Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Brad Volkin | 3786 | 67.44% | 22 | 30.56% |
Chris Wilson | 689 | 12.27% | 21 | 29.17% |
Jordan Justen | 426 | 7.59% | 6 | 8.33% |
Francisco Jerez | 295 | 5.25% | 3 | 4.17% |
Matthew Auld | 116 | 2.07% | 1 | 1.39% |
Michael H. Nguyen | 72 | 1.28% | 1 | 1.39% |
Tvrtko A. Ursulin | 66 | 1.18% | 3 | 4.17% |
Michal Srb | 43 | 0.77% | 2 | 2.78% |
Kenneth Graunke | 43 | 0.77% | 1 | 1.39% |
Ville Syrjälä | 37 | 0.66% | 2 | 2.78% |
Neil Roberts | 10 | 0.18% | 1 | 1.39% |
Oscar Mateo | 10 | 0.18% | 1 | 1.39% |
Hanno Böck | 8 | 0.14% | 2 | 2.78% |
Akash Goel | 6 | 0.11% | 1 | 1.39% |
Robert Bragg | 3 | 0.05% | 2 | 2.78% |
Jani Nikula | 2 | 0.04% | 2 | 2.78% |
Daniel Vetter | 2 | 0.04% | 1 | 1.39% |
Total | 5614 | 72 |
/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Brad Volkin <bradley.d.volkin@intel.com> * */ #include "i915_drv.h" #include "intel_ringbuffer.h" /** * DOC: batch buffer command parser * * Motivation: * Certain OpenGL features (e.g. transform feedback, performance monitoring) * require userspace code to submit batches containing commands such as * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some * generations of the hardware will noop these commands in "unsecure" batches * (which includes all userspace batches submitted via i915) even though the * commands may be safe and represent the intended programming model of the * device. * * The software command parser is similar in operation to the command parsing * done in hardware for unsecure batches. However, the software parser allows * some operations that would be noop'd by hardware, if the parser determines * the operation is safe, and submits the batch as "secure" to prevent hardware * parsing. * * Threats: * At a high level, the hardware (and software) checks attempt to prevent * granting userspace undue privileges. There are three categories of privilege. * * First, commands which are explicitly defined as privileged or which should * only be used by the kernel driver. The parser generally rejects such * commands, though it may allow some from the drm master process. * * Second, commands which access registers. To support correct/enhanced * userspace functionality, particularly certain OpenGL extensions, the parser * provides a whitelist of registers which userspace may safely access (for both * normal and drm master processes). * * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). * The parser always rejects such commands. * * The majority of the problematic commands fall in the MI_* range, with only a * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW). * * Implementation: * Each engine maintains tables of commands and registers which the parser * uses in scanning batch buffers submitted to that engine. * * Since the set of commands that the parser must check for is significantly * smaller than the number of commands supported, the parser tables contain only * those commands required by the parser. This generally works because command * opcode ranges have standard command length encodings. So for commands that * the parser does not need to check, it can easily skip them. This is * implemented via a per-engine length decoding vfunc. * * Unfortunately, there are a number of commands that do not follow the standard * length encoding for their opcode range, primarily amongst the MI_* commands. * To handle this, the parser provides a way to define explicit "skip" entries * in the per-engine command tables. * * Other command table entries map fairly directly to high level categories * mentioned above: rejected, master-only, register whitelist. The parser * implements a number of checks, including the privileged memory checks, via a * general bitmasking mechanism. */ /* * A command that requires special handling by the command parser. */ struct drm_i915_cmd_descriptor { /* * Flags describing how the command parser processes the command. * * CMD_DESC_FIXED: The command has a fixed length if this is set, * a length mask if not set * CMD_DESC_SKIP: The command is allowed but does not follow the * standard length encoding for the opcode range in * which it falls * CMD_DESC_REJECT: The command is never allowed * CMD_DESC_REGISTER: The command should be checked against the * register whitelist for the appropriate ring * CMD_DESC_MASTER: The command is allowed if the submitting process * is the DRM master */ u32 flags; #define CMD_DESC_FIXED (1<<0) #define