VSIZE2 0xb8 #define VACT_LEN(x) (x) #define VID_HSIZE1 0xc0 #define HBP_LEN(x) ((x) << 16) #define HSA_LEN(x) (x) #define VID_HSIZE2 0xc4 #define HFP_LEN(x) ((x) << 16) #define HACT_LEN(x) (x) #define VID_BLKSIZE1 0xcc #define BLK_EOL_PKT_LEN(x) ((x) << 15) #define BLK_LINE_EVENT_PKT_LEN(x) (x) #define VID_BLKSIZE2 0xd0 #define BLK_LINE_PULSE_PKT_LEN(x) (x) #define VID_PKT_TIME 0xd8 #define BLK_EOL_DURATION(x) (x) #define VID_DPHY_TIME 0xdc #define REG_WAKEUP_TIME(x) ((x) << 17) #define REG_LINE_DURATION(x) (x) #define VID_ERR_COLOR1 0xe0 #define COL_GREEN(x) ((x) << 12) #define COL_RED(x) (x) #define VID_ERR_COLOR2 0xe4 #define PAD_VAL(x) ((x) << 12) #define COL_BLUE(x) (x) #define VID_VPOS 0xe8 #define LINE_VAL(val) (((val) & GENMASK(14, 2)) >> 2) #define LINE_POS(val) ((val) & GENMASK(1, 0)) #define VID_HPOS 0xec #define HORIZ_VAL(val) (((val) & GENMASK(17, 3)) >> 3) #define HORIZ_POS(val) ((val) & GENMASK(2, 0)) #define VID_MODE_STS 0xf0 #define VID_MODE_STS_CTL 0x140 #define VID_MODE_STS_CLR 0x160 #define VID_MODE_STS_FLAG 0x180 #define VSG_RECOVERY BIT(10) #define ERR_VRS_WRONG_LEN BIT(9) #define ERR_LONG_READ BIT(8) #define ERR_LINE_WRITE BIT(7) #define ERR_BURST_WRITE BIT(6) #define ERR_SMALL_HEIGHT BIT(5) #define ERR_SMALL_LEN BIT(4) #define ERR_MISSING_VSYNC BIT(3) #define ERR_MISSING_HSYNC BIT(2) #define ERR_MISSING_DATA BIT(1) #define VSG_RUNNING BIT(0) #define VID_VCA_SETTING1 0xf4 #define BURST_LP BIT(16) #define MAX_BURST_LIMIT(x) (x) #define VID_VCA_SETTING2 0xf8 #define MAX_LINE_LIMIT(x) ((x) << 16) #define EXACT_BURST_LIMIT(x) (x) #define TVG_CTL 0xfc #define TVG_STRIPE_SIZE(x) ((x) << 5) #define TVG_MODE_MASK GENMASK(4, 3) #define TVG_MODE_SINGLE_COLOR (0 << 3) #define TVG_MODE_VSTRIPES (2 << 3) #define TVG_MODE_HSTRIPES (3 << 3) #define TVG_STOPMODE_MASK GENMASK(2, 1) #define TVG_STOPMODE_EOF (0 << 1) #define TVG_STOPMODE_EOL (1 << 1) #define TVG_STOPMODE_NOW (2 << 1) #define TVG_RUN BIT(0) #define TVG_IMG_SIZE 0x100 #define TVG_NBLINES(x) ((x) << 16) #define TVG_LINE_SIZE(x) (x) #define TVG_COLOR1 0x104 #define TVG_COL1_GREEN(x) ((x) << 12) #define TVG_COL1_RED(x) (x) #define TVG_COLOR1_BIS 0x108 #define TVG_COL1_BLUE(x) (x) #define TVG_COLOR2 0x10c #define TVG_COL2_GREEN(x) ((x) << 12) #define TVG_COL2_RED(x) (x) #define TVG_COLOR2_BIS 0x110 #define TVG_COL2_BLUE(x) (x) #define TVG_STS 0x114 #define TVG_STS_CTL 0x144 #define TVG_STS_CLR 0x164 #define TVG_STS_FLAG 0x184 #define TVG_STS_RUNNING BIT(0) #define STS_CTL_EDGE(e) ((e) << 16) #define DPHY_LANES_MAP 0x198 #define DAT_REMAP_CFG(b, l) ((l) << ((b) * 8)) #define DPI_IRQ_EN 0x1a0 #define DPI_IRQ_CLR 0x1a4 #define DPI_IRQ_STS 0x1a8 #define PIXEL_BUF_OVERFLOW BIT(0) #define DPI_CFG 0x1ac #define DPI_CFG_FIFO_DEPTH(x) ((x) >> 16) #define DPI_CFG_FIFO_LEVEL(x) ((x) & GENMASK(15, 0)) #define TEST_GENERIC 0x1f0 #define TEST_STATUS(x) ((x) >> 16) #define TEST_CTRL(x) (x) #define ID_REG 0x1fc #define REV_VENDOR_ID(x) (((x) & GENMASK(31, 20)) >> 20) #define REV_PRODUCT_ID(x) (((x) & GENMASK(19, 12)) >> 12) #define REV_HW(x) (((x) & GENMASK(11, 8)) >> 8) #define REV_MAJOR(x) (((x) & GENMASK(7, 4)) >> 4) #define REV_MINOR(x) ((x) & GENMASK(3, 0)) #define DSI_OUTPUT_PORT 0 #define DSI_INPUT_PORT(inputid) (1 + (inputid)) #define DSI_HBP_FRAME_OVERHEAD 12 #define DSI_HSA_FRAME_OVERHEAD 14 #define DSI_HFP_FRAME_OVERHEAD 6 #define DSI_HSS_VSS_VSE_FRAME_OVERHEAD 4 #define DSI_BLANKING_FRAME_OVERHEAD 6 #define DSI_NULL_FRAME_OVERHEAD 6 #define DSI_EOT_PKT_SIZE 4 #define REG_WAKEUP_TIME_NS 800 #define DPHY_PLL_RATE_HZ 108000000 /* DPHY registers */ #define DPHY_PMA_CMN(reg) (reg) #define DPHY_PMA_LCLK(reg) (0x100 + (reg)) #define DPHY_PMA_LDATA(lane, reg) (0x200 + ((lane) * 0x100) + (reg)) #define DPHY_PMA_RCLK(reg) (0x600 + (reg)) #define DPHY_PMA_RDATA(lane, reg) (0x700 + ((lane) * 0x100) + (reg)) #define DPHY_PCS(reg) (0xb00 + (reg)) #define DPHY_CMN_SSM DPHY_PMA_CMN(0x20) #define DPHY_CMN_SSM_EN BIT(0) #define DPHY_CMN_TX_MODE_EN BIT(9) #define DPHY_CMN_PWM DPHY_PMA_CMN(0x40) #define DPHY_CMN_PWM_DIV(x) ((x) << 20) #define DPHY_CMN_PWM_LOW(x) ((x) << 10) #define DPHY_CMN_PWM_HIGH(x) (x) #define DPHY_CMN_FBDIV DPHY_PMA_CMN(0x4c) #define DPHY_CMN_FBDIV_VAL(low, high) (((high) << 11) | ((low) << 22)) #define DPHY_CMN_FBDIV_FROM_REG (BIT(10) | BIT(21)) #define