Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kirill A. Shutemov | 4660 | 90.40% | 1 | 6.25% |
Alan Cox | 415 | 8.05% | 1 | 6.25% |
Ville Syrjälä | 35 | 0.68% | 3 | 18.75% |
Patrik Jakobsson | 30 | 0.58% | 7 | 43.75% |
Daniel Stone | 8 | 0.16% | 1 | 6.25% |
Rob Clark | 4 | 0.08% | 1 | 6.25% |
Matt Roper | 2 | 0.04% | 1 | 6.25% |
Jani Nikula | 1 | 0.02% | 1 | 6.25% |
Total | 5155 | 16 |
/* * Copyright © 2006-2007 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * Authors: * Eric Anholt <eric@anholt.net> */ #include <linux/i2c.h> #include <linux/pm_runtime.h> #include <drm/drmP.h> #include "psb_intel_reg.h" #include "gma_display.h" #include "framebuffer.h" #include "mdfld_output.h" #include "mdfld_dsi_output.h" /* Hardcoded currently */ static int ksel = KSEL_CRYSTAL_19; struct psb_intel_range_t { int min, max; }; struct mrst_limit_t { struct psb_intel_range_t dot, m, p1; }; struct mrst_clock_t { /* derived values */ int dot; int m; int p1; }; #define COUNT_MAX 0x10000000 void mdfldWaitForPipeDisable(struct drm_device *dev, int pipe) { struct drm_psb_private *dev_priv = dev->dev_private; const struct psb_offset *map = &dev_priv->regmap[pipe]; int count, temp; switch (pipe) { case 0: case 1: case 2: break; default: DRM_ERROR("Illegal Pipe Number.\n"); return; } /* FIXME JLIU7_PO */ gma_wait_for_vblank(dev); return; /* Wait for for the pipe disable to take effect. */ for (count = 0; count < COUNT_MAX; count++) { temp = REG_READ(map->conf); if ((temp & PIPEACONF_PIPE_STATE) == 0) break; } } void mdfldWaitForPipeEnable(struct drm_device *dev, int pipe) { struct drm_psb_private *dev_priv = dev->dev_private; const struct psb_offset *map = &dev_priv->regmap[pipe]; int count, temp; switch (pipe) { case 0: case 1: case 2: break; default: DRM_ERROR("Illegal Pipe Number.\n"); return; } /* FIXME JLIU7_PO */ gma_wait_for_vblank(dev); return; /* Wait for for the pipe enable to take effect. */ for (count = 0; count < COUNT_MAX; count++) { temp = REG_READ(map->conf); if (temp & PIPEACONF_PIPE_STATE) break; } } /** * Return the pipe currently connected to the panel fitter, * or -1 if the panel fitter is not present or not in use */ static int psb_intel_panel_fitter_pipe(struct drm_device *dev) { u32 pfit_control; pfit_control = REG_READ(PFIT_CONTROL); /* See if the panel fitter is in use */ if ((pfit_control & PFIT_ENABLE) == 0) return -1; /* 965 can place panel fitter on either pipe */ return (pfit_control >> 29) & 0x3; } static struct drm_device globle_dev; void mdfld__intel_plane_set_alpha(int enable) { struct drm_device *dev = &globle_dev; int dspcntr_reg = DSPACNTR; u32 dspcntr; dspcntr = REG_READ(dspcntr_reg); if (enable) { dspcntr &= ~DISPPLANE_32BPP_NO_ALPHA; dspcntr |= DISPPLANE_32BPP; } else { dspcntr &= ~DISPPLANE_32BPP; dspcntr |= DISPPLANE_32BPP_NO_ALPHA; } REG_WRITE(dspcntr_reg, dspcntr); } static int check_fb(struct drm_framebuffer *fb) { if (!fb) return 0; switch (fb->format->cpp[0] * 8) { case 8: case 16: case 24: case 32: return 0; default: DRM_ERROR("Unknown color depth\n"); return -EINVAL; } } static int mdfld__intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->primary->fb; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; unsigned long start, offset; u32 dspcntr; int ret; memcpy(&globle_dev, dev, sizeof(struct drm_device)); dev_dbg(dev->dev, "pipe = 0x%x.