Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
CK Hu | 3175 | 60.85% | 1 | 5.88% |
Shaoming Chen | 1132 | 21.69% | 2 | 11.76% |
Yt Shen | 788 | 15.10% | 4 | 23.53% |
Jitao Shi | 52 | 1.00% | 1 | 5.88% |
Dan Carpenter | 19 | 0.36% | 1 | 5.88% |
Rob Herring | 18 | 0.34% | 2 | 11.76% |
Nicolas Boichat | 14 | 0.27% | 1 | 5.88% |
Laurent Pinchart | 11 | 0.21% | 1 | 5.88% |
Satendra Singh Thakur | 6 | 0.11% | 1 | 5.88% |
Daniel Vetter | 1 | 0.02% | 1 | 5.88% |
Colin Ian King | 1 | 0.02% | 1 | 5.88% |
Dave Airlie | 1 | 0.02% | 1 | 5.88% |
Total | 5218 | 17 |
/* * Copyright (c) 2015 MediaTek Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <drm/drmP.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_panel.h> #include <drm/drm_of.h> #include <linux/clk.h> #include <linux/component.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <video/mipi_display.h> #include <video/videomode.h> #include "mtk_drm_ddp_comp.h" #define DSI_START 0x00 #define DSI_INTEN 0x08 #define DSI_INTSTA 0x0c #define LPRX_RD_RDY_INT_FLAG BIT(0) #define CMD_DONE_INT_FLAG BIT(1) #define TE_RDY_INT_FLAG BIT(2) #define VM_DONE_INT_FLAG BIT(3) #define EXT_TE_RDY_INT_FLAG BIT(4) #define DSI_BUSY BIT(31) #define DSI_CON_CTRL 0x10 #define DSI_RESET BIT(0) #define DSI_EN BIT(1) #define DSI_MODE_CTRL 0x14 #define MODE (3) #define CMD_MODE 0 #define SYNC_PULSE_MODE 1 #define SYNC_EVENT_MODE 2 #define BURST_MODE 3 #define FRM_MODE BIT(16) #define MIX_MODE BIT(17) #define DSI_TXRX_CTRL 0x18 #define VC_NUM BIT(1) #define LANE_NUM (0xf << 2) #define DIS_EOT BIT(6) #define NULL_EN BIT(7) #define TE_FREERUN BIT(8) #define EXT_TE_EN BIT(9) #define EXT_TE_EDGE BIT(10) #define MAX_RTN_SIZE (0xf << 12) #define HSTX_CKLP_EN BIT(16) #define DSI_PSCTRL 0x1c #define DSI_PS_WC 0x3fff #define DSI_PS_SEL (3 << 16) #define PACKED_PS_16BIT_RGB565 (0 << 16) #define LOOSELY_PS_18BIT_RGB666 (1 << 16) #define PACKED_PS_18BIT_RGB666 (2 << 16) #define PACKED_PS_24BIT_RGB888 (3 << 16) #define DSI_VSA_NL 0x20 #define DSI_VBP_NL 0x24 #define DSI_VFP_NL 0x28 #define DSI_VACT_NL 0x2C #define DSI_HSA_WC 0x50 #define DSI_HBP_WC 0x54 #define DSI_HFP_WC 0x58 #define DSI_CMDQ_SIZE 0x60 #define CMDQ_SIZE 0x3f #define DSI_HSTX_CKL_WC 0x64 #define DSI_RX_DATA0 0x74 #define DSI_RX_DATA1 0x78 #define DSI_RX_DATA2 0x7c #define DSI_RX_DATA3 0x80 #define DSI_RACK 0x84 #define RACK BIT(0) #define DSI_PHY_LCCON 0x104 #define LC_HS_TX_EN BIT(0) #define LC_ULPM_EN BIT(1) #define LC_WAKEUP_EN BIT(2) #define DSI_PHY_LD0CON 0x108 #define LD0_HS_TX_EN BIT(0) #define LD0_ULPM_EN BIT(1) #define LD0_WAKEUP_EN BIT(2) #define DSI_PHY_TIMECON0 0x110 #define LPX (0xff << 0) #define HS_PREP (0xff << 8) #define HS_ZERO (0xff << 16) #define HS_TRAIL (0xff << 24) #define DSI_PHY_TIMECON1 0x114 #define TA_GO (0xff << 0) #define TA_SURE (0xff << 8) #define TA_GET (0xff << 16) #define DA_HS_EXIT (0xff << 