DPHY_CMN_OPIPDIV DPHY_PMA_CMN(0x50) #define DPHY_CMN_IPDIV_FROM_REG BIT(0) #define DPHY_CMN_IPDIV(x) ((x) << 1) #define DPHY_CMN_OPDIV_FROM_REG BIT(6) #define DPHY_CMN_OPDIV(x) ((x) << 7) #define DPHY_PSM_CFG DPHY_PCS(0x4) #define DPHY_PSM_CFG_FROM_REG BIT(0) #define DPHY_PSM_CLK_DIV(x) ((x) << 1) struct cdns_dsi_output { struct mipi_dsi_device *dev; struct drm_panel *panel; struct drm_bridge *bridge; }; enum cdns_dsi_input_id { CDNS_SDI_INPUT, CDNS_DPI_INPUT, CDNS_DSC_INPUT, }; struct cdns_dphy_cfg { u8 pll_ipdiv; u8 pll_opdiv; u16 pll_fbdiv; unsigned long lane_bps; unsigned int nlanes; }; struct cdns_dsi_cfg { unsigned int hfp; unsigned int hsa; unsigned int hbp; unsigned int hact; unsigned int htotal; }; struct cdns_dphy; enum cdns_dphy_clk_lane_cfg { DPHY_CLK_CFG_LEFT_DRIVES_ALL = 0, DPHY_CLK_CFG_LEFT_DRIVES_RIGHT = 1, DPHY_CLK_CFG_LEFT_DRIVES_LEFT = 2, DPHY_CLK_CFG_RIGHT_DRIVES_ALL = 3, }; struct cdns_dphy_ops { int (*probe)(struct cdns_dphy *dphy); void (*remove)(struct cdns_dphy *dphy); void (*set_psm_div)(struct cdns_dphy *dphy, u8 div); void (*set_clk_lane_cfg)(struct cdns_dphy *dphy, enum cdns_dphy_clk_lane_cfg cfg); void (*set_pll_cfg)(struct cdns_dphy *dphy, const struct cdns_dphy_cfg *cfg); unsigned long (*get_wakeup_time_ns)(struct cdns_dphy *dphy); }; struct cdns_dphy { struct cdns_dphy_cfg cfg; void __iomem *regs; struct clk *psm_clk; struct clk *pll_ref_clk; const struct cdns_dphy_ops *ops; }; struct cdns_dsi_input { enum cdns_dsi_input_id id; struct drm_bridge bridge; }; struct cdns_dsi { struct mipi_dsi_host base; void __iomem *regs; struct cdns_dsi_input input; struct cdns_dsi_output output; unsigned int direct_cmd_fifo_depth; unsigned int rx_fifo_depth; struct completion direct_cmd_comp; struct clk *dsi_p_clk; struct reset_control *dsi_p_rst; struct clk *dsi_sys_clk; bool link_initialized; struct cdns_dphy *dphy; }; static inline struct cdns_dsi *input_to_dsi(struct cdns_dsi_input *input) { return container_of(input, struct cdns_dsi, input); } static inline struct cdns_dsi *to_cdns_dsi(struct mipi_dsi_host *host) { return container_of(host, struct cdns_dsi, base); } static inline struct cdns_dsi_input * bridge_to_cdns_dsi_input(struct drm_bridge *bridge) { return container_of(bridge, struct cdns_dsi_input, bridge); } static int cdns_dsi_get_dphy_pll_cfg(struct cdns_dphy *dphy, struct cdns_dphy_cfg *cfg, unsigned int dpi_htotal, unsigned int dpi_bpp, unsigned int dpi_hz, unsigned int dsi_htotal, unsigned int dsi_nlanes, unsigned int *dsi_hfp_ext) { u64 dlane_bps, dlane_bps_max, fbdiv, fbdiv_max, adj_dsi_htotal; unsigned long pll_ref_hz = clk_get_rate(dphy->pll_ref_clk); memset(cfg, 0, sizeof(*cfg)); cfg->nlanes = dsi_nlanes; if (pll_ref_hz < 9600000 || pll_ref_hz >= 150000000) return -EINVAL; else if (pll_ref_hz < 19200000) cfg->pll_ipdiv = 1; else if (pll_ref_hz < 38400000) cfg->pll_ipdiv = 2; else if (pll_ref_hz < 76800000) cfg->pll_ipdiv = 4; else cfg->pll_ipdiv = 8; /* * Make sure DSI htotal is aligned on a lane boundary when calculating * the expected data rate. This is done by extending HFP in case of * misalignment. */ adj_dsi_htotal = dsi_htotal; if (dsi_htotal % dsi_nlanes) adj_dsi_htotal += dsi_nlanes - (dsi_htotal % dsi_nlanes); dlane_bps = (u64)dpi_hz * adj_dsi_htotal; /* data rate in bytes/sec is not an integer, refuse the mode. */ if (do_div(dlane_bps, dsi_nlanes * dpi_htotal)) return -EINVAL; /* data rate was in bytes/sec, convert to bits/sec. */ dlane_bps *= 8; if (dlane_bps > 2500000000UL || dlane_bps < 160000000UL) return -EINVAL; else if (dlane_bps >= 1250000000) cfg->pll_opdiv = 1; else if (dlane_bps >= 630000000) cfg->pll_opdiv = 2; else if (dlane_bps >= 320000000) cfg->pll_opdiv = 4; else if (dlane_bps >= 160000000) cfg->pll_opdiv = 8; /* * Allow a deviation of 0.2% on the per-lane data rate to try to * recover a potential mismatch between DPI and PPI clks. */ dlane_bps_max = dlane_bps + DIV_ROUND_DOWN_ULL(dlane_bps, 500); fbdiv_max = DIV_ROUND_DOWN_ULL(dlane_bps_max * 2 * cfg->pll_opdiv * cfg->pll_ipdiv, pll_ref_hz); fbdiv = DIV_ROUND_UP_ULL(dlane_bps * 2 * cfg->pll_opdiv * cfg->pll_ipdiv, pll_ref_hz); /* * Iterate over all acceptable fbdiv and try to find an adjusted DSI * htotal length providing an exact match. * * Note that we could do something even