\n", pipe); /* no fb bound */ if (!fb) { dev_dbg(dev->dev, "No FB bound\n"); return 0; } ret = check_fb(fb); if (ret) return ret; if (pipe > 2) { DRM_ERROR("Illegal Pipe Number.\n"); return -EINVAL; } if (!gma_power_begin(dev, true)) return 0; start = to_gtt_range(fb->obj[0])->offset; offset = y * fb->pitches[0] + x * fb->format->cpp[0]; REG_WRITE(map->stride, fb->pitches[0]); dspcntr = REG_READ(map->cntr); dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; switch (fb->format->cpp[0] * 8) { case 8: dspcntr |= DISPPLANE_8BPP; break; case 16: if (fb->format->depth == 15) dspcntr |= DISPPLANE_15_16BPP; else dspcntr |= DISPPLANE_16BPP; break; case 24: case 32: dspcntr |= DISPPLANE_32BPP_NO_ALPHA; break; } REG_WRITE(map->cntr, dspcntr); dev_dbg(dev->dev, "Writing base %08lX %08lX %d %d\n", start, offset, x, y); REG_WRITE(map->linoff, offset); REG_READ(map->linoff); REG_WRITE(map->surf, start); REG_READ(map->surf); gma_power_end(dev); return 0; } /* * Disable the pipe, plane and pll. * */ void mdfld_disable_crtc(struct drm_device *dev, int pipe) { struct drm_psb_private *dev_priv = dev->dev_private; const struct psb_offset *map = &dev_priv->regmap[pipe]; u32 temp; dev_dbg(dev->dev, "pipe = %d\n", pipe); if (pipe != 1) mdfld_dsi_gen_fifo_ready(dev, MIPI_GEN_FIFO_STAT_REG(pipe), HS_CTRL_FIFO_EMPTY | HS_DATA_FIFO_EMPTY); /* Disable display plane */ temp = REG_READ(map->cntr); if ((temp & DISPLAY_PLANE_ENABLE) != 0) { REG_WRITE(map->cntr, temp & ~DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ REG_WRITE(map->base, REG_READ(map->base)); REG_READ(map->base); } /* FIXME_JLIU7 MDFLD_PO revisit */ /* Next, disable display pipes */ temp = REG_READ(map->conf); if ((temp & PIPEACONF_ENABLE) != 0) { temp &= ~PIPEACONF_ENABLE; temp |= PIPECONF_PLANE_OFF | PIPECONF_CURSOR_OFF; REG_WRITE(map->conf, temp); REG_READ(map->conf); /* Wait for for the pipe disable to take effect. */ mdfldWaitForPipeDisable(dev, pipe); } temp = REG_READ(map->dpll); if (temp & DPLL_VCO_ENABLE) { if ((pipe != 1 && !((REG_READ(PIPEACONF) | REG_READ(PIPECCONF)) & PIPEACONF_ENABLE)) || pipe == 1) { temp &= ~(DPLL_VCO_ENABLE); REG_WRITE(map->dpll, temp); REG_READ(map->dpll); /* Wait for the clocks to turn off. */ /* FIXME_MDFLD PO may need more delay */ udelay(500); if (!(temp & MDFLD_PWR_GATE_EN)) { /* gating power of DPLL */ REG_WRITE(map->dpll, temp | MDFLD_PWR_GATE_EN); /* FIXME_MDFLD PO - change 500 to 1 after PO */ udelay(5000); } } } } /** * Sets the power management mode of the pipe and plane. * * This code should probably grow support for turning the cursor off and back * on appropriately at the same time as we're turning the pipe off/on. */ static void mdfld_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; u32 pipeconf = dev_priv->pipeconf[pipe]; u32 temp; int timeout = 0; dev_dbg(dev->dev, "mode = %d, pipe = %d\n", mode, pipe); /* Note: Old code uses pipe a stat for pipe b but that appears to be a bug */ if (!gma_power_begin(dev, true)) return; /* XXX: When our outputs are all unaware of DPMS modes other than off * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. */ switch (mode) { case DRM_MODE_DPMS_ON: case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: /* Enable the DPLL */ temp = REG_READ(map->dpll); if ((temp & DPLL_VCO_ENABLE) == 0) { /* When ungating power of DPLL, needs to wait 0.5us before enable the VCO */ if (temp & MDFLD_PWR_GATE_EN) { temp &= ~MDFLD_PWR_GATE_EN; REG_WRITE(map->dpll, temp); /* FIXME_MDFLD PO - change 500 to 1 after PO */ udelay(500); } REG_WRITE(map->dpll, temp); REG_READ(map->dpll); /* FIXME_MDFLD PO - change 500 to 1 after PO */ udelay(500); REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE); REG_READ(map->dpll); /** * wait for DSI PLL to lock * NOTE: only need to poll status of pipe 0 and pipe 1, * since both MIPI pipes share the same PLL. */ while ((pipe != 2) && (timeout < 20000) && !(REG_READ(map->conf) & PIPECONF_DSIPLL_LOCK)) { udelay(150); timeout++; } } /* Enable the plane */ temp = REG_READ(map->cntr); if ((temp & DISPLAY_PLANE_ENABLE) == 0) { REG_WRITE(map->cntr, temp | DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ REG_WRITE(map->base, REG_READ(map->base)); } /* Enable the pipe */ temp = REG_READ(map->conf); if ((temp & PIPEACONF_ENABLE) == 0) { REG_WRITE(map->conf, pipeconf); /* Wait for for the pipe enable to take effect. */ mdfldWaitForPipeEnable(dev, pipe); } /*workaround for sighting 3741701 Random X blank display*/ /*perform w/a in video mode only on pipe A or C*/ if (pipe == 0 || pipe == 2) { REG_WRITE(map->status, REG_READ(map->status)); msleep(100); if (PIPE_VBLANK_STATUS & REG_READ(map->status)) dev_dbg(dev->dev, "OK"); else { dev_dbg(dev->dev, "STUCK!!!!"); /*shutdown controller*/ temp = REG_READ(map->cntr); REG_WRITE(map->cntr, temp & ~DISPLAY_PLANE_ENABLE); REG_WRITE(map->base, REG_READ(map->base)); /*mdfld_dsi_dpi_shut_down(dev, pipe);*/ REG_WRITE(0xb048, 1); msleep(100); temp = REG_READ(map->conf); temp &= ~PIPEACONF_ENABLE; REG_WRITE(map->conf, temp); msleep(100); /*wait for pipe disable*/ REG_WRITE(MIPI_DEVICE_READY_REG(pipe), 0); msleep(100); REG_WRITE(0xb004, REG_READ(0xb004)); /* try to bring the controller back up again*/ REG_WRITE(MIPI_DEVICE_READY_REG(pipe), 1); temp = REG_READ(map->cntr); REG_WRITE(map->cntr, temp | DISPLAY_PLANE_ENABLE); REG_WRITE(map->base, REG_READ(map->base)); /*mdfld_dsi_dpi_turn_on(dev, pipe);*/ REG_WRITE(0xb048, 2); msleep(100); temp = REG_READ(map->conf); temp |= PIPEACONF_ENABLE; REG_WRITE(map->conf, temp); } } gma_crtc_load_lut(crtc); /* Give the overlay scaler a chance to enable if it's on this pipe */ /* psb_intel_crtc_dpms_video(crtc, true); TODO */ break; case DRM_MODE_DPMS_OFF: /* Give the overlay scaler a chance to disable * if it's on this pipe */ /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */ if (pipe != 1) mdfld_dsi_gen_fifo_ready(dev, MIPI_GEN_FIFO_STAT_REG(pipe), HS_CTRL_FIFO_EMPTY | HS_DATA_FIFO_EMPTY); /* Disable the VGA plane that we never use */ REG_WRITE(VGACNTRL, VGA_DISP_DISABLE); /* Disable display plane */ temp = REG_READ(map->cntr); if ((temp & DISPLAY_PLANE_ENABLE) != 0) { REG_WRITE(map->cntr, temp & ~DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ REG_WRITE(map->base, REG_READ(map->base)); REG_READ(map->base); } /* Next, disable display pipes */ temp = REG_READ(map->conf); if ((temp & PIPEACONF_ENABLE) != 0) { temp &= ~PIPEACONF_ENABLE; temp |= PIPECONF_PLANE_OFF | PIPECONF_CURSOR_OFF; REG_WRITE(map->conf, temp); REG_READ(map->conf); /* Wait for for the pipe disable to take effect. */ mdfldWaitForPipeDisable(dev, pipe); } temp = REG_READ(map->dpll); if (temp & DPLL_VCO_ENABLE) { if ((pipe != 1 && !