24) #define DSI_PHY_TIMECON2 0x118 #define CONT_DET (0xff << 0) #define CLK_ZERO (0xff << 16) #define CLK_TRAIL (0xff << 24) #define DSI_PHY_TIMECON3 0x11c #define CLK_HS_PREP (0xff << 0) #define CLK_HS_POST (0xff << 8) #define CLK_HS_EXIT (0xff << 16) #define DSI_VM_CMD_CON 0x130 #define VM_CMD_EN BIT(0) #define TS_VFP_EN BIT(5) #define DSI_CMDQ0 0x180 #define CONFIG (0xff << 0) #define SHORT_PACKET 0 #define LONG_PACKET 2 #define BTA BIT(2) #define DATA_ID (0xff << 8) #define DATA_0 (0xff << 16) #define DATA_1 (0xff << 24) #define T_LPX 5 #define T_HS_PREP 6 #define T_HS_TRAIL 8 #define T_HS_EXIT 7 #define T_HS_ZERO 10 #define NS_TO_CYCLE(n, c) ((n) / (c) + (((n) % (c)) ? 1 : 0)) #define MTK_DSI_HOST_IS_READ(type) \ ((type == MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM) || \ (type == MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM) || \ (type == MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM) || \ (type == MIPI_DSI_DCS_READ)) struct phy; struct mtk_dsi { struct mtk_ddp_comp ddp_comp; struct device *dev; struct mipi_dsi_host host; struct drm_encoder encoder; struct drm_connector conn; struct drm_panel *panel; struct drm_bridge *bridge; struct phy *phy; void __iomem *regs; struct clk *engine_clk; struct clk *digital_clk; struct clk *hs_clk; u32 data_rate; unsigned long mode_flags; enum mipi_dsi_pixel_format format; unsigned int lanes; struct videomode vm; int refcount; bool enabled; u32 irq_data; wait_queue_head_t irq_wait_queue; }; static inline struct mtk_dsi *encoder_to_dsi(struct drm_encoder *e) { return container_of(e, struct mtk_dsi, encoder); } static inline struct mtk_dsi *connector_to_dsi(struct drm_connector *c) { return container_of(c, struct mtk_dsi, conn); } static inline struct mtk_dsi *host_to_dsi(struct mipi_dsi_host *h) { return container_of(h, struct mtk_dsi, host); } static void mtk_dsi_mask(struct mtk_dsi *dsi, u32 offset, u32 mask, u32 data) { u32 temp = readl(dsi->regs + offset); writel((temp & ~mask) | (data & mask), dsi->regs + offset); } static void mtk_dsi_phy_timconfig(struct mtk_dsi *dsi) { u32 timcon0, timcon1, timcon2, timcon3; u32 ui, cycle_time; ui = 1000 / dsi->data_rate + 0x01; cycle_time = 8000 / dsi->data_rate + 0x01; timcon0 = T_LPX | T_HS_PREP << 8 | T_HS_ZERO << 16 | T_HS_TRAIL << 24; timcon1 = 4 * T_LPX | (3 * T_LPX / 2) << 8 | 5 * T_LPX << 16 | T_HS_EXIT << 24; timcon2 = ((NS_TO_CYCLE(0x64, cycle_time) + 0xa) << 24) | (NS_TO_CYCLE(0x150, cycle_time) << 16); timcon3 = NS_TO_CYCLE(0x40, cycle_time) | (2 * T_LPX) << 16 | NS_TO_CYCLE(80 + 52 * ui, cycle_time) << 8; writel(timcon0, dsi->regs + DSI_PHY_TIMECON0); writel(timcon1, dsi->regs + DSI_PHY_TIMECON1); writel(timcon2, dsi->regs + DSI_PHY_TIMECON2); writel(timcon3, dsi->regs + DSI_PHY_TIMECON3); } static void mtk_dsi_enable(struct mtk_dsi *dsi) { mtk_dsi_mask(dsi, DSI_CON_CTRL, DSI_EN, DSI_EN); } static