trickier by relying on the fact * that a new line is not necessarily aligned on a lane boundary, so, * by making adj_dsi_htotal non aligned on a dsi_lanes we can improve a * bit the precision. With this, the step would be * * pll_ref_hz / (2 * opdiv * ipdiv * nlanes) * * instead of * * pll_ref_hz / (2 * opdiv * ipdiv) * * The drawback of this approach is that we would need to make sure the * number or lines is a multiple of the realignment periodicity which is * a function of the number of lanes and the original misalignment. For * example, for NLANES = 4 and HTOTAL % NLANES = 3, it takes 4 lines * to realign on a lane: * LINE 0: expected number of bytes, starts emitting first byte of * LINE 1 on LANE 3 * LINE 1: expected number of bytes, starts emitting first 2 bytes of * LINE 2 on LANES 2 and 3 * LINE 2: expected number of bytes, starts emitting first 3 bytes of * of LINE 3 on LANES 1, 2 and 3 * LINE 3: one byte less, now things are realigned on LANE 0 for LINE 4 * * I figured this extra complexity was not worth the benefit, but if * someone really has unfixable mismatch, that would be something to * investigate. */ for (; fbdiv <= fbdiv_max; fbdiv++) { u32 rem; adj_dsi_htotal = (u64)fbdiv * pll_ref_hz * dsi_nlanes * dpi_htotal; /* * Do the division in 2 steps to avoid an overflow on the * divider. */ rem = do_div(adj_dsi_htotal, dpi_hz); if (rem) continue; rem = do_div(adj_dsi_htotal, cfg->pll_opdiv * cfg->pll_ipdiv * 2 * 8); if (rem) continue; cfg->pll_fbdiv = fbdiv; *dsi_hfp_ext = adj_dsi_htotal - dsi_htotal; break; } /* No match, let's just reject the display mode. */ if (!cfg->pll_fbdiv) return -EINVAL; dlane_bps = DIV_ROUND_DOWN_ULL((u64)dpi_hz * adj_dsi_htotal * 8, dsi_nlanes * dpi_htotal); cfg->lane_bps = dlane_bps; return 0; } static int cdns_dphy_setup_psm(struct cdns_dphy *dphy) { unsigned long psm_clk_hz = clk_get_rate(dphy->psm_clk); unsigned long psm_div; if (!psm_clk_hz || psm_clk_hz > 100000000) return -EINVAL; psm_div = DIV_ROUND_CLOSEST(psm_clk_hz, 1000000); if (dphy->ops->set_psm_div) dphy->ops->set_psm_div(dphy, psm_div); return 0; } static void cdns_dphy_set_clk_lane_cfg(struct cdns_dphy *dphy, enum cdns_dphy_clk_lane_cfg cfg) { if (dphy->ops->set_clk_lane_cfg) dphy->ops->set_clk_lane_cfg(dphy, cfg); } static void cdns_dphy_set_pll_cfg(struct cdns_dphy *dphy, const struct cdns_dphy_cfg *cfg) { if (dphy->ops->set_pll_cfg) dphy->ops->set_pll_cfg(dphy, cfg); } static unsigned long cdns_dphy_get_wakeup_time_ns(struct cdns_dphy *dphy) { return dphy->ops->get_wakeup_time_ns(dphy); } static unsigned int dpi_to_dsi_timing(unsigned int dpi_timing, unsigned int dpi_bpp, unsigned int dsi_pkt_overhead) { unsigned int dsi_timing = DIV_ROUND_UP(dpi_timing * dpi_bpp, 8); if (dsi_timing < dsi_pkt_overhead) dsi_timing = 0; else dsi_timing -= dsi_pkt_overhead; return dsi_timing; } static int cdns_dsi_mode2cfg(struct cdns_dsi *dsi, const struct drm_display_mode *mode, struct cdns_dsi_cfg *dsi_cfg, struct cdns_dphy_cfg *dphy_cfg, bool mode_valid_check) { unsigned long dsi_htotal = 0, dsi_hss_hsa_hse_hbp = 0; struct cdns_dsi_output *output = &dsi->output; unsigned int dsi_hfp_ext = 0, dpi_hfp, tmp; bool sync_pulse = false; int bpp, nlanes, ret; memset(dsi_cfg, 0, sizeof(*dsi_cfg)); if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) sync_pulse = true; bpp = mipi_dsi_pixel_format_to_bpp(output->dev->format); nlanes = output->dev->lanes; if (mode_valid_check) tmp = mode->htotal - (sync_pulse ? mode->hsync_end : mode->hsync_start); else tmp = mode->crtc_htotal - (sync_pulse ? mode->crtc_hsync_end : mode->crtc_hsync_start); dsi_cfg->hbp = dpi_to_dsi_timing(tmp, bpp, DSI_HBP_FRAME_OVERHEAD); dsi_htotal += dsi_cfg->hbp + DSI_HBP_FRAME_OVERHEAD; dsi_hss_hsa_hse_hbp += dsi_cfg->hbp + DSI_HBP_FRAME_OVERHEAD; if (sync_pulse) { if (mode_valid_check) tmp = mode->hsync_end - mode->hsync_start; else tmp = mode->crtc_hsync_end - mode->crtc_hsync_start; dsi_cfg->hsa = dpi_to_dsi_timing(tmp, bpp, DSI_HSA_FRAME_OVERHEAD); dsi_htotal += dsi_cfg->hsa + DSI_HSA_FRAME_OVERHEAD; dsi_hss_hsa_hse_hbp += dsi_cfg->hsa + DSI_HSA_FRAME_OVERHEAD; } dsi_cfg->hact = dpi_to_dsi_timing(mode_valid_check ? mode->hdisplay : mode->crtc_hdisplay, bpp, 0); dsi_htotal += dsi_cfg->hact; if (mode_valid_check) dpi_hfp = mode->hsync_start - mode->hdisplay; else dpi_hfp = mode->crtc_hsync_start - mode->crtc_hdisplay; dsi_cfg->hfp = dpi_to_dsi_timing(dpi_hfp, bpp, DSI_HFP_FRAME_OVERHEAD); dsi_htotal += dsi_cfg->hfp + DSI_HFP_FRAME_OVERHEAD; if (mode_valid_check) ret = cdns_dsi_get_dphy_pll_cfg(dsi->dphy, dphy_cfg, mode->htotal, bpp, mode->clock * 1000, dsi_htotal, nlanes, &dsi_hfp_ext); else ret = cdns_dsi_get_dphy_pll_cfg(dsi->dphy, dphy_cfg, mode->crtc_htotal, bpp, mode->crtc_clock * 1000, dsi_htotal, nlanes, &dsi_hfp_ext); if (ret) return ret; dsi_cfg->hfp += dsi_hfp_ext; dsi_htotal += dsi_hfp_ext; dsi_cfg->htotal = dsi_htotal; /* * Make sure DPI(HFP) > DSI(HSS+HSA+HSE+HBP) to guarantee that the FIFO * is empty before we start a receiving a new line on the DPI * interface. */ if ((u64)dphy_cfg->lane_bps * dpi_hfp * nlanes < (u64)dsi_hss_hsa_hse_hbp * (mode_valid_check ? mode->clock : mode->crtc_clock) * 1000) return -EINVAL; return 0; } static int cdns_dsi_bridge_attach(struct drm_bridge *bridge) { struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge); struct cdns_dsi *dsi = input_to_dsi(input); struct cdns_dsi_output *output = &dsi->output; if (!drm_core_check_feature(bridge->dev, DRIVER_ATOMIC)) { dev_err(dsi->base.dev, "cdns-dsi driver is only compatible with DRM devices supporting atomic updates"); return -ENOTSUPP; } return drm_bridge_attach(bridge->encoder, output->bridge, bridge); } static enum drm_mode_status cdns_dsi_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_mode *mode) { struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge); struct cdns_dsi *dsi = input_to_dsi(input); struct cdns_dsi_output *output = &dsi->output; struct cdns_dphy_cfg dphy_cfg; struct cdns_dsi_cfg dsi_cfg; int bpp, nlanes, ret; /* * VFP_DSI should be less than VFP_DPI and VFP_DSI should be at * least 1. */ if (mode->vtotal - mode->vsync_end < 2) return MODE_V_ILLEGAL; /* VSA_DSI = VSA_DPI and must be at least 2. */ if (mode->vsync_end - mode->vsync_start < 2) return MODE_V_ILLEGAL; /* HACT must be 32-bits aligned. */ bpp = mipi_dsi_pixel_format_to_bpp(output->dev->format); if ((mode->hdisplay * bpp) % 32) return MODE_H_ILLEGAL; nlanes = output->dev->lanes; ret = cdns_dsi_mode2cfg(dsi, mode, &dsi_cfg, &dphy_cfg, true); if (ret) return MODE_CLOCK_RANGE; return MODE_OK; } static void cdns_dsi_bridge_disable(struct drm_bridge *bridge) { struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge); struct cdns_dsi *dsi = input_to_dsi(input); u32 val; val = readl(dsi->regs + MCTL_MAIN_DATA_CTL); val &= ~(IF_VID_SELECT_MASK | IF_VID_MODE | VID_EN | HOST_EOT_GEN | DISP_EOT_GEN); writel(val, dsi->regs + MCTL_MAIN_DATA_CTL); val = readl(dsi->regs + MCTL_MAIN_EN) & ~IF_EN(input->id); writel(val, dsi->regs + MCTL_MAIN_EN); pm_runtime_put(dsi->base.dev); } static void cdns_dsi_hs_init(struct cdns_dsi *dsi, const struct cdns_dphy_cfg *dphy_cfg) { u32 status; /* * Power all internal DPHY blocks down and maintain their reset line * asserted before changing the DPHY config. */ writel(DPHY_CMN_PSO | DPHY_PLL_PSO | DPHY_ALL_D_PDN | DPHY_C_PDN | DPHY_CMN_PDN | DPHY_PLL_PDN, dsi->regs + MCTL_DPHY_CFG0); /* * Configure the internal PSM clk divider so that the DPHY has a * 1MHz clk (or something close). */ WARN_ON_ONCE(cdns_dphy_setup_psm(dsi->dphy)); /* * Configure attach clk lanes to data lanes: the DPHY has 2 clk lanes * and 8 data lanes, each clk lane can be attache different set of * data lanes. The 2 groups are named 'left' and 'right', so here we * just say that we want the 'left' clk lane to drive the 'left' data * lanes. */ cdns_dphy_set_clk_lane_cfg(dsi->dphy, DPHY_CLK_CFG_LEFT_DRIVES_LEFT); /* * Configure the DPHY PLL that will be used to generate the TX byte * clk. */ cdns_dphy_set_pll_cfg(dsi->dphy, dphy_cfg); /* Start TX state machine. */ writel(DPHY_CMN_SSM_EN | DPHY_CMN_TX_MODE_EN, dsi->dphy->regs + DPHY_CMN_SSM); /* Activate the PLL and wait until it's locked. */ writel(PLL_LOCKED, dsi->regs + MCTL_MAIN_STS_CLR); writel(DPHY_CMN_PSO | DPHY_ALL_D_PDN | DPHY_C_PDN | DPHY_CMN_PDN, dsi->regs + MCTL_DPHY_CFG0); WARN_ON_ONCE(readl_poll_timeout(dsi->regs + MCTL_MAIN_STS, status, status & PLL_LOCKED, 100, 100)); /* De-assert data and clock reset lines. */ writel(DPHY_CMN_PSO | DPHY_ALL_D_PDN | DPHY_C_PDN | DPHY_CMN_PDN | DPHY_D_RSTB(dphy_cfg->nlanes) | DPHY_C_RSTB, dsi->regs + MCTL_DPHY_CFG0); } static void cdns_dsi_init_link(struct cdns_dsi *dsi) { struct cdns_dsi_output *output = &dsi->output; unsigned long sysclk_period, ulpout; u32 val; int i; if (dsi->link_initialized) return; val = 0; for (i = 1; i < output->dev->lanes; i++) val |= DATA_LANE_EN(i); if (!