((REG_READ(PIPEACONF) | REG_READ(PIPECCONF)) & PIPEACONF_ENABLE)) || pipe == 1) { temp &= ~(DPLL_VCO_ENABLE); REG_WRITE(map->dpll, temp); REG_READ(map->dpll); /* Wait for the clocks to turn off. */ /* FIXME_MDFLD PO may need more delay */ udelay(500); } } break; } gma_power_end(dev); } #define MDFLD_LIMT_DPLL_19 0 #define MDFLD_LIMT_DPLL_25 1 #define MDFLD_LIMT_DPLL_83 2 #define MDFLD_LIMT_DPLL_100 3 #define MDFLD_LIMT_DSIPLL_19 4 #define MDFLD_LIMT_DSIPLL_25 5 #define MDFLD_LIMT_DSIPLL_83 6 #define MDFLD_LIMT_DSIPLL_100 7 #define MDFLD_DOT_MIN 19750 #define MDFLD_DOT_MAX 120000 #define MDFLD_DPLL_M_MIN_19 113 #define MDFLD_DPLL_M_MAX_19 155 #define MDFLD_DPLL_P1_MIN_19 2 #define MDFLD_DPLL_P1_MAX_19 10 #define MDFLD_DPLL_M_MIN_25 101 #define MDFLD_DPLL_M_MAX_25 130 #define MDFLD_DPLL_P1_MIN_25 2 #define MDFLD_DPLL_P1_MAX_25 10 #define MDFLD_DPLL_M_MIN_83 64 #define MDFLD_DPLL_M_MAX_83 64 #define MDFLD_DPLL_P1_MIN_83 2 #define MDFLD_DPLL_P1_MAX_83 2 #define MDFLD_DPLL_M_MIN_100 64 #define MDFLD_DPLL_M_MAX_100 64 #define MDFLD_DPLL_P1_MIN_100 2 #define MDFLD_DPLL_P1_MAX_100 2 #define MDFLD_DSIPLL_M_MIN_19 131 #define MDFLD_DSIPLL_M_MAX_19 175 #define MDFLD_DSIPLL_P1_MIN_19 3 #define MDFLD_DSIPLL_P1_MAX_19 8 #define MDFLD_DSIPLL_M_MIN_25 97 #define MDFLD_DSIPLL_M_MAX_25 140 #define MDFLD_DSIPLL_P1_MIN_25 3 #define MDFLD_DSIPLL_P1_MAX_25 9 #define MDFLD_DSIPLL_M_MIN_83 33 #define MDFLD_DSIPLL_M_MAX_83 92 #define MDFLD_DSIPLL_P1_MIN_83 2 #define MDFLD_DSIPLL_P1_MAX_83 3 #define MDFLD_DSIPLL_M_MIN_100 97 #define MDFLD_DSIPLL_M_MAX_100 140 #define MDFLD_DSIPLL_P1_MIN_100 3 #define MDFLD_DSIPLL_P1_MAX_100 9 static const struct mrst_limit_t mdfld_limits[] = { { /* MDFLD_LIMT_DPLL_19 */ .dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX}, .m = {.min = MDFLD_DPLL_M_MIN_19, .max = MDFLD_DPLL_M_MAX_19}, .p1 = {.min = MDFLD_DPLL_P1_MIN_19, .max = MDFLD_DPLL_P1_MAX_19}, }, { /* MDFLD_LIMT_DPLL_25 */ .dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX}, .m = {.min = MDFLD_DPLL_M_MIN_25, .max = MDFLD_DPLL_M_MAX_25}, .p1 = {.min = MDFLD_DPLL_P1_MIN_25, .max = MDFLD_DPLL_P1_MAX_25}, }, { /* MDFLD_LIMT_DPLL_83 */ .dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX}, .m = {.min = MDFLD_DPLL_M_MIN_83, .max = MDFLD_DPLL_M_MAX_83}, .p1 = {.min = MDFLD_DPLL_P1_MIN_83, .max = MDFLD_DPLL_P1_MAX_83}, }, { /* MDFLD_LIMT_DPLL_100 */ .dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX}, .m = {.min = MDFLD_DPLL_M_MIN_100, .max = MDFLD_DPLL_M_MAX_100}, .p1 = {.min = MDFLD_DPLL_P1_MIN_100, .max = MDFLD_DPLL_P1_MAX_100}, }, { /* MDFLD_LIMT_DSIPLL_19 */ .dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX}, .m = {.min = MDFLD_DSIPLL_M_MIN_19, .max = MDFLD_DSIPLL_M_MAX_19}, .p1 = {.min = MDFLD_DSIPLL_P1_MIN_19, .max = MDFLD_DSIPLL_P1_MAX_19}, }, { /* MDFLD_LIMT_DSIPLL_25 */ .dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX}, .m = {.min = MDFLD_DSIPLL_M_MIN_25, .max = MDFLD_DSIPLL_M_MAX_25}, .p1 = {.min = MDFLD_DSIPLL_P1_MIN_25, .max = MDFLD_DSIPLL_P1_MAX_25}, }, { /* MDFLD_LIMT_DSIPLL_83 */ .dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX}, .m = {.min = MDFLD_DSIPLL_M_MIN_83, .max = MDFLD_DSIPLL_M_MAX_83}, .p1 = {.min = MDFLD_DSIPLL_P1_MIN_83, .max = MDFLD_DSIPLL_P1_MAX_83}, }, { /* MDFLD_LIMT_DSIPLL_100 */ .dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX}, .m = {.min = MDFLD_DSIPLL_M_MIN_100, .max = MDFLD_DSIPLL_M_MAX_100}, .p1 = {.min = MDFLD_DSIPLL_P1_MIN_100, .max = MDFLD_DSIPLL_P1_MAX_100}, }, }; #define MDFLD_M_MIN 21 #define MDFLD_M_MAX 180 static const u32 mdfld_m_converts[] = { /* M configuration table from 9-bit LFSR table */ 224, 368, 440, 220, 366, 439, 219, 365, 182, 347, /* 21 - 30 */ 173, 342, 171, 85, 298, 149, 74, 37, 18, 265, /* 31 - 40 */ 388, 194, 353, 432, 216, 108, 310, 155, 333, 166, /* 41 - 50 */ 83, 41, 276, 138, 325, 162, 337, 168, 340, 170, /* 51 - 60 */ 341, 426, 469, 234, 373, 442, 221, 110, 311, 411, /* 61 - 70 */ 461, 486, 243, 377, 188, 350, 175, 343, 427, 213, /* 71 - 80 */ 106, 53, 282, 397, 354, 227, 113, 56, 284, 142, /* 81 - 90 */ 71, 35, 273, 136, 324, 418, 465, 488, 500, 506, /* 91 - 100 */ 253, 126, 63, 287, 399, 455, 483, 241, 376, 444, /* 101 - 110 */ 478, 495, 503, 251, 381, 446, 479, 239, 375, 443, /* 111 - 120 */ 477, 238, 119, 315, 157, 78, 295, 147, 329, 420, /* 121 - 130 */ 210, 105, 308, 154, 77, 38, 275, 137, 68, 290, /* 131 - 140 */ 145, 328, 164, 82, 297, 404, 458, 485, 498, 249, /* 141 - 150 */ 380, 190, 351, 431, 471, 235, 117, 314, 413, 206, /* 151 - 160 */ 103, 51, 25, 12, 262, 387, 193, 96, 48, 280, /* 161 - 170 */ 396, 198, 99, 305, 152, 76, 294, 403, 457, 228, /* 171 - 180 */ }; static const struct mrst_limit_t *mdfld_limit(struct drm_crtc *crtc) { const struct mrst_limit_t *limit = NULL; struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; if (gma_pipe_has_type(crtc, INTEL_OUTPUT_MIPI) || gma_pipe_has_type(crtc, INTEL_OUTPUT_MIPI2)) { if ((ksel == KSEL_CRYSTAL_19) || (ksel == KSEL_BYPASS_19)) limit = &mdfld_limits[MDFLD_LIMT_DSIPLL_19]; else if (ksel == KSEL_BYPASS_25) limit = &mdfld_limits[MDFLD_LIMT_DSIPLL_25]; else if ((ksel == KSEL_BYPASS_83_100) && (dev_priv->core_freq == 166)) limit = &mdfld_limits[MDFLD_LIMT_DSIPLL_83]; else if ((ksel == KSEL_BYPASS_83_100) && (dev_priv->core_freq == 100 || dev_priv->core_freq == 200)) limit = &mdfld_limits[MDFLD_LIMT_DSIPLL_100]; } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) { if ((ksel == KSEL_CRYSTAL_19) || (ksel == KSEL_BYPASS_19)) limit = &mdfld_limits[MDFLD_LIMT_DPLL_19]; else if (ksel == KSEL_BYPASS_25) limit = &mdfld_limits[MDFLD_LIMT_DPLL_25]; else if ((ksel == KSEL_BYPASS_83_100) && (dev_priv->core_freq == 166)) limit = &mdfld_limits[MDFLD_LIMT_DPLL_83]; else if ((ksel == KSEL_BYPASS_83_100) && (dev_priv->core_freq == 100 || dev_priv->core_freq == 200)) limit = &mdfld_limits[MDFLD_LIMT_DPLL_100]; } else { limit = NULL; dev_dbg(dev->dev, "mdfld_limit Wrong display type.