CMD_DESC_SKIP (1<<1) #define CMD_DESC_REJECT (1<<2) #define CMD_DESC_REGISTER (1<<3) #define CMD_DESC_BITMASK (1<<4) #define CMD_DESC_MASTER (1<<5) /* * The command's unique identification bits and the bitmask to get them. * This isn't strictly the opcode field as defined in the spec and may * also include type, subtype, and/or subop fields. */ struct { u32 value; u32 mask; } cmd; /* * The command's length. The command is either fixed length (i.e. does * not include a length field) or has a length field mask. The flag * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has * a length mask. All command entries in a command table must include * length information. */ union { u32 fixed; u32 mask; } length; /* * Describes where to find a register address in the command to check * against the ring's register whitelist. Only valid if flags has the * CMD_DESC_REGISTER bit set. * * A non-zero step value implies that the command may access multiple * registers in sequence (e.g. LRI), in that case step gives the * distance in dwords between individual offset fields. */ struct { u32 offset; u32 mask; u32 step; } reg; #define MAX_CMD_DESC_BITMASKS 3 /* * Describes command checks where a particular dword is masked and * compared against an expected value. If the command does not match * the expected value, the parser rejects it. Only valid if flags has * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero * are valid. * * If the check specifies a non-zero condition_mask then the parser * only performs the check when the bits specified by condition_mask * are non-zero. */ struct { u32 offset; u32 mask; u32 expected; u32 condition_offset; u32 condition_mask; } bits[MAX_CMD_DESC_BITMASKS]; }; /* * A table of commands requiring special handling by the command parser. * * Each engine has an array of tables. Each table consists of an array of * command descriptors, which must be sorted with command opcodes in * ascending order. */ struct drm_i915_cmd_table { const struct drm_i915_cmd_descriptor *table; int count; }; #define STD_MI_OPCODE_SHIFT (32 - 9) #define STD_3D_OPCODE_SHIFT (32 - 16) #define STD_2D_OPCODE_SHIFT (32 - 10) #define STD_MFX_OPCODE_SHIFT (32 - 16) #define MIN_OPCODE_SHIFT 16 #define CMD(op, opm, f, lm, fl, ...) \ { \ .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \ .cmd = { (op), ~0u << (opm) }, \ .length = { (lm) }, \ __VA_ARGS__ \ } /* Convenience macros to compress the tables */ #define SMI STD_MI_OPCODE_SHIFT #define S3D STD_3D_OPCODE_SHIFT #define S2D STD_2D_OPCODE_SHIFT #define SMFX STD_MFX_OPCODE_SHIFT #define F true #define S CMD_DESC_SKIP #define R CMD_DESC_REJECT #define W CMD_DESC_REGISTER #define B CMD_DESC_BITMASK #define M CMD_DESC_MASTER /* Command Mask Fixed Len Action ---------------------------------------------------------- */ static const struct drm_i915_cmd_descriptor common_cmds[] = { CMD( MI_NOOP, SMI, F, 1, S ), CMD( MI_USER_INTERRUPT, SMI, F, 1, R ), CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, M ), CMD( MI_ARB_CHECK, SMI, F, 1, S ), CMD( MI_REPORT_HEAD, SMI, F, 1, S ), CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ), CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ), CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B, .reg = { .offset = 1, .mask = 0x007FFFFC }, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B, .reg = { .offset = 1, .mask = 0x007FFFFC }, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), /* * MI_BATCH_BUFFER_START requires some special handling. It's not * really a 'skip' action but it doesn't seem like it's worth adding * a new action. See i915_parse_cmds(). */ CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ), }; static const struct drm_i915_cmd_descriptor render_cmds[] = { CMD( MI_FLUSH, SMI, F, 1, S ), CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), CMD( MI_PREDICATE, SMI, F, 1, S ), CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ), CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ), CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B, .bits = {{ .offset = 1, .mask = MI_REPORT_PERF_COUNT_GGTT, .expected = 0, }}, ), CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ), CMD( PIPELINE_SELECT, S3D, F, 1, S ), CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B, .bits = {{ .offset = 2, .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK, .expected = 0, }}, ), CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ), CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ), CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ), CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B, .bits = {{ .offset = 1, .