Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhi Wang | 2331 | 87.14% | 13 | 44.83% |
Weinan Li | 123 | 4.60% | 2 | 6.90% |
Changbin Du | 119 | 4.45% | 4 | 13.79% |
fred gao | 52 | 1.94% | 3 | 10.34% |
Tina Zhang | 24 | 0.90% | 1 | 3.45% |
Chuanxiao Dong | 15 | 0.56% | 1 | 3.45% |
Zhenyu Wang | 4 | 0.15% | 2 | 6.90% |
Chris Wilson | 3 | 0.11% | 1 | 3.45% |
Dan Carpenter | 2 | 0.07% | 1 | 3.45% |
Min He | 2 | 0.07% | 1 | 3.45% |
Total | 2675 | 29 |
/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Zhiyuan Lv <zhiyuan.lv@intel.com> * Zhi Wang <zhi.a.wang@intel.com> * * Contributors: * Min He <min.he@intel.com> * Bing Niu <bing.niu@intel.com> * Ping Gao <ping.a.gao@intel.com> * Tina Zhang <tina.zhang@intel.com> * */ #include "i915_drv.h" #include "gvt.h" #define _EL_OFFSET_STATUS 0x234 #define _EL_OFFSET_STATUS_BUF 0x370 #define _EL_OFFSET_STATUS_PTR 0x3A0 #define execlist_ring_mmio(gvt, ring_id, offset) \ (gvt->dev_priv->engine[ring_id]->mmio_base + (offset)) #define valid_context(ctx) ((ctx)->valid) #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ ((a)->lrca == (b)->lrca)) static int context_switch_events[] = { [RCS] = RCS_AS_CONTEXT_SWITCH, [BCS] = BCS_AS_CONTEXT_SWITCH, [VCS] = VCS_AS_CONTEXT_SWITCH, [VCS2] = VCS2_AS_CONTEXT_SWITCH, [VECS] = VECS_AS_CONTEXT_SWITCH, }; static int ring_id_to_context_switch_event(int ring_id) { if (WARN_ON(ring_id < RCS || ring_id >= ARRAY_SIZE(context_switch_events))) return -EINVAL; return context_switch_events[ring_id]; } static void switch_virtual_execlist_slot(struct intel_vgpu_execlist *execlist) { gvt_dbg_el("[before] running slot %d/context %x pending slot %d\n", execlist->running_slot ? execlist->running_slot->index : -1, execlist->running_context ? execlist->running_context->context_id : 0, execlist->pending_slot ? execlist->pending_slot->index : -1); execlist->running_slot = execlist->pending_slot; execlist->pending_slot = NULL; execlist->running_context = execlist->running_context ? &execlist->running_slot->ctx[0] : NULL; gvt_dbg_el("[after] running slot %d/context %x pending slot %d\n", execlist->running_slot ? execlist->running_slot->index : -1, execlist->running_context ? execlist->running_context->context_id : 0, execlist->pending_slot ? execlist->pending_slot->index : -1); } static void emulate_execlist_status(struct intel_vgpu_execlist *execlist) { struct intel_vgpu_execlist_slot *running = execlist->running_slot; struct intel_vgpu_execlist_slot *pending = execlist->pending_slot; struct execlist_ctx_descriptor_format *desc = execlist->running_context; struct intel_vgpu *vgpu = execlist->vgpu; struct execlist_status_format status; int ring_id = execlist->ring_id; u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS); status.ldw = vgpu_vreg(vgpu, status_reg); status.udw = vgpu_vreg(vgpu, status_reg + 4); if (running) { status.current_execlist_pointer = !!running->index; status.execlist_write_pointer = !!!running->index; status.execlist_0_active = status.execlist_0_valid = !!!(running->index); status.execlist_1_active = status.execlist_1_valid = !!(running->index); } else { status.context_id = 0; status.execlist_0_active = status.execlist_0_valid = 0; status.execlist_1_active = status.execlist_1_valid = 0; } status.context_id = desc ? desc->context_id : 0; status.execlist_queue_full = !!