\n"); } return limit; } /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */ static void mdfld_clock(int refclk, struct mrst_clock_t *clock) { clock->dot = (refclk * clock->m) / clock->p1; } /** * Returns a set of divisors for the desired target clock with the given refclk, * or FALSE. Divisor values are the actual divisors for */ static bool mdfldFindBestPLL(struct drm_crtc *crtc, int target, int refclk, struct mrst_clock_t *best_clock) { struct mrst_clock_t clock; const struct mrst_limit_t *limit = mdfld_limit(crtc); int err = target; memset(best_clock, 0, sizeof(*best_clock)); for (clock.m = limit->m.min; clock.m <= limit->m.max; clock.m++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; mdfld_clock(refclk, &clock); this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } return err != target; } static int mdfld_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); struct drm_psb_private *dev_priv = dev->dev_private; int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; int refclk = 0; int clk_n = 0, clk_p2 = 0, clk_byte = 1, clk = 0, m_conv = 0, clk_tmp = 0; struct mrst_clock_t clock; bool ok; u32 dpll = 0, fp = 0; bool is_mipi = false, is_mipi2 = false, is_hdmi = false; struct drm_mode_config *mode_config = &dev->mode_config; struct gma_encoder *gma_encoder = NULL; uint64_t scalingType = DRM_MODE_SCALE_FULLSCREEN; struct drm_encoder *encoder; struct drm_connector *connector; int timeout = 0; int ret; dev_dbg(dev->dev, "pipe = 0x%x\n", pipe); #if 0 if (pipe == 1) { if (!gma_power_begin(dev, true)) return 0; android_hdmi_crtc_mode_set(crtc, mode, adjusted_mode, x, y, old_fb); goto mrst_crtc_mode_set_exit; } #endif ret = check_fb(crtc->primary->fb); if (ret) return ret; dev_dbg(dev->dev, "adjusted_hdisplay = %d\n", adjusted_mode->hdisplay); dev_dbg(dev->dev, "adjusted_vdisplay = %d\n", adjusted_mode->vdisplay); dev_dbg(dev->dev, "adjusted_hsync_start = %d\n", adjusted_mode->hsync_start); dev_dbg(dev->dev, "adjusted_hsync_end = %d\n", adjusted_mode->hsync_end); dev_dbg(dev->dev, "adjusted_htotal = %d\n", adjusted_mode->htotal); dev_dbg(dev->dev, "adjusted_vsync_start = %d\n", adjusted_mode->vsync_start); dev_dbg(dev->dev, "adjusted_vsync_end = %d\n", adjusted_mode->vsync_end); dev_dbg(dev->dev, "adjusted_vtotal = %d\n", adjusted_mode->vtotal); dev_dbg(dev->dev, "adjusted_clock = %d\n", adjusted_mode->clock); dev_dbg(dev->dev, "hdisplay = %d\n", mode->hdisplay); dev_dbg(dev->dev, "vdisplay = %d\n", mode->vdisplay); if (!gma_power_begin(dev, true)) return 0; memcpy(&gma_crtc->saved_mode, mode, sizeof(struct drm_display_mode)); memcpy(&gma_crtc->saved_adjusted_mode, adjusted_mode, sizeof(struct drm_display_mode)); list_for_each_entry(connector, &mode_config->connector_list, head) { encoder = connector->encoder; if (!encoder) continue; if (encoder->crtc != crtc) continue; gma_encoder = gma_attached_encoder(connector); switch (gma_encoder->type) { case INTEL_OUTPUT_MIPI: is_mipi = true; break; case INTEL_OUTPUT_MIPI2: is_mipi2 = true; break; case INTEL_OUTPUT_HDMI: is_hdmi = true; break; } } /* Disable the VGA plane that we never use */ REG_WRITE(VGACNTRL, VGA_DISP_DISABLE); /* Disable the panel fitter if it was on our pipe */ if (psb_intel_panel_fitter_pipe(dev) == pipe) REG_WRITE(PFIT_CONTROL, 0); /* pipesrc and dspsize control the size that is scaled