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY), .expected = 0, }, { .offset = 1, .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_STORE_DATA_INDEX), .expected = 0, .condition_offset = 1, .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK, }}, ), }; static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = { CMD( MI_SET_PREDICATE, SMI, F, 1, S ), CMD( MI_RS_CONTROL, SMI, F, 1, S ), CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_RS_CONTEXT, SMI, F, 1, S ), CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ), CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ), CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ), CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ), CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ), CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ), CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ), }; static const struct drm_i915_cmd_descriptor video_cmds[] = { CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_FLUSH_DW_NOTIFY, .expected = 0, }, { .offset = 1, .mask = MI_FLUSH_DW_USE_GTT, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }, { .offset = 0, .mask = MI_FLUSH_DW_STORE_INDEX, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }}, ), CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), /* * MFX_WAIT doesn't fit the way we handle length for most commands. * It has a length field but it uses a non-standard length bias. * It is always 1 dword though, so just treat it as fixed length. */ CMD( MFX_WAIT, SMFX, F, 1, S ), }; static const struct drm_i915_cmd_descriptor vecs_cmds[] = { CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), CMD( MI_SET_APPID, SMI, F, 1, S ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_FLUSH_DW_NOTIFY, .expected = 0, }, { .offset = 1, .mask = MI_FLUSH_DW_USE_GTT, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }, { .offset = 0, .mask = MI_FLUSH_DW_STORE_INDEX, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }}, ), CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), }; static const struct drm_i915_cmd_descriptor blt_cmds[] = { CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B, .bits = {{ .offset = 0, .mask = MI_GLOBAL_GTT, .expected = 0, }}, ), CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, .bits = {{ .offset = 0, .mask = MI_FLUSH_DW_NOTIFY, .expected = 0, }, { .offset = 1, .mask = MI_FLUSH_DW_USE_GTT, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }, { .offset = 0, .mask = MI_FLUSH_DW_STORE_INDEX, .expected = 0, .condition_offset = 0, .condition_mask = MI_FLUSH_DW_OP_MASK, }}, ), CMD( COLOR_BLT, S2D, !F, 0x3F, S ), CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ), }; static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = { CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ), CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), }; static const struct drm_i915_cmd_descriptor noop_desc = CMD(MI_NOOP, SMI, F, 1, S); #undef CMD #undef SMI #undef S3D #undef S2D #undef SMFX #undef F #undef S #undef R #undef W #undef B #undef M static const struct drm_i915_cmd_table gen7_render_cmds[] = { { common_cmds, ARRAY_SIZE(common_cmds) }, { render_cmds, ARRAY_SIZE(render_cmds) }, }; static const struct drm_i915_cmd_table hsw_render_ring_cmds[] = { { common_cmds, ARRAY_SIZE(common_cmds) }, { render_cmds, ARRAY_SIZE(render_cmds) }, { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) }, }; static const struct drm_i915_cmd_table gen7_video_cmds[] = { { common_cmds, ARRAY_SIZE(common_cmds) }, { video_cmds, ARRAY_SIZE(video_cmds) }, }; static const struct drm_i915_cmd_table hsw_vebox_cmds[] = { { common_cmds, ARRAY_SIZE(common_cmds) }, { vecs_cmds, ARRAY_SIZE(vecs_cmds) }, }; static const struct drm_i915_cmd_table gen7_blt_cmds[] = { { common_cmds, ARRAY_SIZE(common_cmds) }, { blt_cmds, ARRAY_SIZE(blt_cmds) }, }; static const struct drm_i915_cmd_table hsw_blt_ring_cmds[] = { { common_cmds, ARRAY_SIZE(common_cmds) }, { blt_cmds, ARRAY_SIZE(blt_cmds) }, { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) }, }; /* * Register whitelists, sorted by increasing register offset. */ /* * An individual whitelist entry granting access to register addr. If * mask is non-zero the argument of immediate register writes will be * AND-ed with mask, and the command will be