Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sean Paul | 2837 | 71.68% | 4 | 17.39% |
Ramalingam C | 1096 | 27.69% | 16 | 69.57% |
Radhakrishna Sripada | 18 | 0.45% | 1 | 4.35% |
Imre Deak | 4 | 0.10% | 1 | 4.35% |
Kees Cook | 3 | 0.08% | 1 | 4.35% |
Total | 3958 | 23 |
/* SPDX-License-Identifier: MIT */ /* * Copyright (C) 2017 Google, Inc. * * Authors: * Sean Paul <seanpaul@chromium.org> */ #include <drm/drmP.h> #include <drm/drm_hdcp.h> #include <linux/i2c.h> #include <linux/random.h> #include "intel_drv.h" #include "i915_reg.h" #define KEY_LOAD_TRIES 5 static bool intel_hdcp_is_ksv_valid(u8 *ksv) { int i, ones = 0; /* KSV has 20 1's and 20 0's */ for (i = 0; i < DRM_HDCP_KSV_LEN; i++) ones += hweight8(ksv[i]); if (ones != 20) return false; return true; } static int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port, const struct intel_hdcp_shim *shim, u8 *bksv) { int ret, i, tries = 2; /* HDCP spec states that we must retry the bksv if it is invalid */ for (i = 0; i < tries; i++) { ret = shim->read_bksv(intel_dig_port, bksv); if (ret) return ret; if (intel_hdcp_is_ksv_valid(bksv)) break; } if (i == tries) { DRM_DEBUG_KMS("Bksv is invalid\n"); return -ENODEV; } return 0; } /* Is HDCP1.4 capable on Platform and Sink */ bool intel_hdcp_capable(struct intel_connector *connector) { struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector); const struct intel_hdcp_shim *shim = connector->hdcp.shim; bool capable = false; u8 bksv[5]; if (!shim) return capable; if (shim->hdcp_capable) { shim->hdcp_capable(intel_dig_port, &capable); } else { if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv)) capable = true; } return capable; } static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port, const struct intel_hdcp_shim *shim) { int ret, read_ret; bool ksv_ready; /* Poll for ksv list ready (spec says max time allowed is 5s) */ ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port, &ksv_ready), read_ret || ksv_ready, 5 * 1000 * 1000, 1000, 100 * 1000); if (ret) return ret; if (read_ret) return read_ret; if (!ksv_ready) return -ETIMEDOUT; return 0; } static bool hdcp_key_loadable(struct drm_i915_private *dev_priv) { struct i915_power_domains *power_domains = &dev_priv->power_domains; struct i915_power_well *power_well; enum i915_power_well_id id; bool enabled = false; /* * On HSW and BDW, Display HW loads the Key as soon as Display resumes. * On all BXT+, SW can load the keys only when the PW#1 is turned on. */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) id = HSW_DISP_PW_GLOBAL; else id = SKL_DISP_PW_1; mutex_lock(&power_domains->lock); /* PG1 (power well #1) needs to be enabled */ for_each_power_well(dev_priv, power_well) { if (power_well->desc->id == id) { enabled = power_well->desc->ops->is_enabled(dev_priv, power_well); break; } } mutex_unlock(&power_domains->lock); /* * Another req for hdcp key loadability is enabled state of pll for * cdclk. Without active crtc we wont land here. So we are assuming that * cdclk is already on. */ return enabled; } static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv) { I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER); I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE); } static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv) { int ret; u32 val; val = I915_READ(HDCP_KEY_STATUS); if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS)) return 0; /* * On HSW and BDW HW loads the HDCP1.4 Key when Display comes * out of reset. So if Key is not already loaded, its an error state. */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE)) return -ENXIO; /* * Initiate loading the HDCP key from fuses. * * BXT+ platforms, HDCP key needs to be loaded by SW. Only SKL and KBL * differ in the key load trigger process from other platforms. */ if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { mutex_lock(&dev_priv->pcu_lock); ret = sandybridge_pcode_write(dev_priv, SKL_PCODE_LOAD_HDCP_KEYS, 1); mutex_unlock(&dev_priv->pcu_lock); if (ret) { DRM_ERROR("Failed to initiate HDCP key load (%d)\n", ret); return ret; } } else { I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER); } /* Wait for the keys to load (500us) */ ret = __intel_wait_for_register(dev_priv, HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE, 10, 1, &val); if (ret) return ret; else if (!