from, * which should always be the user's requested size. */ if (pipe == 1) { /* FIXME: To make HDMI display with 864x480 (TPO), 480x864 * (PYR) or 480x854 (TMD), set the sprite width/height and * souce image size registers with the adjusted mode for * pipe B. */ /* * The defined sprite rectangle must always be completely * contained within the displayable area of the screen image * (frame buffer). */ REG_WRITE(map->size, ((min(mode->crtc_vdisplay, adjusted_mode->crtc_vdisplay) - 1) << 16) | (min(mode->crtc_hdisplay, adjusted_mode->crtc_hdisplay) - 1)); /* Set the CRTC with encoder mode. */ REG_WRITE(map->src, ((mode->crtc_hdisplay - 1) << 16) | (mode->crtc_vdisplay - 1)); } else { REG_WRITE(map->size, ((mode->crtc_vdisplay - 1) << 16) | (mode->crtc_hdisplay - 1)); REG_WRITE(map->src, ((mode->crtc_hdisplay - 1) << 16) | (mode->crtc_vdisplay - 1)); } REG_WRITE(map->pos, 0); if (gma_encoder) drm_object_property_get_value(&connector->base, dev->mode_config.scaling_mode_property, &scalingType); if (scalingType == DRM_MODE_SCALE_NO_SCALE) { /* Medfield doesn't have register support for centering so we * need to mess with the h/vblank and h/vsync start and ends * to get centering */ int offsetX = 0, offsetY = 0; offsetX = (adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2; offsetY = (adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2; REG_WRITE(map->htotal, (mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); REG_WRITE(map->vtotal, (mode->crtc_vdisplay - 1) | ((adjusted_mode->crtc_vtotal - 1) << 16)); REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - offsetX - 1) | ((adjusted_mode->crtc_hblank_end - offsetX - 1) << 16)); REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - offsetX - 1) | ((adjusted_mode->crtc_hsync_end - offsetX - 1) << 16)); REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - offsetY - 1) | ((adjusted_mode->crtc_vblank_end - offsetY - 1) << 16)); REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - offsetY - 1) | ((adjusted_mode->crtc_vsync_end - offsetY - 1) << 16)); } else { REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | ((adjusted_mode->crtc_vtotal - 1) << 16)); REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | ((adjusted_mode->crtc_vblank_end - 1) << 16)); REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); } /* Flush the plane changes */ { const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->mode_set_base(crtc, x, y, old_fb); } /* setup pipeconf */ dev_priv->pipeconf[pipe] = PIPEACONF_ENABLE; /* FIXME_JLIU7 REG_READ(pipeconf_reg); */ /* Set up the display plane register */ dev_priv->dspcntr[pipe] = REG_READ(map->cntr); dev_priv->dspcntr[pipe] |= pipe << DISPPLANE_SEL_PIPE_POS; dev_priv->dspcntr[pipe] |= DISPLAY_PLANE_ENABLE; if (is_mipi2) goto mrst_crtc_mode_set_exit; clk = adjusted_mode->clock; if (is_hdmi) { if ((ksel == KSEL_CRYSTAL_19) || (ksel == KSEL_BYPASS_19)) { refclk = 19200; if (is_mipi || is_mipi2) clk_n = 1, clk_p2 = 8; else if (is_hdmi) clk_n = 1, clk_p2 = 10; } else if (ksel == KSEL_BYPASS_25) { refclk = 25000; if (is_mipi || is_mipi2) clk_n = 1, clk_p2 = 8; else if (is_hdmi) clk_n = 1, clk_p2 = 10; } else if ((ksel == KSEL_BYPASS_83_100) && dev_priv->core_freq == 166) { refclk = 83000; if (is_mipi || is_mipi2) clk_n = 4, clk_p2 = 8; else if (is_hdmi) clk_n = 4, clk_p2 = 10; } else if ((ksel == KSEL_BYPASS_83_100) && (dev_priv->core_freq == 100 || dev_priv->core_freq == 200)) { refclk = 100000; if (is_mipi || is_mipi2) clk_n = 4, clk_p2 = 8; else if (is_hdmi) clk_n = 4, clk_p2 = 10; } if (is_mipi) clk_byte = dev_priv->bpp / 8; else if (is_mipi2) clk_byte = dev_priv->bpp2 / 8; clk_tmp = clk * clk_n * clk_p2 * clk_byte; dev_dbg(dev->dev, "clk = %d, clk_n = %d, clk_p2 = %d.\n", clk, clk_n, clk_p2); dev_dbg(dev->dev, "adjusted_mode->clock = %d, clk_tmp = %d.\n", adjusted_mode->clock, clk_tmp); ok = mdfldFindBestPLL(crtc, clk_tmp, refclk, &clock); if (!ok) { DRM_ERROR ("mdfldFindBestPLL fail in mdfld_crtc_mode_set.\n"); } else { m_conv = mdfld_m_converts[(clock.m - MDFLD_M_MIN)]; dev_dbg(dev->dev, "dot clock = %d," "m = %d, p1 = %d, m_conv = %d.\n", clock.dot, clock.m, clock.p1, m_conv); } dpll = REG_READ(map->dpll); if (dpll & DPLL_VCO_ENABLE) { dpll &= ~DPLL_VCO_ENABLE; REG_WRITE(map->dpll, dpll); REG_READ(map->dpll); /* FIXME jliu7 check the DPLL lock bit PIPEACONF[29] */ /* FIXME_MDFLD PO - change 500 to 1 after PO */ udelay(500); /* reset M1, N1 & P1 */ REG_WRITE(map->fp0, 0); dpll &= ~MDFLD_P1_MASK; REG_WRITE(map->dpll, dpll); /* FIXME_MDFLD PO - change 500 to 1 after PO */ udelay(500); } /* When ungating power of DPLL, needs to wait 0.5us before * enable the VCO */ if (dpll & MDFLD_PWR_GATE_EN) { dpll &= ~MDFLD_PWR_GATE_EN; REG_WRITE(map->dpll, dpll); /* FIXME_MDFLD PO - change 500 to 1 after PO */ udelay(500); } dpll = 0; #if 0 /* FIXME revisit later */ if (ksel == KSEL_CRYSTAL_19 || ksel == KSEL_BYPASS_19 || ksel == KSEL_BYPASS_25) dpll &= ~MDFLD_INPUT_REF_SEL; else if (ksel == KSEL_BYPASS_83_100) dpll |= MDFLD_INPUT_REF_SEL; #endif /* FIXME revisit later */ if (is_hdmi) dpll |= MDFLD_VCO_SEL; fp = (clk_n / 2) << 16; fp |= m_conv; /* compute bitmask from p1 value */ dpll |= (1 << (clock.p1 - 2)) << 17; #if 0 /* 1080p30 & 720p */ dpll = 0x00050000; fp = 0x000001be; #endif #if 0 /* 480p */ dpll = 0x02010000; fp = 0x000000d2; #endif } else { #if 0 /*DBI_TPO_480x864*/ dpll = 0x00020000; fp = 0x00000156; #endif /* DBI_TPO_480x864 */ /* get from spec. */ dpll = 0x00800000; fp = 0x000000c1; } REG_WRITE(map->fp0, fp); REG_WRITE(map->dpll, dpll); /* FIXME_MDFLD PO - change 500 to 1 after PO */ udelay(500); dpll |= DPLL_VCO_ENABLE; REG_WRITE(map->dpll, dpll); REG_READ(map->dpll); /* wait for DSI PLL to lock */ while (timeout < 20000 && !(REG_READ(map->conf) & PIPECONF_DSIPLL_LOCK)) { udelay(150); timeout++; } if (is_mipi) goto mrst_crtc_mode_set_exit; dev_dbg(dev->dev, "is_mipi = 0x%x\n", is_mipi); REG_WRITE(map->conf, dev_priv->pipeconf[pipe]); REG_READ(map->conf); /* Wait for for the pipe enable to take effect. */ REG_WRITE(map->cntr, dev_priv->dspcntr[pipe]); gma_wait_for_vblank(dev); mrst_crtc_mode_set_exit: gma_power_end(dev); return 0; } const struct drm_crtc_helper_funcs mdfld_helper_funcs = { .dpms = mdfld_crtc_dpms, .mode_set = mdfld_crtc_mode_set, .mode_set_base = mdfld__intel_pipe_set_base, .prepare = gma_crtc_prepare, .commit = gma_crtc_commit, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1