rejected if the result * doesn't match value. * * Registers with non-zero mask are only allowed to be written using * LRI. */ struct drm_i915_reg_descriptor { i915_reg_t addr; u32 mask; u32 value; }; /* Convenience macro for adding 32-bit registers. */ #define REG32(_reg, ...) \ { .addr = (_reg), __VA_ARGS__ } /* * Convenience macro for adding 64-bit registers. * * Some registers that userspace accesses are 64 bits. The register * access commands only allow 32-bit accesses. Hence, we have to include * entries for both halves of the 64-bit registers. */ #define REG64(_reg) \ { .addr = _reg }, \ { .addr = _reg ## _UDW } #define REG64_IDX(_reg, idx) \ { .addr = _reg(idx) }, \ { .addr = _reg ## _UDW(idx) } static const struct drm_i915_reg_descriptor gen7_render_regs[] = { REG64(GPGPU_THREADS_DISPATCHED), REG64(HS_INVOCATION_COUNT), REG64(DS_INVOCATION_COUNT), REG64(IA_VERTICES_COUNT), REG64(IA_PRIMITIVES_COUNT), REG64(VS_INVOCATION_COUNT), REG64(GS_INVOCATION_COUNT), REG64(GS_PRIMITIVES_COUNT), REG64(CL_INVOCATION_COUNT), REG64(CL_PRIMITIVES_COUNT), REG64(PS_INVOCATION_COUNT), REG64(PS_DEPTH_COUNT), REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), REG64(MI_PREDICATE_SRC0), REG64(MI_PREDICATE_SRC1), REG32(GEN7_3DPRIM_END_OFFSET), REG32(GEN7_3DPRIM_START_VERTEX), REG32(GEN7_3DPRIM_VERTEX_COUNT), REG32(GEN7_3DPRIM_INSTANCE_COUNT), REG32(GEN7_3DPRIM_START_INSTANCE), REG32(GEN7_3DPRIM_BASE_VERTEX), REG32(GEN7_GPGPU_DISPATCHDIMX), REG32(GEN7_GPGPU_DISPATCHDIMY), REG32(GEN7_GPGPU_DISPATCHDIMZ), REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0), REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1), REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2), REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3), REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0), REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1), REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2), REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3), REG32(GEN7_SO_WRITE_OFFSET(0)), REG32(GEN7_SO_WRITE_OFFSET(1)), REG32(GEN7_SO_WRITE_OFFSET(2)), REG32(GEN7_SO_WRITE_OFFSET(3)), REG32(GEN7_L3SQCREG1), REG32(GEN7_L3CNTLREG2), REG32(GEN7_L3CNTLREG3), REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), }; static const struct drm_i915_reg_descriptor hsw_render_regs[] = { REG64_IDX(HSW_CS_GPR, 0), REG64_IDX(HSW_CS_GPR, 1), REG64_IDX(HSW_CS_GPR, 2), REG64_IDX(HSW_CS_GPR, 3), REG64_IDX(HSW_CS_GPR, 4), REG64_IDX(HSW_CS_GPR, 5), REG64_IDX(HSW_CS_GPR, 6), REG64_IDX(HSW_CS_GPR, 7), REG64_IDX(HSW_CS_GPR, 8), REG64_IDX(HSW_CS_GPR, 9), REG64_IDX(HSW_CS_GPR, 10), REG64_IDX(HSW_CS_GPR, 11), REG64_IDX(HSW_CS_GPR, 12), REG64_IDX(HSW_CS_GPR, 13), REG64_IDX(HSW_CS_GPR, 14), REG64_IDX(HSW_CS_GPR, 15), REG32(HSW_SCRATCH1, .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE, .value = 0), REG32(HSW_ROW_CHICKEN3, .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 | HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), .value = 0), }; static const struct drm_i915_reg_descriptor gen7_blt_regs[] = { REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), REG32(BCS_SWCTRL), REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), }; static const struct drm_i915_reg_descriptor ivb_master_regs[] = { REG32(FORCEWAKE_MT), REG32(DERRMR), REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_A)), REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_B)), REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_C)), }; static const struct drm_i915_reg_descriptor hsw_master_regs[] = { REG32(FORCEWAKE_MT), REG32(DERRMR), }; #undef REG64 #undef REG32 struct drm_i915_reg_table { const struct drm_i915_reg_descriptor *regs; int num_regs; bool master; }; static const struct drm_i915_reg_table ivb_render_reg_tables[] = { { gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false }, { ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true }, }; static const struct drm_i915_reg_table ivb_blt_reg_tables[] = { { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false }, { ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true }, }; static const struct drm_i915_reg_table hsw_render_reg_tables[] = { { gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false }, { hsw_render_regs, ARRAY_SIZE(hsw_render_regs), false }, { hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true }, }; static const struct drm_i915_reg_table hsw_blt_reg_tables[] = { { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false }, { hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true }, }; static u32 gen7_render_get_cmd_length_mask(u32 cmd_header) { u32 client = cmd_header >> INSTR_CLIENT_SHIFT; u32 subclient = (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; if (client == INSTR_MI_CLIENT) return 0x3F; else if (client == INSTR_RC_CLIENT) { if (subclient == INSTR_MEDIA_SUBCLIENT) return 0xFFFF; else return 0xFF; } DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header); return 0; } static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header) { u32 client = cmd_header >> INSTR_CLIENT_SHIFT; u32 subclient = (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT; if (client == INSTR_MI_CLIENT) return 0x3F; else if (client == INSTR_RC_CLIENT) { if (subclient == INSTR_MEDIA_SUBCLIENT) { if (op == 6) return 0xFFFF; else return 0xFFF; } else return 0xFF; } DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header); return 0; } static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header) { u32 client = cmd_header >> INSTR_CLIENT_SHIFT; if (client == INSTR_MI_CLIENT) return 0x3F; else if (client == INSTR_BC_CLIENT) return 0xFF; DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); return 0; } static bool validate_cmds_sorted(const struct intel_engine_cs *engine, const struct drm_i915_cmd_table *cmd_tables, int cmd_table_count) { int i; bool ret = true; if (!cmd_tables || cmd_table_count == 0) return true; for (i = 0; i < cmd_table_count; i++) { const struct drm_i915_cmd_table *table = &cmd_tables[i]; u32 previous = 0; int j; for (j = 0; j < table->count; j++) { const struct drm_i915_cmd_descriptor *desc = &table->table[j]; u32 curr = desc->cmd.value & desc->cmd.mask; if (curr < previous) { DRM_ERROR("CMD: %s [%d] command table not sorted: " "table=%d entry=%d cmd=0x%08X prev=0x%08X\n", engine->name, engine->id, i, j, curr, previous); ret = false; } previous = curr; } } return ret; } static bool check_sorted(const struct intel_engine_cs *engine, const struct drm_i915_reg_descriptor *reg_table, int reg_count) { int i; u32 previous = 0; bool ret = true; for (i = 0; i < reg_count; i++) { u32 curr = i915_mmio_reg_offset(reg_table[i].addr); if (curr < previous) { DRM_ERROR("CMD: %s [%d] register table not sorted: " "entry=%d reg=0x%08X prev=0x%08X\n", engine->name, engine->id, i, curr, previous); ret = false; } previous = curr; } return ret; } static bool validate_regs_sorted(struct intel_engine_cs *engine) { int i; const struct drm_i915_reg_table *table; for (i = 0; i < engine->reg_table_count; i++) { table = &engine->reg_tables[i]; if (!check_sorted(engine, table->regs, table->num_regs)) return false; } return true; } struct cmd_node { const struct drm_i915_cmd_descriptor *desc; struct hlist_node node; }; /* * Different command ranges have different numbers of bits for the opcode. For * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The * problem is that, for example, MI commands use bits 22:16 for other fields * such as GGTT vs PPGTT bits. If we include those bits in the mask then when * we mask a command from a batch it could hash to the wrong bucket due to * non-opcode bits being set. But if we don't include those bits, some 3D * commands may hash to the same bucket due to not including opcode bits that * make the command unique. For now, we will risk hashing to the same bucket. */ static inline u32 cmd_header_key(u32 x) { switch (x >> INSTR_CLIENT_SHIFT) { default: case INSTR_MI_CLIENT: return x >> STD_MI_OPCODE_SHIFT; case INSTR_RC_CLIENT: return x >> STD_3D_OPCODE_SHIFT; case INSTR_BC_CLIENT: return x >> STD_2D_OPCODE_SHIFT; } } static int init_hash_table(struct intel_engine_cs *engine, const struct drm_i915_cmd_table *cmd_tables, int cmd_table_count) { int i, j; hash_init(engine->cmd_hash); for (i = 0; i < cmd_table_count; i++) { const struct drm_i915_cmd_table *table = &cmd_tables[i]; for (j = 0; j < table->count; j++) { const struct drm_i915_cmd_descriptor *desc = &table->table[j]; struct cmd_node *desc_node = kmalloc(sizeof(*desc_node), GFP_KERNEL); if (!desc_node) return -ENOMEM; desc_node->desc = desc; hash_add(engine->cmd_hash, &desc_node->node, cmd_header_key(desc->cmd.value)); } } return 0; } static void fini_hash_table(struct intel_engine_cs *engine) { struct hlist_node *tmp; struct cmd_node *desc_node; int i; hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) { hash_del(&desc_node->node); kfree(desc_node); } } /** * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine * @engine: the engine to initialize * * Optionally initializes fields related to batch buffer command parsing in the * struct intel_engine_cs based on whether the platform requires software * command parsing. */ void intel_engine_init_cmd_parser(struct intel_engine_cs *engine) { const struct drm_i915_cmd_table *cmd_tables; int cmd_table_count; int ret; if (!IS_GEN7(engine->i915)) return; switch (engine->id) { case RCS: if (IS_HASWELL(engine->i915)) { cmd_tables = hsw_render_ring_cmds; cmd_table_count = ARRAY_SIZE(hsw_render_ring_cmds); } else { cmd_tables = gen7_render_cmds; cmd_table_count = ARRAY_SIZE(gen7_render_cmds); } if (IS_HASWELL(engine->i915)) { engine->reg_tables = hsw_render_reg_tables; engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables); } else { engine->reg_tables = ivb_render_reg_tables; engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables); } engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask; break; case VCS: cmd_tables = gen7_video_cmds; cmd_table_count = ARRAY_SIZE(gen7_video_cmds); engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; break; case BCS: if (IS_HASWELL(engine->i915)) { cmd_tables = hsw_blt_ring_cmds; cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmds); } else { cmd_tables = gen7_blt_cmds; cmd_table_count = ARRAY_SIZE(gen7_blt_cmds); } if (IS_HASWELL(engine->i915)) { engine->reg_tables = hsw_blt_reg_tables; engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables); } else { engine->reg_tables = ivb_blt_reg_tables; engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables); } engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask; break; case VECS: cmd_tables = hsw_vebox_cmds; cmd_table_count = ARRAY_SIZE(hsw_vebox_cmds); /* VECS can use the same length_mask function as VCS */ engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; break; default: MISSING_CASE(engine->id); return; } if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) { DRM_ERROR("%s: command descriptions are not sorted\n", engine->name); return; } if (!validate_regs_sorted(engine)) { DRM_ERROR("%s: registers are not sorted\n", engine->name); return; } ret = init_hash_table(engine, cmd_tables, cmd_table_count); if (ret) { DRM_ERROR("%s: initialised failed!\n", engine->name); fini_hash_table(engine); return; } engine->flags |= I915_ENGINE_NEEDS_CMD_PARSER; } /** * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields * @engine: the engine to clean up * * Releases any resources related to command parsing that may have been * initialized for the specified engine. */ void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine) { if (!intel_engine_needs_cmd_parser(engine)) return; fini_hash_table(engine); } static const struct drm_i915_cmd_descriptor* find_cmd_in_table(struct intel_engine_cs *engine, u32 cmd_header) { struct cmd_node *desc_node; hash_for_each_possible(engine->cmd_hash, desc_node, node, cmd_header_key(cmd_header)) { const struct drm_i915_cmd_descriptor *desc = desc_node->desc; if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) return desc; } return NULL; } /* * Returns a pointer to a descriptor for the command specified by cmd_header. * * The caller must supply space for a default descriptor via the default_desc * parameter. If no descriptor for the specified command exists in the engine's * command parser tables, this function fills in default_desc based on the * engine's default length encoding and returns default_desc. */ static const struct drm_i915_cmd_descriptor* find_cmd(struct intel_engine_cs *engine, u32 cmd_header, const struct drm_i915_cmd_descriptor *desc, struct drm_i915_cmd_descriptor *default_desc) { u32 mask; if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) return desc; desc = find_cmd_in_table(engine, cmd_header); if (desc) return desc; mask = engine->get_cmd_length_mask(cmd_header); if (!mask) return NULL; default_desc->cmd.value = cmd_header; default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT; default_desc->length.mask = mask; default_desc->flags = CMD_DESC_SKIP; return default_desc; } static const struct drm_i915_reg_descriptor * __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr) { int start = 0, end = count; while (start < end) { int mid = start + (end - start) / 2; int ret = addr - i915_mmio_reg_offset(table[mid].addr); if (ret < 0) end = mid; else if (ret > 0) start = mid + 1; else return &table[mid]; } return NULL; } static