Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jesse Barnes | 1385 | 78.29% | 1 | 7.14% |
Thomas Richter | 263 | 14.87% | 2 | 14.29% |
Daniel Vetter | 53 | 3.00% | 2 | 14.29% |
Chris Wilson | 16 | 0.90% | 2 | 14.29% |
Damien Lespiau | 15 | 0.85% | 1 | 7.14% |
Jani Nikula | 13 | 0.73% | 1 | 7.14% |
Keith Packard | 12 | 0.68% | 1 | 7.14% |
Ville Syrjälä | 6 | 0.34% | 2 | 14.29% |
Yakui Zhao | 5 | 0.28% | 1 | 7.14% |
Julia Lawall | 1 | 0.06% | 1 | 7.14% |
Total | 1769 | 14 |
/* * Copyright © 2006 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * Thomas Richter <thor@math.tu-berlin.de> * * Minor modifications (Dithering enable): * Thomas Richter <thor@math.tu-berlin.de> * */ #include "dvo.h" /* * register definitions for the i82807aa. * * Documentation on this chipset can be found in datasheet #29069001 at * intel.com. */ /* * VCH Revision & GMBus Base Addr */ #define VR00 0x00 # define VR00_BASE_ADDRESS_MASK 0x007f /* * Functionality Enable */ #define VR01 0x01 /* * Enable the panel fitter */ # define VR01_PANEL_FIT_ENABLE (1 << 3) /* * Enables the LCD display. * * This must not be set while VR01_DVO_BYPASS_ENABLE is set. */ # define VR01_LCD_ENABLE (1 << 2) /* Enables the DVO repeater. */ # define VR01_DVO_BYPASS_ENABLE (1 << 1) /* Enables the DVO clock */ # define VR01_DVO_ENABLE (1 << 0) /* Enable dithering for 18bpp panels. Not documented. */ # define VR01_DITHER_ENABLE (1 << 4) /* * LCD Interface Format */ #define VR10 0x10 /* Enables LVDS output instead of CMOS */ # define VR10_LVDS_ENABLE (1 << 4) /* Enables 18-bit LVDS output. */ # define VR10_INTERFACE_1X18 (0 << 2) /* Enables 24-bit LVDS or CMOS output */ # define VR10_INTERFACE_1X24 (1 << 2) /* Enables 2x18-bit LVDS or CMOS output. */ # define VR10_INTERFACE_2X18 (2 << 2) /* Enables 2x24-bit LVDS output */ # define VR10_INTERFACE_2X24 (3 << 2) /* Mask that defines the depth of the pipeline */ # define VR10_INTERFACE_DEPTH_MASK (3 << 2) /* * VR20 LCD Horizontal Display Size */ #define VR20 0x20 /* * LCD Vertical Display Size */ #define VR21 0x21 /* * Panel power down status */ #define VR30 0x30 /* Read only bit indicating that the panel is not in a safe poweroff state. */ # define VR30_PANEL_ON (1 << 15) #define VR40 0x40 # define VR40_STALL_ENABLE (1 << 13) # define VR40_VERTICAL_INTERP_ENABLE (1 << 12) # define VR40_ENHANCED_PANEL_FITTING (1 << 11) # define VR40_HORIZONTAL_INTERP_ENABLE (1 << 10) # define VR40_AUTO_RATIO_ENABLE (1 << 9) # define VR40_CLOCK_GATING_ENABLE (1 << 8) /* * Panel Fitting Vertical Ratio * (((image_height - 1) << 16) / ((panel_height - 1))) >> 2 */ #define VR41 0x41 /* * Panel Fitting Horizontal Ratio * (((image_width - 1) << 16) / ((panel_width - 1))) >> 2 */ #define VR42 0x42 /* * Horizontal Image Size */ #define VR43 0x43 /* VR80 GPIO 0 */ #define VR80 0x80 #define VR81 0x81 #define VR82 0x82 #define VR83 0x83 #define VR84 0x84 #define VR85 0x85 #define VR86 0x86 #define VR87 0x87 /* VR88 GPIO 8 */ #define VR88 0x88 /* Graphics BIOS scratch 0 */ #define VR8E 0x8E # define VR8E_PANEL_TYPE_MASK (0xf << 0) # define VR8E_PANEL_INTERFACE_CMOS (0 << 4) # define VR8E_PANEL_INTERFACE_LVDS (1 << 4) # define VR8E_FORCE_DEFAULT_PANEL (1 << 5) /* Graphics BIOS scratch 1 */ #define VR8F 0x8F # define VR8F_VCH_PRESENT (1 << 0) # define VR8F_DISPLAY_CONN (1 << 1) # define VR8F_POWER_MASK (0x3c) # define VR8F_POWER_POS (2) /* Some Bios implementations do not restore the DVO state upon * resume from standby. Thus, this driver has to handle it * instead. The following list contains all registers that * require saving. */ static const u16 backup_addresses[] = { 0x11, 0x12, 