(output->dev->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) val |= CLK_CONTINUOUS; writel(val, dsi->regs + MCTL_MAIN_PHY_CTL); /* ULPOUT should be set to 1ms and is expressed in sysclk cycles. */ sysclk_period = NSEC_PER_SEC / clk_get_rate(dsi->dsi_sys_clk); ulpout = DIV_ROUND_UP(NSEC_PER_MSEC, sysclk_period); writel(CLK_LANE_ULPOUT_TIME(ulpout) | DATA_LANE_ULPOUT_TIME(ulpout), dsi->regs + MCTL_ULPOUT_TIME); writel(LINK_EN, dsi->regs + MCTL_MAIN_DATA_CTL); val = CLK_LANE_EN | PLL_START; for (i = 0; i < output->dev->lanes; i++) val |= DATA_LANE_START(i); writel(val, dsi->regs + MCTL_MAIN_EN); dsi->link_initialized = true; } static void cdns_dsi_bridge_enable(struct drm_bridge *bridge) { struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge); struct cdns_dsi *dsi = input_to_dsi(input); struct cdns_dsi_output *output = &dsi->output; struct drm_display_mode *mode; struct cdns_dphy_cfg dphy_cfg; unsigned long tx_byte_period; struct cdns_dsi_cfg dsi_cfg; u32 tmp, reg_wakeup, div; int bpp, nlanes; if (WARN_ON(pm_runtime_get_sync(dsi->base.dev) < 0)) return; mode = &bridge->encoder->crtc->state->adjusted_mode; bpp = mipi_dsi_pixel_format_to_bpp(output->dev->format); nlanes = output->dev->lanes; WARN_ON_ONCE(cdns_dsi_mode2cfg(dsi, mode, &dsi_cfg, &dphy_cfg, false)); cdns_dsi_hs_init(dsi, &dphy_cfg); cdns_dsi_init_link(dsi); writel(HBP_LEN(dsi_cfg.hbp) | HSA_LEN(dsi_cfg.hsa), dsi->regs + VID_HSIZE1); writel(HFP_LEN(dsi_cfg.hfp) | HACT_LEN(dsi_cfg.hact), dsi->regs + VID_HSIZE2); writel(VBP_LEN(mode->crtc_vtotal - mode->crtc_vsync_end - 1) | VFP_LEN(mode->crtc_vsync_start - mode->crtc_vdisplay) | VSA_LEN(mode->crtc_vsync_end - mode->crtc_vsync_start + 1), dsi->regs + VID_VSIZE1); writel(mode->crtc_vdisplay, dsi->regs + VID_VSIZE2); tmp = dsi_cfg.htotal - (dsi_cfg.hsa + DSI_BLANKING_FRAME_OVERHEAD + DSI_HSA_FRAME_OVERHEAD); writel(BLK_LINE_PULSE_PKT_LEN(tmp), dsi->regs + VID_BLKSIZE2); if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) writel(MAX_LINE_LIMIT(tmp - DSI_NULL_FRAME_OVERHEAD), dsi->regs + VID_VCA_SETTING2); tmp = dsi_cfg.htotal - (DSI_HSS_VSS_VSE_FRAME_OVERHEAD + DSI_BLANKING_FRAME_OVERHEAD); writel(BLK_LINE_EVENT_PKT_LEN(tmp), dsi->regs + VID_BLKSIZE1); if (!(output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)) writel(MAX_LINE_LIMIT(tmp - DSI_NULL_FRAME_OVERHEAD), dsi->regs + VID_VCA_SETTING2); tmp = DIV_ROUND_UP(dsi_cfg.htotal, nlanes) - DIV_ROUND_UP(dsi_cfg.hsa, nlanes); if (!(output->dev->mode_flags & MIPI_DSI_MODE_EOT_PACKET)) tmp -= DIV_ROUND_UP(DSI_EOT_PKT_SIZE, nlanes); tx_byte_period = DIV_ROUND_DOWN_ULL((u64)NSEC_PER_SEC * 8, dphy_cfg.lane_bps); reg_wakeup = cdns_dphy_get_wakeup_time_ns(dsi->dphy) / tx_byte_period; writel(REG_WAKEUP_TIME(reg_wakeup) | REG_LINE_DURATION(tmp), dsi->regs + VID_DPHY_TIME); /* * HSTX and LPRX timeouts are both expressed in TX byte clk cycles and * both should be set to at least the time it takes to transmit a * frame. */ tmp = NSEC_PER_SEC / drm_mode_vrefresh(mode); tmp /= tx_byte_period; for (div = 0; div <= CLK_DIV_MAX; div++) { if (tmp <= HSTX_TIMEOUT_MAX) break; tmp >>= 1; } if (tmp > HSTX_TIMEOUT_MAX) tmp = HSTX_TIMEOUT_MAX; writel(CLK_DIV(div) | HSTX_TIMEOUT(tmp), dsi->regs + MCTL_DPHY_TIMEOUT1); writel(LPRX_TIMEOUT(tmp), dsi->regs + MCTL_DPHY_TIMEOUT2); if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO) { switch (output->dev->format) { case MIPI_DSI_FMT_RGB888: tmp = VID_PIXEL_MODE_RGB888 | VID_DATATYPE(MIPI_DSI_PACKED_PIXEL_STREAM_24); break; case MIPI_DSI_FMT_RGB666: tmp = VID_PIXEL_MODE_RGB666 | VID_DATATYPE(MIPI_DSI_PIXEL_STREAM_3BYTE_18); break; case MIPI_DSI_FMT_RGB666_PACKED: tmp = VID_PIXEL_MODE_RGB666_PACKED | VID_DATATYPE(MIPI_DSI_PACKED_PIXEL_STREAM_18); break; case MIPI_DSI_FMT_RGB565: tmp = VID_PIXEL_MODE_RGB565 | VID_DATATYPE(MIPI_DSI_PACKED_PIXEL_STREAM_16); break; default: dev_err(dsi->base.dev, "Unsupported DSI format\n"); return; } if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) tmp |= SYNC_PULSE_ACTIVE | SYNC_PULSE_HORIZONTAL; tmp |= REG_BLKLINE_MODE(REG_BLK_MODE_BLANKING_PKT) | REG_BLKEOL_MODE(REG_BLK_MODE_BLANKING_PKT) | RECOVERY_MODE(RECOVERY_MODE_NEXT_HSYNC) | VID_IGNORE_MISS_VSYNC; writel(tmp, dsi->regs + VID_MAIN_CTL); } tmp = readl(dsi->regs + MCTL_MAIN_DATA_CTL); tmp &= ~(IF_VID_SELECT_MASK | HOST_EOT_GEN | IF_VID_MODE); if (!