const struct drm_i915_reg_descriptor * find_reg(const struct intel_engine_cs *engine, bool is_master, u32 addr) { const struct drm_i915_reg_table *table = engine->reg_tables; int count = engine->reg_table_count; for (; count > 0; ++table, --count) { if (!table->master || is_master) { const struct drm_i915_reg_descriptor *reg; reg = __find_reg(table->regs, table->num_regs, addr); if (reg != NULL) return reg; } } return NULL; } /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */ static u32 *copy_batch(struct drm_i915_gem_object *dst_obj, struct drm_i915_gem_object *src_obj, u32 batch_start_offset, u32 batch_len, bool *needs_clflush_after) { unsigned int src_needs_clflush; unsigned int dst_needs_clflush; void *dst, *src; int ret; ret = i915_gem_obj_prepare_shmem_read(src_obj, &src_needs_clflush); if (ret) return ERR_PTR(ret); ret = i915_gem_obj_prepare_shmem_write(dst_obj, &dst_needs_clflush); if (ret) { dst = ERR_PTR(ret); goto unpin_src; } dst = i915_gem_object_pin_map(dst_obj, I915_MAP_FORCE_WB); if (IS_ERR(dst)) goto unpin_dst; src = ERR_PTR(-ENODEV); if (src_needs_clflush && i915_can_memcpy_from_wc(NULL, batch_start_offset, 0)) { src = i915_gem_object_pin_map(src_obj, I915_MAP_WC); if (!IS_ERR(src)) { i915_memcpy_from_wc(dst, src + batch_start_offset, ALIGN(batch_len, 16)); i915_gem_object_unpin_map(src_obj); } } if (IS_ERR(src)) { void *ptr; int offset, n; offset = offset_in_page(batch_start_offset); /* We can avoid clflushing partial cachelines before the write * if we only every write full cache-lines. Since we know that * both the source and destination are in multiples of * PAGE_SIZE, we can simply round up to the next cacheline. * We don't care about copying too much here as we only * validate up to the end of the batch. */ if (dst_needs_clflush & CLFLUSH_BEFORE) batch_len = roundup(batch_len, boot_cpu_data.x86_clflush_size); ptr = dst; for (n = batch_start_offset >> PAGE_SHIFT; batch_len; n++) { int len = min_t(int, batch_len, PAGE_SIZE - offset); src = kmap_atomic(i915_gem_object_get_page(src_obj, n)); if (src_needs_clflush) drm_clflush_virt_range(src + offset, len); memcpy(ptr, src + offset, len); kunmap_atomic(src); ptr += len; batch_len -= len; offset = 0; } } /* dst_obj is returned with vmap pinned */ *needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER; unpin_dst: i915_gem_obj_finish_shmem_access(dst_obj); unpin_src: i915_gem_obj_finish_shmem_access(src_obj); return dst; } static bool check_cmd(const struct intel_engine_cs *engine, const struct drm_i915_cmd_descriptor *desc, const u32 *cmd, u32 length, const bool is_master) { if (desc->flags & CMD_DESC_SKIP) return true; if (desc->flags & CMD_DESC_REJECT) { DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd); return false; } if ((desc->flags & CMD_DESC_MASTER) && !is_master) { DRM_DEBUG_DRIVER("CMD: Rejected master-only command: 0x%08X\n", *cmd); return false; } if (desc->flags & CMD_DESC_REGISTER) { /* * Get the distance between individual register offset * fields if the command can perform more than one * access at a time. */ const u32 step = desc->reg.step ? desc->reg.step : length; u32 offset; for (offset = desc->reg.offset; offset < length; offset += step) { const u32 reg_addr = cmd[offset] & desc->reg.mask; const struct drm_i915_reg_descriptor *reg = find_reg(engine, is_master, reg_addr); if (!reg) { DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n", reg_addr, *cmd, engine->name); return false; } /* * Check the value written to the register against the * allowed mask/value pair given in the whitelist entry. */ if (reg->mask) { if (desc->cmd.value == MI_LOAD_REGISTER_MEM) { DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n", reg_addr); return false; } if (desc->cmd.value == MI_LOAD_REGISTER_REG) { DRM_DEBUG_DRIVER("CMD: Rejected LRR to masked register 0x%08X\n", reg_addr); return false; } if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) && (offset + 2 > length || (cmd[offset + 1] & reg->mask) != reg->value)) { DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n", reg_addr); return false; } } } } if (desc->flags & CMD_DESC_BITMASK) { int i; for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) { u32 dword; if (desc->bits[i].mask == 0) break; if (desc->bits[i].condition_mask != 0) { u32 offset = desc->bits[i].condition_offset; u32 condition = cmd[offset] & desc->bits[i].condition_mask; if (condition == 0) continue; } if (desc->bits[i].offset >= length) { DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n", *cmd, engine->name); return false; } dword = cmd[desc->bits[i].offset] & desc->bits[i].mask; if (dword != desc->bits[i].expected) { DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n", *cmd, desc->bits[i].mask, desc->bits[i].expected, dword, engine->name); return false; } } } return true; } #define LENGTH_BIAS 2 /** * i915_parse_cmds() - parse a submitted batch buffer for privilege violations * @engine: the engine on which the batch is to execute * @batch_obj: the batch buffer in question * @shadow_batch_obj: copy of the batch buffer in question * @batch_start_offset: byte offset in the batch at which execution starts * @batch_len: length of the commands in batch_obj * @is_master: is the submitting process the drm master? * * Parses the specified batch buffer looking for privilege violations as * described in the overview. * * Return: non-zero if the parser finds violations or otherwise fails; -EACCES * if the batch appears legal but should use hardware parsing */ int intel_engine_cmd_parser(struct intel_engine_cs *engine, struct drm_i915_gem_object *batch_obj, struct drm_i915_gem_object *shadow_batch_obj, u32 batch_start_offset, u32 batch_len, bool is_master) { u32 *cmd, *batch_end; struct drm_i915_cmd_descriptor default_desc = noop_desc; const struct drm_i915_cmd_descriptor *desc = &default_desc; bool needs_clflush_after = false; int ret = 0; cmd = copy_batch(shadow_batch_obj, batch_obj, batch_start_offset, batch_len, &needs_clflush_after); if (IS_ERR(cmd)) { DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n"); return PTR_ERR(cmd); } /* * We use the batch length as size because the shadow object is as * large or larger and copy_batch() will write MI_NOPs to the extra * space. Parsing should be faster in some cases this way. */ batch_end = cmd + (batch_len / sizeof(*batch_end)); do { u32 length; if (*cmd == MI_BATCH_BUFFER_END) { if (needs_clflush_after) { void *ptr = page_mask_bits(shadow_batch_obj->mm.mapping); drm_clflush_virt_range(ptr, (void *)(cmd + 1) - ptr); } break; } desc = find_cmd(engine, *cmd, desc, &default_desc); if (!desc) { DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n", *cmd); ret = -EINVAL; break; } /* * If the batch buffer contains a chained batch, return an * error that tells the caller to abort and dispatch the * workload as a non-secure batch. */ if (desc->cmd.value == MI_BATCH_BUFFER_START) { ret = -EACCES; break; } if (desc->flags & CMD_DESC_FIXED) length = desc->length.fixed; else length = ((*cmd & desc->length.mask) + LENGTH_BIAS); if ((batch_end - cmd) < length) { DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n", *cmd, length, batch_end - cmd); ret = -EINVAL; break; } if (!check_cmd(engine, desc, cmd, length, is_master)) { ret = -EACCES; break; } cmd += length; if (cmd >= batch_end) { DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n"); ret = -EINVAL; break; } } while (1); i915_gem_object_unpin_map(shadow_batch_obj); return ret; } /** * i915_cmd_parser_get_version() - get the cmd parser version number * @dev_priv: i915 device private * * The cmd parser maintains a simple increasing integer version number suitable * for passing to userspace clients to determine what operations are permitted. * * Return: the current version number of the cmd parser */ int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; bool active = false; /* If the command parser is not enabled, report 0 - unsupported */ for_each_engine(engine, dev_priv, id) { if (intel_engine_needs_cmd_parser(engine)) { active = true; break; } } if (!active) return 0; /* * Command parser version history * * 1. Initial version. Checks batches and reports violations, but leaves * hardware parsing enabled (so does not allow new use cases). * 2. Allow access to the MI_PREDICATE_SRC0 and * MI_PREDICATE_SRC1 registers. * 3. Allow access to the GPGPU_THREADS_DISPATCHED register. * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3. * 5. GPGPU dispatch compute indirect registers. * 6. TIMESTAMP register and Haswell CS GPR registers * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers. * 8. Don't report cmd_check() failures as EINVAL errors to userspace; * rely on the HW to NOOP disallowed commands as it would without * the parser enabled. * 9. Don't whitelist or handle oacontrol specially, as ownership * for oacontrol state is moving to i915-perf. */ return 9; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1