(val & HDCP_KEY_LOAD_STATUS)) return -ENXIO; /* Send Aksv over to PCH display for use in authentication */ I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER); return 0; } /* Returns updated SHA-1 index */ static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text) { I915_WRITE(HDCP_SHA_TEXT, sha_text); if (intel_wait_for_register(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) { DRM_ERROR("Timed out waiting for SHA1 ready\n"); return -ETIMEDOUT; } return 0; } static u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port) { enum port port = intel_dig_port->base.port; switch (port) { case PORT_A: return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0; case PORT_B: return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0; case PORT_C: return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0; case PORT_D: return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0; case PORT_E: return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0; default: break; } DRM_ERROR("Unknown port %d\n", port); return -EINVAL; } static int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port, const struct intel_hdcp_shim *shim, u8 *ksv_fifo, u8 num_downstream, u8 *bstatus) { struct drm_i915_private *dev_priv; u32 vprime, sha_text, sha_leftovers, rep_ctl; int ret, i, j, sha_idx; dev_priv = intel_dig_port->base.base.dev->dev_private; /* Process V' values from the receiver */ for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) { ret = shim->read_v_prime_part(intel_dig_port, i, &vprime); if (ret) return ret; I915_WRITE(HDCP_SHA_V_PRIME(i), vprime); } /* * We need to write the concatenation of all device KSVs, BINFO (DP) || * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte * stream is written via the HDCP_SHA_TEXT register in 32-bit * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This * index will keep track of our progress through the 64 bytes as well as * helping us work the 40-bit KSVs through our 32-bit register. * * NOTE: data passed via HDCP_SHA_TEXT should be big-endian */ sha_idx = 0; sha_text = 0; sha_leftovers = 0; rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port); I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); for (i = 0; i < num_downstream; i++) { unsigned int sha_empty; u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN]; /* Fill up the empty slots in sha_text and write it out */ sha_empty = sizeof(sha_text) - sha_leftovers; for (j = 0; j < sha_empty; j++) sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8); ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; /* Programming guide writes this every 64 bytes */ sha_idx += sizeof(sha_text); if (!(sha_idx % 64)) I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); /* Store the leftover bytes from the ksv in sha_text */ sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty; sha_text = 0; for (j = 0; j < sha_leftovers; j++) sha_text |= ksv[sha_empty + j] << ((sizeof(sha_text) - j - 1) * 8); /* * If we still have room in sha_text for more data, continue. * Otherwise, write it out immediately. */ if (sizeof(sha_text) > sha_leftovers) continue; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; sha_leftovers = 0; sha_text = 0; sha_idx += sizeof(sha_text); } /* * We need to write BINFO/BSTATUS, and M0 now. Depending on how many * bytes are leftover from the last ksv, we might be able to fit them * all in sha_text (first 2 cases), or we might need to split them up * into 2 writes (last 2 cases). */ if (sha_leftovers == 0) { /* Write 16 bits of text, 16 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16); ret = intel_write_sha_text(dev_priv, bstatus[0] << 8 | bstatus[1]); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 32 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 16 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } else if (sha_leftovers == 1) { /* Write 24 bits of text, 8 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24); sha_text |= bstatus[0] << 16 | bstatus[1] << 8; /* Only 24-bits of data, must be in the LSB */ sha_text = (sha_text & 0xffffff00) >> 8; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 32 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 24 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } else if (sha_leftovers == 2) { /* Write 32 bits of text */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); sha_text |= bstatus[0] << 24 | bstatus[1] << 16; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 64 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); for (i = 0; i < 2; i++) { ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } } else if (sha_leftovers == 3) { /* Write 32 bits of text */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); sha_text |= bstatus[0] << 24; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 8 bits of text, 24 