(output->dev->mode_flags & MIPI_DSI_MODE_EOT_PACKET)) tmp |= HOST_EOT_GEN; if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO) tmp |= IF_VID_MODE | IF_VID_SELECT(input->id) | VID_EN; writel(tmp, dsi->regs + MCTL_MAIN_DATA_CTL); tmp = readl(dsi->regs + MCTL_MAIN_EN) | IF_EN(input->id); writel(tmp, dsi->regs + MCTL_MAIN_EN); } static const struct drm_bridge_funcs cdns_dsi_bridge_funcs = { .attach = cdns_dsi_bridge_attach, .mode_valid = cdns_dsi_bridge_mode_valid, .disable = cdns_dsi_bridge_disable, .enable = cdns_dsi_bridge_enable, }; static int cdns_dsi_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *dev) { struct cdns_dsi *dsi = to_cdns_dsi(host); struct cdns_dsi_output *output = &dsi->output; struct cdns_dsi_input *input = &dsi->input; struct drm_bridge *bridge; struct drm_panel *panel; struct device_node *np; int ret; /* * We currently do not support connecting several DSI devices to the * same host. In order to support that we'd need the DRM bridge * framework to allow dynamic reconfiguration of the bridge chain. */ if (output->dev) return -EBUSY; /* We do not support burst mode yet. */ if (dev->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) return -ENOTSUPP; /* * The host <-> device link might be described using an OF-graph * representation, in this case we extract the device of_node from * this representation, otherwise we use dsidev->dev.of_node which * should have been filled by the core. */ np = of_graph_get_remote_node(dsi->base.dev->of_node, DSI_OUTPUT_PORT, dev->channel); if (!np) np = of_node_get(dev->dev.of_node); panel = of_drm_find_panel(np); if (!IS_ERR(panel)) { bridge = drm_panel_bridge_add(panel, DRM_MODE_CONNECTOR_DSI); } else { bridge = of_drm_find_bridge(dev->dev.of_node); if (!bridge) bridge = ERR_PTR(-EINVAL); } of_node_put(np); if (IS_ERR(bridge)) { ret = PTR_ERR(bridge); dev_err(host->dev, "failed to add DSI device %s (err = %d)", dev->name, ret); return ret; } output->dev = dev; output->bridge = bridge; output->panel = panel; /* * The DSI output has been properly configured, we can now safely * register the input to the bridge framework so that it can take place * in a display pipeline. */ drm_bridge_add(&input->bridge); return 0; } static int cdns_dsi_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *dev) { struct cdns_dsi *dsi = to_cdns_dsi(host); struct cdns_dsi_output *output = &dsi->output; struct cdns_dsi_input *input = &dsi->input; drm_bridge_remove(&input->bridge); if (output->panel) drm_panel_bridge_remove(output->bridge); return 0; } static irqreturn_t cdns_dsi_interrupt(int irq, void *data) { struct cdns_dsi *dsi = data; irqreturn_t ret = IRQ_NONE; u32 flag, ctl; flag = readl(dsi->regs + DIRECT_CMD_STS_FLAG); if (flag) { ctl = readl(dsi->regs + DIRECT_CMD_STS_CTL); ctl &= ~flag; writel(ctl, dsi->regs + DIRECT_CMD_STS_CTL); complete(&dsi->direct_cmd_comp); ret = IRQ_HANDLED; } return ret; } static ssize_t cdns_dsi_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct cdns_dsi *dsi = to_cdns_dsi(host); u32 cmd, sts, val, wait = WRITE_COMPLETED, ctl = 0; struct mipi_dsi_packet packet; int ret, i, tx_len, rx_len; ret = pm_runtime_get_sync(host->dev); if (ret < 0) return ret; cdns_dsi_init_link(dsi); ret = mipi_dsi_create_packet(&packet, msg); if (ret) goto out; tx_len = msg->tx_buf ? msg->tx_len : 0; rx_len = msg->rx_buf ? msg->rx_len : 0; /* For read operations, the maximum TX len is 2. */ if (rx_len && tx_len > 2) { ret = -ENOTSUPP; goto out; } /* TX len is limited by the CMD FIFO depth. */ if (tx_len > dsi->direct_cmd_fifo_depth) { ret = -ENOTSUPP; goto out; } /* RX len is limited by the RX FIFO depth. */ if (rx_len > dsi->rx_fifo_depth) { ret = -ENOTSUPP; goto out; } cmd = CMD_SIZE(tx_len) | CMD_VCHAN_ID(msg->channel) | CMD_DATATYPE(msg->type); if (msg->flags & MIPI_DSI_MSG_USE_LPM) cmd |= CMD_LP_EN; if (mipi_dsi_packet_format_is_long(msg->type)) cmd |= CMD_LONG; if (rx_len) { cmd |= READ_CMD; wait = READ_COMPLETED_WITH_ERR | READ_COMPLETED; ctl = READ_EN | BTA_EN; } else if (msg->flags & MIPI_DSI_MSG_REQ_ACK) { cmd |= BTA_REQ; wait = ACK_WITH_ERR_RCVD | ACK_RCVD; ctl = BTA_EN; } writel(readl(dsi->regs + MCTL_MAIN_DATA_CTL) | ctl, dsi->regs + MCTL_MAIN_DATA_CTL); writel(cmd, dsi->regs + DIRECT_CMD_MAIN_SETTINGS); for (i = 0; i < tx_len; i += 4) { const u8 *buf = msg->tx_buf; int j; val = 0; for (j = 0; j < 4 && j + i < tx_len; j++) val |= (u32)buf[i + j] << (8 * j); writel(val, dsi->regs + DIRECT_CMD_WRDATA); } /* Clear status flags before sending the command. */ writel(wait, dsi->regs + DIRECT_CMD_STS_CLR); writel(wait, dsi->regs + DIRECT_CMD_STS_CTL); reinit_completion(&dsi->direct_cmd_comp); writel(0, dsi->regs + DIRECT_CMD_SEND); wait_for_completion_timeout(&dsi->direct_cmd_comp, msecs_to_jiffies(1000)); sts = readl(dsi->regs + DIRECT_CMD_STS); writel(wait, dsi->regs + DIRECT_CMD_STS_CLR); writel(0, dsi->regs + DIRECT_CMD_STS_CTL); writel(readl(dsi->regs + MCTL_MAIN_DATA_CTL) & ~ctl, dsi->regs + MCTL_MAIN_DATA_CTL); /* We did not receive the events we were waiting for. */ if (!(sts & wait)) { ret = -ETIMEDOUT; goto out; } /* 'READ' or 'WRITE with ACK' failed. */ if (sts & (READ_COMPLETED_WITH_ERR | ACK_WITH_ERR_RCVD)) { ret = -EIO; goto out; } for (i = 0; i < rx_len; i += 4) { u8 *buf = msg->rx_buf; int j; val = readl(dsi->regs + DIRECT_CMD_RDDATA); for (j = 0; j < 4 && j + i < rx_len; j++) buf[i + j] = val >> (8 * j); } out: pm_runtime_put(host->dev); return ret; } static const struct mipi_dsi_host_ops cdns_dsi_ops = { .attach = cdns_dsi_attach, .detach = cdns_dsi_detach, .transfer = cdns_dsi_transfer, }; static int __maybe_unused cdns_dsi_resume(struct device *dev) { struct cdns_dsi *dsi = dev_get_drvdata(dev); reset_control_deassert(dsi->dsi_p_rst); clk_prepare_enable(dsi->dsi_p_clk); clk_prepare_enable(dsi->dsi_sys_clk); clk_prepare_enable(dsi->dphy->psm_clk); clk_prepare_enable(dsi->dphy->pll_ref_clk); return 0; } static int __maybe_unused cdns_dsi_suspend(struct device *dev) { struct cdns_dsi *dsi = dev_get_drvdata(dev); clk_disable_unprepare(dsi->dphy->pll_ref_clk); clk_disable_unprepare(dsi->dphy->psm_clk); clk_disable_unprepare(dsi->dsi_sys_clk); clk_disable_unprepare(dsi->dsi_p_clk); reset_control_assert(dsi->dsi_p_rst); dsi->link_initialized = false; return 0; } static UNIVERSAL_DEV_PM_OPS(cdns_dsi_pm_ops, cdns_dsi_suspend, cdns_dsi_resume, NULL); static unsigned long cdns_dphy_ref_get_wakeup_time_ns(struct cdns_dphy *dphy) { /* Default wakeup time is 800 ns (in a simulated environment). */ return 800; } static void cdns_dphy_ref_set_pll_cfg(struct cdns_dphy *dphy, const struct cdns_dphy_cfg *cfg) { u32 fbdiv_low, fbdiv_high; fbdiv_low = (cfg->pll_fbdiv / 4) - 2; fbdiv_high = cfg->pll_fbdiv - fbdiv_low - 2; writel(DPHY_CMN_IPDIV_FROM_REG | DPHY_CMN_OPDIV_FROM_REG | DPHY_CMN_IPDIV(cfg->pll_ipdiv) | DPHY_CMN_OPDIV(cfg->pll_opdiv), dphy->regs + DPHY_CMN_OPIPDIV); writel(DPHY_CMN_FBDIV_FROM_REG | DPHY_CMN_FBDIV_VAL(fbdiv_low, fbdiv_high), dphy->regs + DPHY_CMN_FBDIV); writel(DPHY_CMN_PWM_HIGH(6) | DPHY_CMN_PWM_LOW(0x101) | DPHY_CMN_PWM_DIV(0x8), dphy->regs + DPHY_CMN_PWM); } static void cdns_dphy_ref_set_psm_div(struct cdns_dphy *dphy, u8 div) { writel(DPHY_PSM_CFG_FROM_REG | DPHY_PSM_CLK_DIV(div), dphy->regs + DPHY_PSM_CFG); } /* * This is the reference implementation of DPHY hooks. Specific integration of * this IP may have to re-implement some of them depending on how they decided * to wire things in the SoC. */ static const struct cdns_dphy_ops ref_dphy_ops = { .get_wakeup_time_ns = cdns_dphy_ref_get_wakeup_time_ns, .set_pll_cfg = cdns_dphy_ref_set_pll_cfg, .set_psm_div = cdns_dphy_ref_set_psm_div, }; static const struct of_device_id cdns_dphy_of_match[] = { { .compatible = "cdns,dphy", .data = &ref_dphy_ops }, { /* sentinel */ }, }; static struct cdns_dphy *cdns_dphy_probe(struct platform_device *pdev) { const struct of_device_id *match; struct cdns_dphy *dphy; struct of_phandle_args args; struct resource res; int ret; ret = of_parse_phandle_with_args(pdev->dev.of_node, "phys", "#phy-cells", 0, &args); if (ret) return ERR_PTR(-ENOENT); match = of_match_node(cdns_dphy_of_match, args.np); if (!match || !match->data) return ERR_PTR(-EINVAL); dphy = devm_kzalloc(&pdev->dev, sizeof(*dphy), GFP_KERNEL); if (!dphy) return ERR_PTR(-ENOMEM); dphy->ops = match->data; ret = of_address_to_resource(args.np, 0, &res); if (ret) return ERR_PTR(ret); dphy->regs = devm_ioremap_resource(&pdev->dev, &res); if (IS_ERR(dphy->regs)) return ERR_CAST(dphy->regs); dphy->psm_clk = of_clk_get_by_name(args.np, "psm"); if (IS_ERR(dphy->psm_clk)) return ERR_CAST(dphy->psm_clk); dphy->pll_ref_clk = of_clk_get_by_name(args.np, "pll_ref"); if (IS_ERR(dphy->pll_ref_clk)) { ret = PTR_ERR(dphy->pll_ref_clk); goto err_put_psm_clk; } if (dphy->ops->probe) { ret = dphy->ops->probe(dphy); if (ret) goto err_put_pll_ref_clk; } return dphy; err_put_pll_ref_clk: clk_put(dphy->pll_ref_clk); err_put_psm_clk: clk_put(dphy->psm_clk); return ERR_PTR(ret); } static void cdns_dphy_remove(struct cdns_dphy *dphy) { if (dphy->ops->remove) dphy->ops->remove(dphy); clk_put(dphy->pll_ref_clk); clk_put(dphy->psm_clk); } static int cdns_dsi_drm_probe(struct platform_device *pdev) { struct cdns_dsi *dsi; struct cdns_dsi_input *input; struct resource *res; int ret, irq; u32 val; dsi = devm_kzalloc(&pdev->dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; platform_set_drvdata(pdev, dsi); input = &dsi->input; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dsi->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(dsi->regs)) return PTR_ERR(dsi->regs); dsi->dsi_p_clk = devm_clk_get(&pdev->dev, "dsi_p_clk"); if (IS_ERR(dsi->dsi_p_clk)) return PTR_ERR(dsi->dsi_p_clk); dsi->dsi_p_rst = devm_reset_control_get_optional_exclusive(&pdev->dev, "dsi_p_rst"); if (IS_ERR(dsi->dsi_p_rst)) return PTR_ERR(dsi->dsi_p_rst); dsi->dsi_sys_clk = devm_clk_get(&pdev->dev, "dsi_sys_clk"); if (IS_ERR(dsi->dsi_sys_clk)) return PTR_ERR(dsi->dsi_sys_clk); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; dsi->dphy = cdns_dphy_probe(pdev); if (IS_ERR(dsi->dphy)) return PTR_ERR(dsi->dphy); ret = clk_prepare_enable(dsi->dsi_p_clk); if (ret) goto err_remove_dphy; val = readl(dsi->regs + ID_REG); if (REV_VENDOR_ID(val) != 0xcad) { dev_err(&pdev->dev, "invalid vendor id\n"); ret = -EINVAL; goto err_disable_pclk; } val = readl(dsi->regs + IP_CONF); dsi->direct_cmd_fifo_depth = 1 << (DIRCMD_FIFO_DEPTH(val) + 2); dsi->rx_fifo_depth = RX_FIFO_DEPTH(val); init_completion(&dsi->direct_cmd_comp); writel(0, dsi->regs + MCTL_MAIN_DATA_CTL); writel(0, dsi->regs + MCTL_MAIN_EN); writel(0, dsi->regs + MCTL_MAIN_PHY_CTL); /* * We only support the DPI input, so force input->id to * CDNS_DPI_INPUT. */ input->id = CDNS_DPI_INPUT; input->bridge.funcs = &cdns_dsi_bridge_funcs; input->bridge.of_node = pdev->dev.of_node; /* Mask all interrupts before registering the IRQ handler. */ writel(0, dsi->regs + MCTL_MAIN_STS_CTL); writel(0, dsi->regs + MCTL_DPHY_ERR_CTL1); writel(0, dsi->regs + CMD_MODE_STS_CTL); writel(0, dsi->regs + DIRECT_CMD_STS_CTL); writel(0, dsi->regs + DIRECT_CMD_RD_STS_CTL); writel(0, dsi->regs + VID_MODE_STS_CTL); writel(0, dsi->regs + TVG_STS_CTL); writel(0, dsi->regs + DPI_IRQ_EN); ret = devm_request_irq(&pdev->dev, irq, cdns_dsi_interrupt, 0, dev_name(&pdev->dev), dsi); if (ret) goto err_disable_pclk; pm_runtime_enable(&pdev->dev); dsi->base.dev = &pdev->dev; dsi->base.ops = &cdns_dsi_ops; ret = mipi_dsi_host_register(&dsi->base); if (ret) goto err_disable_runtime_pm; clk_disable_unprepare(dsi->dsi_p_clk); return 0; err_disable_runtime_pm: pm_runtime_disable(&pdev->dev); err_disable_pclk: clk_disable_unprepare(dsi->dsi_p_clk); err_remove_dphy: cdns_dphy_remove(dsi->dphy); return ret; } static int cdns_dsi_drm_remove(struct platform_device *pdev) { struct cdns_dsi *dsi = platform_get_drvdata(pdev); mipi_dsi_host_unregister(&dsi->base); pm_runtime_disable(&pdev->dev); cdns_dphy_remove(dsi->dphy); return 0; } static const struct of_device_id cdns_dsi_of_match[] = { { .compatible = "cdns,dsi" }, { }, }; static struct platform_driver cdns_dsi_platform_driver = { .probe = cdns_dsi_drm_probe, .remove = cdns_dsi_drm_remove, .driver = { .name = "cdns-dsi", .of_match_table = cdns_dsi_of_match, .pm = &cdns_dsi_pm_ops, }, }; module_platform_driver(cdns_dsi_platform_driver); MODULE_AUTHOR("Boris Brezillon <boris.brezillon@bootlin.com>"); MODULE_DESCRIPTION("Cadence DSI driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:cdns-dsi");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1