0x18, 0x19, 0x1a, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x8e, 0x8f, 0x10 /* this must come last */ }; struct ivch_priv { bool quiet; u16 width, height; /* Register backup */ u16 reg_backup[ARRAY_SIZE(backup_addresses)]; }; static void ivch_dump_regs(struct intel_dvo_device *dvo); /* * Reads a register on the ivch. * * Each of the 256 registers are 16 bits long. */ static bool ivch_read(struct intel_dvo_device *dvo, int addr, u16 *data) { struct ivch_priv *priv = dvo->dev_priv; struct i2c_adapter *adapter = dvo->i2c_bus; u8 out_buf[1]; u8 in_buf[2]; struct i2c_msg msgs[] = { { .addr = dvo->slave_addr, .flags = I2C_M_RD, .len = 0, }, { .addr = 0, .flags = I2C_M_NOSTART, .len = 1, .buf = out_buf, }, { .addr = dvo->slave_addr, .flags = I2C_M_RD | I2C_M_NOSTART, .len = 2, .buf = in_buf, } }; out_buf[0] = addr; if (i2c_transfer(adapter, msgs, 3) == 3) { *data = (in_buf[1] << 8) | in_buf[0]; return true; } if (!priv->quiet) { DRM_DEBUG_KMS("Unable to read register 0x%02x from " "%s:%02x.\n", addr, adapter->name, dvo->slave_addr); } return false; } /* Writes a 16-bit register on the ivch */ static bool ivch_write(struct intel_dvo_device *dvo, int addr, u16 data) { struct ivch_priv *priv = dvo->dev_priv; struct i2c_adapter *adapter = dvo->i2c_bus; u8 out_buf[3]; struct i2c_msg msg = { .addr = dvo->slave_addr, .flags = 0, .len = 3, .buf = out_buf, }; out_buf[0] = addr; out_buf[1] = data & 0xff; out_buf[2] = data >> 8; if (i2c_transfer(adapter, &msg, 1) == 1) return true; if (!priv->quiet) { DRM_DEBUG_KMS("Unable to write register 0x%02x to %s:%d.\n", addr, adapter->name, dvo->slave_addr); } return false; } /* Probes the given bus and slave address for an ivch */ static bool ivch_init(struct intel_dvo_device *dvo, struct i2c_adapter *adapter) { struct ivch_priv *priv; u16 temp; int i; priv = kzalloc(sizeof(struct ivch_priv), GFP_KERNEL); if (priv == NULL) return false; dvo->i2c_bus = adapter; dvo->dev_priv = priv; priv->quiet = true; if (!ivch_read(dvo, VR00, &temp)) goto out; priv->quiet = false; /* Since the identification bits are probably zeroes, which doesn't seem * very unique, check that the value in the base address field matches * the address it's responding on. */ if ((temp & VR00_BASE_ADDRESS_MASK) != dvo->slave_addr) { DRM_DEBUG_KMS("ivch detect failed due to address mismatch " "(%d vs %d)\n", (temp & VR00_BASE_ADDRESS_MASK), dvo->slave_addr); goto out; } ivch_read(dvo, VR20, &priv->width); ivch_read(dvo, VR21, &priv->height); /* Make a backup of the registers to be able to restore them * upon suspend. */ for (i = 0; i < ARRAY_SIZE(backup_addresses); i++) ivch_read(dvo, backup_addresses[i], priv->reg_backup + i); ivch_dump_regs(dvo); return true; out: kfree(priv); return false; } static enum drm_connector_status ivch_detect(struct intel_dvo_device *dvo) { return connector_status_connected; } static enum drm_mode_status ivch_mode_valid(struct intel_dvo_device *dvo, struct drm_display_mode *mode) { if (mode->clock > 112000) return MODE_CLOCK_HIGH; return MODE_OK; } /* Restore the DVO registers after a resume * from RAM. Registers have been saved during * the initialization. */ static void ivch_reset(struct intel_dvo_device *dvo) { struct ivch_priv *priv = dvo->dev_priv; int i; DRM_DEBUG_KMS("Resetting the IVCH registers\n"); ivch_write(dvo, VR10, 0x0000); for (i = 0; i < ARRAY_SIZE(backup_addresses); i++) ivch_write(dvo, backup_addresses[i], priv->reg_backup[i]); } /* Sets the power state of the panel connected to the ivch */ static void ivch_dpms(struct intel_dvo_device *dvo, bool enable) { int i; u16 vr01, vr30, backlight; ivch_reset(dvo); /* Set