(pending); vgpu_vreg(vgpu, status_reg) = status.ldw; vgpu_vreg(vgpu, status_reg + 4) = status.udw; gvt_dbg_el("vgpu%d: status reg offset %x ldw %x udw %x\n", vgpu->id, status_reg, status.ldw, status.udw); } static void emulate_csb_update(struct intel_vgpu_execlist *execlist, struct execlist_context_status_format *status, bool trigger_interrupt_later) { struct intel_vgpu *vgpu = execlist->vgpu; int ring_id = execlist->ring_id; struct execlist_context_status_pointer_format ctx_status_ptr; u32 write_pointer; u32 ctx_status_ptr_reg, ctx_status_buf_reg, offset; unsigned long hwsp_gpa; struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS_PTR); ctx_status_buf_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS_BUF); ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg); write_pointer = ctx_status_ptr.write_ptr; if (write_pointer == 0x7) write_pointer = 0; else { ++write_pointer; write_pointer %= 0x6; } offset = ctx_status_buf_reg + write_pointer * 8; vgpu_vreg(vgpu, offset) = status->ldw; vgpu_vreg(vgpu, offset + 4) = status->udw; ctx_status_ptr.write_ptr = write_pointer; vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw; /* Update the CSB and CSB write pointer in HWSP */ hwsp_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, vgpu->hws_pga[ring_id]); if (hwsp_gpa != INTEL_GVT_INVALID_ADDR) { intel_gvt_hypervisor_write_gpa(vgpu, hwsp_gpa + I915_HWS_CSB_BUF0_INDEX * 4 + write_pointer * 8, status, 8); intel_gvt_hypervisor_write_gpa(vgpu, hwsp_gpa + intel_hws_csb_write_index(dev_priv) * 4, &write_pointer, 4); } gvt_dbg_el("vgpu%d: w pointer %u reg %x csb l %x csb h %x\n", vgpu->id, write_pointer, offset, status->ldw, status->udw); if (trigger_interrupt_later) return; intel_vgpu_trigger_virtual_event(vgpu, ring_id_to_context_switch_event(execlist->ring_id)); } static int emulate_execlist_ctx_schedule_out( struct intel_vgpu_execlist *execlist, struct execlist_ctx_descriptor_format *ctx) { struct intel_vgpu *vgpu = execlist->vgpu; struct intel_vgpu_execlist_slot *running = execlist->running_slot; struct intel_vgpu_execlist_slot *pending = execlist->pending_slot; struct execlist_ctx_descriptor_format *ctx0 = &running->ctx[0]; struct execlist_ctx_descriptor_format *ctx1 = &running->ctx[1]; struct execlist_context_status_format status; memset(&status, 0, sizeof(status)); gvt_dbg_el("schedule out context id %x\n", ctx->context_id); if (WARN_ON(!same_context(ctx, execlist->running_context))) { gvt_vgpu_err("schedule out context is not running context," "ctx id %x running ctx id %x\n", ctx->context_id, execlist->running_context->context_id); return -EINVAL; } /* ctx1 is valid, ctx0/ctx is scheduled-out -> element switch */ if (valid_context(ctx1) && same_context(ctx0, ctx)) { gvt_dbg_el("ctx 1 valid, ctx/ctx 0 is scheduled-out\n"); execlist->running_context = ctx1; emulate_execlist_status(execlist); status.context_complete = status.element_switch = 1; status.context_id = ctx->context_id; emulate_csb_update(execlist, &status, false); /* * ctx1 is not valid, ctx == ctx0 * ctx1 is valid, ctx1 == ctx * --> last element is finished * emulate: * active-to-idle if there is *no* pending execlist * context-complete if there *is* pending execlist */ } else if ((!valid_context(ctx1) && same_context(ctx0, ctx)) || (valid_context(ctx1) && same_context(ctx1, ctx))) { gvt_dbg_el("need to switch virtual execlist slot\n"); switch_virtual_execlist_slot(execlist); emulate_execlist_status(execlist); status.context_complete = status.active_to_idle = 1; status.context_id = ctx->context_id; if (!pending) { emulate_csb_update(execlist, &status, false); } else { emulate_csb_update(execlist, &status, true); memset(&status, 0, sizeof(status)); status.idle_to_active = 1; status.context_id = 0; emulate_csb_update(execlist, &status, false); } } else { WARN_ON(1); return -EINVAL; } return 0; } static struct intel_vgpu_execlist_slot *get_next_execlist_slot( struct intel_vgpu_execlist *execlist) { struct intel_vgpu *vgpu = execlist->vgpu; int ring_id = execlist->ring_id; u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS); struct execlist_status_format status; status.ldw = vgpu_vreg(vgpu, status_reg); status.udw = vgpu_vreg(vgpu, status_reg + 4); if (status.execlist_queue_full) { gvt_vgpu_err("virtual execlist slots are full\n"); return NULL; } return &execlist->slot[status.execlist_write_pointer]; } static int emulate_execlist_schedule_in(struct intel_vgpu_execlist *execlist, struct execlist_ctx_descriptor_format ctx[2]) { struct intel_vgpu_execlist_slot *running = execlist->running_slot; struct intel_vgpu_execlist_slot *slot = get_next_execlist_slot(execlist); struct execlist_ctx_descriptor_format *ctx0, *ctx1; struct execlist_context_status_format status; struct intel_vgpu *vgpu = execlist->vgpu; gvt_dbg_el("emulate schedule-in\n"); if (!slot) { gvt_vgpu_err("no available execlist slot\n"); return -EINVAL; } memset(&status, 0, sizeof(status)); memset(slot->ctx, 0, sizeof(slot->ctx)); slot->ctx[0] = ctx[0]; slot->ctx[1] = ctx[1]; gvt_dbg_el("alloc slot index %d ctx 0 %x ctx 1 %x\n", slot->index, ctx[0].context_id, ctx[1].context_id); /* * no running execlist, make this write bundle as running execlist * -> idle-to-active */ if (!running) { gvt_dbg_el("no current running execlist\n"); execlist->running_slot = slot; execlist->pending_slot = NULL; execlist->running_context = &slot->ctx[0]; gvt_dbg_el("running slot index %d running context %x\n", execlist->running_slot->index, execlist->running_context->context_id); emulate_execlist_status(execlist); status.idle_to_active = 1; status.context_id = 0; emulate_csb_update(execlist, &status, false); return 0; } ctx0 = &running->ctx[0]; ctx1 = &running->ctx[1]; gvt_dbg_el("current running slot index %d ctx 0 %x ctx 1 %x\n", running->index, ctx0->context_id, ctx1->context_id); /* * already has an running execlist * a. running ctx1 is valid, * ctx0 is finished, and running ctx1 == new execlist ctx[0] * b. running ctx1 is not valid, * ctx0 == new execlist ctx[0] * ----> lite-restore + preempted */ if ((valid_context(ctx1) && same_context(ctx1, &slot->ctx[0]) && /* condition a */ (!same_context(ctx0, execlist->running_context))) || (!valid_context(ctx1) && same_context(ctx0, &slot->ctx[0]))) { /* condition b */ gvt_dbg_el("need to switch virtual execlist slot\n"); execlist->pending_slot = slot; switch_virtual_execlist_slot(execlist); emulate_execlist_status(execlist); status.lite_restore = status.preempted = 1; status.context_id = ctx[0].context_id; emulate_csb_update(execlist, &status, false); } else { gvt_dbg_el("emulate as pending slot\n"); /* * otherwise * --> emulate pending execlist exist + but no preemption case */ execlist->pending_slot = slot; emulate_execlist_status(execlist); } return 0; } #define get_desc_from_elsp_dwords(ed, i) \ ((struct execlist_ctx_descriptor_format *)&((ed)->data[i * 2])) static int prepare_execlist_workload(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct intel_vgpu_submission *s = &vgpu->submission; struct execlist_ctx_descriptor_format ctx[2]; int ring_id = workload->ring_id; int ret; if (!workload->emulate_schedule_in) return 0; ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0); ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1); ret = emulate_execlist_schedule_in(&s->execlist[ring_id], ctx); if (ret) { gvt_vgpu_err("fail to emulate execlist schedule in\n"); return ret; } return 0; } static int complete_execlist_workload(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; int ring_id = workload->ring_id; struct intel_vgpu_submission *s = &vgpu->submission; struct intel_vgpu_execlist *execlist = &s->execlist[ring_id]; struct intel_vgpu_workload *next_workload; struct list_head *next = workload_q_head(vgpu, ring_id)->next; bool lite_restore = false; int ret = 0; gvt_dbg_el("complete workload %p status %d\n", workload, workload->status); if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) goto out; if (!list_empty(workload_q_head(vgpu, ring_id))) { struct execlist_ctx_descriptor_format *this_desc, *next_desc; next_workload = container_of(next, struct intel_vgpu_workload, list); this_desc = &workload->ctx_desc; next_desc = &next_workload->ctx_desc; lite_restore = same_context(this_desc, next_desc); } if (lite_restore) { gvt_dbg_el("next context == current - no schedule-out\n"); goto out; } ret = emulate_execlist_ctx_schedule_out(execlist, &workload->ctx_desc); out: intel_vgpu_unpin_mm(workload->shadow_mm); intel_vgpu_destroy_workload(workload); return ret; } static int submit_context(struct intel_vgpu *vgpu, int ring_id, struct execlist_ctx_descriptor_format *desc, bool emulate_schedule_in) { struct intel_vgpu_submission *s = &vgpu->submission; struct intel_vgpu_workload *workload = NULL; workload = intel_vgpu_create_workload(vgpu, ring_id, desc); if (IS_ERR(workload)) return PTR_ERR(workload); workload->prepare = prepare_execlist_workload; workload->complete = complete_execlist_workload; workload->emulate_schedule_in = emulate_schedule_in; if (emulate_schedule_in) workload->elsp_dwords = s->execlist[ring_id].elsp_dwords; gvt_dbg_el("workload %p emulate schedule_in %d\n", workload, emulate_schedule_in); intel_vgpu_queue_workload(workload); return 0; } int intel_vgpu_submit_execlist(struct intel_vgpu *vgpu, int ring_id) { struct intel_vgpu_submission *s = &vgpu->submission; struct intel_vgpu_execlist *execlist = &s->execlist[ring_id]; struct execlist_ctx_descriptor_format *desc[2]; int i, ret; desc[0] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 0); desc[1] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 1); if (!desc[0]->valid) { gvt_vgpu_err("invalid elsp submission, desc0 is invalid\n"); goto inv_desc; } for (i = 0; i < ARRAY_SIZE(desc); i++) { if (!desc[i]->valid) continue; if (!desc[i]->privilege_access) { gvt_vgpu_err("unexpected GGTT elsp submission\n"); goto inv_desc; } } /* submit workload */ for (i = 0; i < ARRAY_SIZE(desc); i++) { if (!desc[i]->valid) continue; ret = submit_context(vgpu, ring_id, desc[i], i == 0); if (ret) { gvt_vgpu_err("failed to submit desc %d\n", i); return ret; } } return 0; inv_desc: gvt_vgpu_err("descriptors content: desc0 %08x %08x desc1 %08x %08x\n", desc[0]->udw, desc[0]->ldw, desc[1]->udw, desc[1]->ldw); return -EINVAL; } static void init_vgpu_execlist(struct intel_vgpu *vgpu, int ring_id) { struct intel_vgpu_submission *s = &vgpu->submission; struct intel_vgpu_execlist *execlist = &s->execlist[ring_id]; struct execlist_context_status_pointer_format ctx_status_ptr; u32 ctx_status_ptr_reg; memset(execlist, 0, sizeof(*execlist)); execlist->vgpu = vgpu; execlist->ring_id = ring_id; execlist->slot[0].index = 0; execlist->slot[1].index = 1; ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id, _EL_OFFSET_STATUS_PTR); ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg); ctx_status_ptr.read_ptr = 0; ctx_status_ptr.write_ptr = 0x7; vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw; } static void clean_execlist(struct intel_vgpu *vgpu, unsigned long engine_mask) { unsigned int tmp; struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; struct intel_engine_cs *engine; struct intel_vgpu_submission *s = &vgpu->submission; for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { kfree(s->ring_scan_buffer[engine->id]); s->ring_scan_buffer[engine->id] = NULL; s->ring_scan_buffer_size[engine->id] = 0; } } static void reset_execlist(struct intel_vgpu *vgpu, unsigned long engine_mask) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; struct intel_engine_cs *engine; unsigned int tmp; for_each_engine_masked(engine, dev_priv, engine_mask, tmp) init_vgpu_execlist(vgpu, engine->id); } static int init_execlist(struct intel_vgpu *vgpu, unsigned long engine_mask) { reset_execlist(vgpu, engine_mask); return 0; } const struct intel_vgpu_submission_ops intel_vgpu_execlist_submission_ops = { .name = "execlist", .init = init_execlist, .reset = reset_execlist, .clean = clean_execlist, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1