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8); ret = intel_write_sha_text(dev_priv, bstatus[1]); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 32 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); /* Write 8 bits of M0 */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24); ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } else { DRM_DEBUG_KMS("Invalid number of leftovers %d\n", sha_leftovers); return -EINVAL; } I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); /* Fill up to 64-4 bytes with zeros (leave the last write for length) */ while ((sha_idx % 64) < (64 - sizeof(sha_text))) { ret = intel_write_sha_text(dev_priv, 0); if (ret < 0) return ret; sha_idx += sizeof(sha_text); } /* * Last write gets the length of the concatenation in bits. That is: * - 5 bytes per device * - 10 bytes for BINFO/BSTATUS(2), M0(8) */ sha_text = (num_downstream * 5 + 10) * 8; ret = intel_write_sha_text(dev_priv, sha_text); if (ret < 0) return ret; /* Tell the HW we're done with the hash and wait for it to ACK */ I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH); if (intel_wait_for_register(dev_priv, HDCP_REP_CTL, HDCP_SHA1_COMPLETE, HDCP_SHA1_COMPLETE, 1)) { DRM_ERROR("Timed out waiting for SHA1 complete\n"); return -ETIMEDOUT; } if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) { DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n"); return -ENXIO; } return 0; } /* Implements Part 2 of the HDCP authorization procedure */ static int intel_hdcp_auth_downstream(struct intel_digital_port *intel_dig_port, const struct intel_hdcp_shim *shim) { u8 bstatus[2], num_downstream, *ksv_fifo; int ret, i, tries = 3; ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim); if (ret) { DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret); return ret; } ret = shim->read_bstatus(intel_dig_port, bstatus); if (ret) return ret; if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) || DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) { DRM_DEBUG_KMS("Max Topology Limit Exceeded\n"); return -EPERM; } /* * When repeater reports 0 device count, HDCP1.4 spec allows disabling * the HDCP encryption. That implies that repeater can't have its own * display. As there is no consumption of encrypted content in the * repeater with 0 downstream devices, we are failing the * authentication. */ num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]); if (num_downstream == 0) return -EINVAL; ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL); if (!ksv_fifo) return -ENOMEM; ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo); if (ret) goto err; /* * When V prime mismatches, DP Spec mandates re-read of * V prime atleast twice. */ for (i = 0; i < tries; i++) { ret = intel_hdcp_validate_v_prime(intel_dig_port, shim, ksv_fifo, num_downstream, bstatus); if (!ret) break; } if (i == tries) { DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret); goto err; } DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n", num_downstream); ret = 0; err: kfree(ksv_fifo); return ret; } /* Implements Part 1 of the HDCP authorization procedure */ static int intel_hdcp_auth(struct intel_digital_port *intel_dig_port, const struct intel_hdcp_shim *shim) { struct drm_i915_private *dev_priv; enum port port; unsigned long r0_prime_gen_start; int ret, i, tries = 2; union { u32 reg[2]; u8 shim[DRM_HDCP_AN_LEN]; } an; union { u32 reg[2]; u8 shim[DRM_HDCP_KSV_LEN]; } bksv; union { u32 reg; u8 shim[DRM_HDCP_RI_LEN]; } ri; bool repeater_present, hdcp_capable; dev_priv = intel_dig_port->base.base.dev->dev_private; port = intel_dig_port->base.port; /* * Detects whether the display is HDCP capable. Although we check for * valid Bksv below, the HDCP over DP spec requires that we check * whether the display supports HDCP before we write An. For HDMI * displays, this is not necessary. */ if (shim->hdcp_capable) { ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable); if (ret) return ret; if (!hdcp_capable) { DRM_DEBUG_KMS("Panel is not HDCP capable\n"); return -EINVAL; } } /* Initialize An with 2 random values and acquire it */ for (i = 0; i < 2; i++) I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32()); I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN); /* Wait for An to be acquired */ if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), HDCP_STATUS_AN_READY, HDCP_STATUS_AN_READY, 1)) { DRM_ERROR("Timed out waiting for An\n"); return -ETIMEDOUT; } an.reg[0] = I915_READ(PORT_HDCP_ANLO(port)); an.reg[1] = I915_READ(PORT_HDCP_ANHI(port)); ret = shim->write_an_aksv(intel_dig_port, an.shim); if (ret) return ret; r0_prime_gen_start = jiffies; memset(&bksv, 0, sizeof(bksv)); ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim); if (ret < 0) return ret; I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]); I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]); ret = shim->repeater_present(intel_dig_port, &repeater_present); if (ret) return ret; if (repeater_present) I915_WRITE(HDCP_REP_CTL, intel_hdcp_get_repeater_ctl(intel_dig_port)); ret = shim->toggle_signalling(intel_dig_port, true); if (ret) return ret; I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC); /* Wait for R0 ready */ if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) & (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) { DRM_ERROR("Timed out waiting for R0 ready\n"); return -ETIMEDOUT; } /* * Wait for R0' to become available. The spec says 100ms from Aksv, but * some monitors can take longer than this. We'll set the timeout at * 300ms just to be sure. * * On DP, there's an R0_READY bit available but no such bit * exists on HDMI. Since the upper-bound is the same, we'll just do * the stupid thing instead of polling on one and not the other. */ wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300); tries = 3; /* * DP HDCP Spec mandates the two more reattempt to read R0, incase * of R0 mismatch. */ for (i = 0; i < tries; i++) { ri.reg = 0; ret = shim->read_ri_prime(intel_dig_port, ri.shim); if (ret) return ret; I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg); /* Wait for Ri prime match */ if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) & (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) break; } if (i == tries) { DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n", I915_READ(PORT_HDCP_STATUS(port))); return -ETIMEDOUT; } /* Wait for encryption confirmation */ if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), HDCP_STATUS_ENC, HDCP_STATUS_ENC, 20)) { DRM_ERROR("Timed out waiting for encryption\n"); return -ETIMEDOUT; } /* * XXX: If we have MST-connected devices, we need to enable encryption * on those as well. */ if (repeater_present) return intel_hdcp_auth_downstream(intel_dig_port, shim); DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n"); return 0; } static int _intel_hdcp_disable(struct intel_connector *connector) { struct intel_hdcp *hdcp = &connector->hdcp; struct drm_i915_private *dev_priv = connector->base.dev->dev_private; struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector); enum port port = intel_dig_port->base.port; int ret; DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n", connector->base.name, connector->base.base.id); I915_WRITE(PORT_HDCP_CONF(port), 0); if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), ~0, 0, 20)) { DRM_ERROR("Failed to disable HDCP, timeout clearing status\n"); return -ETIMEDOUT; } ret = hdcp->shim->toggle_signalling(intel_dig_port, false); if (ret) { DRM_ERROR("Failed to disable HDCP signalling\n"); return ret; } DRM_DEBUG_KMS("HDCP is disabled\n"); return 0; } static int _intel_hdcp_enable(struct intel_connector *connector) { struct intel_hdcp *hdcp = &connector->hdcp; struct drm_i915_private *dev_priv = connector->base.dev->dev_private; int i, ret, tries = 3; DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n", connector->base.name, connector->base.base.id); if (!hdcp_key_loadable(dev_priv)) { DRM_ERROR("HDCP key Load is not possible\n"); return -ENXIO; } for (i = 0; i < KEY_LOAD_TRIES; i++) { ret = intel_hdcp_load_keys(dev_priv); if (!ret) break; intel_hdcp_clear_keys(dev_priv); } if (ret) { DRM_ERROR("Could not load HDCP keys, (%d)\n", ret); return ret; } /* Incase of authentication failures, HDCP spec expects reauth. */ for (i = 0; i < tries; i++) { ret = intel_hdcp_auth(conn_to_dig_port(connector), hdcp->shim); if (!ret) return 0; DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret); /* Ensuring HDCP encryption and signalling are stopped. */ _intel_hdcp_disable(connector); } DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret); return ret; } static inline struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp) { return container_of(hdcp, struct intel_connector, hdcp); } static void intel_hdcp_check_work(struct work_struct *work) { struct intel_hdcp *hdcp = container_of(to_delayed_work(work), struct intel_hdcp, check_work); struct intel_connector *connector = intel_hdcp_to_connector(hdcp); if (!intel_hdcp_check_link(connector)) schedule_delayed_work(&hdcp->check_work, DRM_HDCP_CHECK_PERIOD_MS); } static void intel_hdcp_prop_work(struct work_struct *work) { struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp, prop_work); struct