the new power state of the panel. */ if (!ivch_read(dvo, VR01, &vr01)) return; if (enable) backlight = 1; else backlight = 0; ivch_write(dvo, VR80, backlight); if (enable) vr01 |= VR01_LCD_ENABLE | VR01_DVO_ENABLE; else vr01 &= ~(VR01_LCD_ENABLE | VR01_DVO_ENABLE); ivch_write(dvo, VR01, vr01); /* Wait for the panel to make its state transition */ for (i = 0; i < 100; i++) { if (!ivch_read(dvo, VR30, &vr30)) break; if (((vr30 & VR30_PANEL_ON) != 0) == enable) break; udelay(1000); } /* wait some more; vch may fail to resync sometimes without this */ udelay(16 * 1000); } static bool ivch_get_hw_state(struct intel_dvo_device *dvo) { u16 vr01; ivch_reset(dvo); /* Set the new power state of the panel. */ if (!ivch_read(dvo, VR01, &vr01)) return false; if (vr01 & VR01_LCD_ENABLE) return true; else return false; } static void ivch_mode_set(struct intel_dvo_device *dvo, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct ivch_priv *priv = dvo->dev_priv; u16 vr40 = 0; u16 vr01 = 0; u16 vr10; ivch_reset(dvo); vr10 = priv->reg_backup[ARRAY_SIZE(backup_addresses) - 1]; /* Enable dithering for 18 bpp pipelines */ vr10 &= VR10_INTERFACE_DEPTH_MASK; if (vr10 == VR10_INTERFACE_2X18 || vr10 == VR10_INTERFACE_1X18) vr01 = VR01_DITHER_ENABLE; vr40 = (VR40_STALL_ENABLE | VR40_VERTICAL_INTERP_ENABLE | VR40_HORIZONTAL_INTERP_ENABLE); if (mode->hdisplay != adjusted_mode->crtc_hdisplay || mode->vdisplay != adjusted_mode->crtc_vdisplay) { u16 x_ratio, y_ratio; vr01 |= VR01_PANEL_FIT_ENABLE; vr40 |= VR40_CLOCK_GATING_ENABLE; x_ratio = (((mode->hdisplay - 1) << 16) / (adjusted_mode->crtc_hdisplay - 1)) >> 2; y_ratio = (((mode->vdisplay - 1) << 16) / (adjusted_mode->crtc_vdisplay - 1)) >> 2; ivch_write(dvo, VR42, x_ratio); ivch_write(dvo, VR41, y_ratio); } else { vr01 &= ~VR01_PANEL_FIT_ENABLE; vr40 &= ~VR40_CLOCK_GATING_ENABLE; } vr40 &= ~VR40_AUTO_RATIO_ENABLE; ivch_write(dvo, VR01, vr01); ivch_write(dvo, VR40, vr40); } static void ivch_dump_regs(struct intel_dvo_device *dvo) { u16 val; ivch_read(dvo, VR00, &val); DRM_DEBUG_KMS("VR00: 0x%04x\n", val); ivch_read(dvo, VR01, &val); DRM_DEBUG_KMS("VR01: 0x%04x\n", val); ivch_read(dvo, VR10, &val); DRM_DEBUG_KMS("VR10: 0x%04x\n", val); ivch_read(dvo, VR30, &val); DRM_DEBUG_KMS("VR30: 0x%04x\n", val); ivch_read(dvo, VR40, &val); DRM_DEBUG_KMS("VR40: 0x%04x\n", val); /* GPIO registers */ ivch_read(dvo, VR80, &val); DRM_DEBUG_KMS("VR80: 0x%04x\n", val); ivch_read(dvo, VR81, &val); DRM_DEBUG_KMS("VR81: 0x%04x\n", val); ivch_read(dvo, VR82, &val); DRM_DEBUG_KMS("VR82: 0x%04x\n", val); ivch_read(dvo, VR83, &val); DRM_DEBUG_KMS("VR83: 0x%04x\n", val); ivch_read(dvo, VR84, &val); DRM_DEBUG_KMS("VR84: 0x%04x\n", val); ivch_read(dvo, VR85, &val); DRM_DEBUG_KMS("VR85: 0x%04x\n", val); ivch_read(dvo, VR86, &val); DRM_DEBUG_KMS("VR86: 0x%04x\n", val); ivch_read(dvo, VR87, &val); DRM_DEBUG_KMS("VR87: 0x%04x\n", val); ivch_read(dvo, VR88, &val); DRM_DEBUG_KMS("VR88: 0x%04x\n", val); /* Scratch register 0 - AIM Panel type */ ivch_read(dvo, VR8E, &val); DRM_DEBUG_KMS("VR8E: 0x%04x\n", val); /* Scratch register 1 - Status register */ ivch_read(dvo, VR8F, &val); DRM_DEBUG_KMS("VR8F: 0x%04x\n", val); } static void ivch_destroy(struct intel_dvo_device *dvo) { struct ivch_priv *priv = dvo->dev_priv; if (priv) { kfree(priv); dvo->dev_priv = NULL; } } const struct intel_dvo_dev_ops ivch_ops = { .init = ivch_init, .dpms = ivch_dpms, .get_hw_state = ivch_get_hw_state, .mode_valid = ivch_mode_valid, .mode_set = ivch_mode_set, .detect = ivch_detect, .dump_regs = ivch_dump_regs, .destroy = ivch_destroy, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1