intel_connector *connector = intel_hdcp_to_connector(hdcp); struct drm_device *dev = connector->base.dev; struct drm_connector_state *state; drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); mutex_lock(&hdcp->mutex); /* * This worker is only used to flip between ENABLED/DESIRED. Either of * those to UNDESIRED is handled by core. If value == UNDESIRED, * we're running just after hdcp has been disabled, so just exit */ if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { state = connector->base.state; state->content_protection = hdcp->value; } mutex_unlock(&hdcp->mutex); drm_modeset_unlock(&dev->mode_config.connection_mutex); } bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port) { /* PORT E doesn't have HDCP, and PORT F is disabled */ return ((INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) && !IS_CHERRYVIEW(dev_priv) && port < PORT_E); } int intel_hdcp_init(struct intel_connector *connector, const struct intel_hdcp_shim *shim) { struct intel_hdcp *hdcp = &connector->hdcp; int ret; ret = drm_connector_attach_content_protection_property( &connector->base); if (ret) return ret; hdcp->shim = shim; mutex_init(&hdcp->mutex); INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work); INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work); return 0; } int intel_hdcp_enable(struct intel_connector *connector) { struct intel_hdcp *hdcp = &connector->hdcp; int ret; if (!hdcp->shim) return -ENOENT; mutex_lock(&hdcp->mutex); ret = _intel_hdcp_enable(connector); if (ret) goto out; hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED; schedule_work(&hdcp->prop_work); schedule_delayed_work(&hdcp->check_work, DRM_HDCP_CHECK_PERIOD_MS); out: mutex_unlock(&hdcp->mutex); return ret; } int intel_hdcp_disable(struct intel_connector *connector) { struct intel_hdcp *hdcp = &connector->hdcp; int ret = 0; if (!hdcp->shim) return -ENOENT; mutex_lock(&hdcp->mutex); if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED; ret = _intel_hdcp_disable(connector); } mutex_unlock(&hdcp->mutex); cancel_delayed_work_sync(&hdcp->check_work); return ret; } void intel_hdcp_atomic_check(struct drm_connector *connector, struct drm_connector_state *old_state, struct drm_connector_state *new_state) { uint64_t old_cp = old_state->content_protection; uint64_t new_cp = new_state->content_protection; struct drm_crtc_state *crtc_state; if (!new_state->crtc) { /* * If the connector is being disabled with CP enabled, mark it * desired so it's re-enabled when the connector is brought back */ if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED) new_state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED; return; } /* * Nothing to do if the state didn't change, or HDCP was activated since * the last commit */ if (old_cp == new_cp || (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED && new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) return; crtc_state = drm_atomic_get_new_crtc_state(new_state->state, new_state->crtc); crtc_state->mode_changed = true; } /* Implements Part 3 of the HDCP authorization procedure */ int intel_hdcp_check_link(struct intel_connector *connector) { struct intel_hdcp *hdcp = &connector->hdcp; struct drm_i915_private *dev_priv = connector->base.dev->dev_private; struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector); enum port port = intel_dig_port->base.port; int ret = 0; if (!hdcp->shim) return -ENOENT; mutex_lock(&hdcp->mutex); if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) goto out; if (!(I915_READ(PORT_HDCP_STATUS(port)) & HDCP_STATUS_ENC)) { DRM_ERROR("%s:%d HDCP check failed: link is not encrypted,%x\n", connector->base.name, connector->base.base.id, I915_READ(PORT_HDCP_STATUS(port))); ret = -ENXIO; hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED; schedule_work(&hdcp->prop_work); goto out; } if (hdcp->shim->check_link(intel_dig_port)) { if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED; schedule_work(&hdcp->prop_work); } goto out; } DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n", connector->base.name, connector->base.base.id); ret = _intel_hdcp_disable(connector); if (ret) { DRM_ERROR("Failed to disable hdcp (%d)\n", ret); hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED; schedule_work(&hdcp->prop_work); goto out; } ret = _intel_hdcp_enable(connector); if (ret) { DRM_DEBUG_KMS("Failed to enable hdcp (%d)\n", ret); hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED; schedule_work(&hdcp->prop_work); goto out; } out: mutex_unlock(&hdcp->mutex); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1