void mtk_dsi_disable(struct mtk_dsi *dsi) { mtk_dsi_mask(dsi, DSI_CON_CTRL, DSI_EN, 0); } static void mtk_dsi_reset_engine(struct mtk_dsi *dsi) { mtk_dsi_mask(dsi, DSI_CON_CTRL, DSI_RESET, DSI_RESET); mtk_dsi_mask(dsi, DSI_CON_CTRL, DSI_RESET, 0); } static void mtk_dsi_clk_ulp_mode_enter(struct mtk_dsi *dsi) { mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_HS_TX_EN, 0); mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_ULPM_EN, 0); } static void mtk_dsi_clk_ulp_mode_leave(struct mtk_dsi *dsi) { mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_ULPM_EN, 0); mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_WAKEUP_EN, LC_WAKEUP_EN); mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_WAKEUP_EN, 0); } static void mtk_dsi_lane0_ulp_mode_enter(struct mtk_dsi *dsi) { mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_HS_TX_EN, 0); mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_ULPM_EN, 0); } static void mtk_dsi_lane0_ulp_mode_leave(struct mtk_dsi *dsi) { mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_ULPM_EN, 0); mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_WAKEUP_EN, LD0_WAKEUP_EN); mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_WAKEUP_EN, 0); } static bool mtk_dsi_clk_hs_state(struct mtk_dsi *dsi) { u32 tmp_reg1; tmp_reg1 = readl(dsi->regs + DSI_PHY_LCCON); return ((tmp_reg1 & LC_HS_TX_EN) == 1) ? true : false; } static void mtk_dsi_clk_hs_mode(struct mtk_dsi *dsi, bool enter) { if (enter && !mtk_dsi_clk_hs_state(dsi)) mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_HS_TX_EN, LC_HS_TX_EN); else if (!enter && mtk_dsi_clk_hs_state(dsi)) mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_HS_TX_EN, 0); } static void mtk_dsi_set_mode(struct mtk_dsi *dsi) { u32 vid_mode = CMD_MODE; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) vid_mode = BURST_MODE; else if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) vid_mode = SYNC_PULSE_MODE; else vid_mode = SYNC_EVENT_MODE; } writel(vid_mode, dsi->regs + DSI_MODE_CTRL); } static void mtk_dsi_set_vm_cmd(struct mtk_dsi *dsi) { mtk_dsi_mask(dsi, DSI_VM_CMD_CON, VM_CMD_EN, VM_CMD_EN); mtk_dsi_mask(dsi, DSI_VM_CMD_CON, TS_VFP_EN, TS_VFP_EN); } static void mtk_dsi_ps_control_vact(struct mtk_dsi *dsi) { struct videomode *vm = &dsi->vm; u32 dsi_buf_bpp, ps_wc; u32 ps_bpp_mode; if (dsi->format == MIPI_DSI_FMT_RGB565) dsi_buf_bpp = 2; else dsi_buf_bpp = 3; ps_wc = vm->hactive * dsi_buf_bpp; ps_bpp_mode = ps_wc; switch (dsi->format) { case MIPI_DSI_FMT_RGB888: ps_bpp_mode |= PACKED_PS_24BIT_RGB888; break; case MIPI_DSI_FMT_RGB666: ps_bpp_mode |= PACKED_PS_18BIT_RGB666; break; case MIPI_DSI_FMT_RGB666_PACKED: ps_bpp_mode |= LOOSELY_PS_18BIT_RGB666; break; case MIPI_DSI_FMT_RGB565: ps_bpp_mode |= PACKED_PS_16BIT_RGB565; break; } writel(vm->vactive, dsi->regs + DSI_VACT_NL); writel(ps_bpp_mode, dsi->regs + DSI_PSCTRL); writel(ps_wc, dsi->regs + DSI_HSTX_CKL_WC); } static void mtk_dsi_rxtx_control(struct mtk_dsi *dsi) { u32 tmp_reg; switch (dsi->lanes) { case 1: tmp_reg = 1 << 2; break; case 2: tmp_reg = 3 << 2; break; case 3: tmp_reg = 7 << 2; break; case 4: tmp_reg = 0xf << 2; break; default: tmp_reg = 0xf << 2; break; } tmp_reg |= (dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) << 6; tmp_reg |= (dsi->mode_flags & MIPI_DSI_MODE_EOT_PACKET) >> 3; writel(tmp_reg, dsi->regs + DSI_TXRX_CTRL); } static void mtk_dsi_ps_control(struct mtk_dsi *dsi) { u32 dsi_tmp_buf_bpp; u32 tmp_reg; switch (dsi->format) { case MIPI_DSI_FMT_RGB888: tmp_reg = PACKED_PS_24BIT_RGB888; dsi_tmp_buf_bpp = 3; break; case MIPI_DSI_FMT_RGB666: tmp_reg = LOOSELY_PS_18BIT_RGB666; dsi_tmp_buf_bpp = 3; break; case MIPI_DSI_FMT_RGB666_PACKED: tmp_reg = PACKED_PS_18BIT_RGB666; dsi_tmp_buf_bpp = 3; break; case MIPI_DSI_FMT_RGB565: tmp_reg = PACKED_PS_16BIT_RGB565; dsi_tmp_buf_bpp = 2; break; default: tmp_reg = PACKED_PS_24BIT_RGB888; dsi_tmp_buf_bpp = 3; break; } tmp_reg += dsi->vm.hactive * dsi_tmp_buf_bpp & DSI_PS_WC; writel(tmp_reg, dsi->regs + DSI_PSCTRL); } static void mtk_dsi_config_vdo_timing(struct mtk_dsi *dsi) { u32 horizontal_sync_active_byte; u32 horizontal_backporch_byte; u32 horizontal_frontporch_byte; u32 dsi_tmp_buf_bpp; struct videomode *vm = &dsi->vm; if (dsi->format == MIPI_DSI_FMT_RGB565) dsi_tmp_buf_bpp = 2; else dsi_tmp_buf_bpp = 3; writel(vm->vsync_len, dsi->regs + DSI_VSA_NL); writel(vm->vback_porch, dsi->regs + DSI_VBP_NL); writel(vm->vfront_porch, dsi->regs + DSI_VFP_NL); writel(vm->vactive, dsi->regs + DSI_VACT_NL); horizontal_sync_active_byte = (vm->hsync_len * dsi_tmp_buf_bpp - 10); if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) horizontal_backporch_byte = (vm->hback_porch * dsi_tmp_buf_bpp - 10); else horizontal_backporch_byte = ((vm->hback_porch + vm->hsync_len) * dsi_tmp_buf_bpp - 10); horizontal_frontporch_byte = (vm->hfront_porch * dsi_tmp_buf_bpp - 12); writel(horizontal_sync_active_byte, dsi->regs + DSI_HSA_WC); writel(horizontal_backporch_byte, dsi->regs + DSI_HBP_WC); writel(horizontal_frontporch_byte, dsi->regs + DSI_HFP_WC); mtk_dsi_ps_control(dsi); } static void mtk_dsi_start(struct mtk_dsi *dsi) { writel(0, dsi->regs + DSI_START); writel(1, dsi->regs + DSI_START); } static void mtk_dsi_stop(struct mtk_dsi *dsi) { writel(0, dsi->regs + DSI_START); } static void mtk_dsi_set_cmd_mode(struct mtk_dsi *dsi) { writel(CMD_MODE, dsi->regs + DSI_MODE_CTRL); } static void mtk_dsi_set_interrupt_enable(struct mtk_dsi *dsi) { u32 inten = LPRX_RD_RDY_INT_FLAG | CMD_DONE_INT_FLAG | VM_DONE_INT_FLAG; writel(inten, dsi->regs + DSI_INTEN); } static void mtk_dsi_irq_data_set(struct mtk_dsi *dsi, u32 irq_bit) { dsi->irq_data |= irq_bit; } static void mtk_dsi_irq_data_clear(struct mtk_dsi *dsi, u32 irq_bit) { dsi->irq_data &= ~irq_bit; } static s32 mtk_dsi_wait_for_irq_done(struct mtk_dsi *dsi, u32 irq_flag, unsigned int timeout) { s32 ret = 0; unsigned long jiffies = msecs_to_jiffies(timeout); ret = wait_event_interruptible_timeout(dsi->irq_wait_queue, dsi->irq_data & irq_flag, jiffies); if (ret == 0) { DRM_WARN("Wait DSI IRQ(0x%08x) Timeout\n", irq_flag); mtk_dsi_enable(dsi); mtk_dsi_reset_engine(dsi); } return ret; } static irqreturn_t mtk_dsi_irq(int irq, void *dev_id) { struct mtk_dsi *dsi = dev_id; u32 status, tmp; u32 flag = LPRX_RD_RDY_INT_FLAG | CMD_DONE_INT_FLAG | VM_DONE_INT_FLAG; status = readl(dsi->regs + DSI_INTSTA) & flag; if (status) { do { mtk_dsi_mask(dsi, DSI_RACK, RACK, RACK); tmp = readl(dsi->regs + DSI_INTSTA); } while (tmp & DSI_BUSY); mtk_dsi_mask(dsi, DSI_INTSTA, status, 0); mtk_dsi_irq_data_set(dsi, status); wake_up_interruptible(&dsi->irq_wait_queue); } return IRQ_HANDLED; } static s32 mtk_dsi_switch_to_cmd_mode(struct mtk_dsi *dsi, u8 irq_flag, u32 t) { mtk_dsi_irq_data_clear(dsi, irq_flag); mtk_dsi_set_cmd_mode(dsi); if (!mtk_dsi_wait_for_irq_done(dsi, irq_flag, t)) { DRM_ERROR("failed to switch cmd mode\n"); return -ETIME; } else { return 0; } } static int mtk_dsi_poweron(struct mtk_dsi *dsi) { struct device *dev = dsi->dev; int ret; u64 pixel_clock, total_bits; u32 htotal, htotal_bits, bit_per_pixel, overhead_cycles, overhead_bits; if (++dsi->refcount != 1) return 0; switch (dsi->format) { case MIPI_DSI_FMT_RGB565: bit_per_pixel = 16; break; case MIPI_DSI_FMT_RGB666_PACKED: bit_per_pixel = 18; break; case MIPI_DSI_FMT_RGB666: case MIPI_DSI_FMT_RGB888: default: bit_per_pixel = 24; break; } /** * htotal_time = htotal * byte_per_pixel / num_lanes * overhead_time = lpx + hs_prepare + hs_zero + hs_trail + hs_exit * mipi_ratio = (htotal_time + overhead_time) / htotal_time * data_rate = pixel_clock * bit_per_pixel * mipi_ratio / num_lanes; */ pixel_clock = dsi->vm.pixelclock; htotal = dsi->vm.hactive + dsi->vm.hback_porch + dsi->vm.hfront_porch + dsi->vm.hsync_len; htotal_bits = htotal * bit_per_pixel; overhead_cycles = T_LPX + T_HS_PREP + T_HS_ZERO + T_HS_TRAIL + T_HS_EXIT; overhead_bits = overhead_cycles * dsi->lanes * 8; total_bits = htotal_bits + overhead_bits; dsi->data_rate = DIV_ROUND_UP_ULL(pixel_clock * total_bits, htotal * dsi->lanes); ret = clk_set_rate(dsi->hs_clk, dsi->data_rate); if (ret < 0) { dev_err(dev, "Failed to set data rate: %d\n", ret); goto err_refcount; } phy_power_on(dsi->phy); ret = clk_prepare_enable(dsi->engine_clk); if (ret < 0) { dev_err(dev, "Failed to enable engine clock: %d\n", ret); goto err_phy_power_off; } ret = clk_prepare_enable(dsi->digital_clk); if (ret < 0) { dev_err(dev, "Failed to enable digital clock: %d\n", ret); goto err_disable_engine_clk; } mtk_dsi_enable(dsi); mtk_dsi_reset_engine(dsi); mtk_dsi_phy_timconfig(dsi); mtk_dsi_rxtx_control(dsi); mtk_dsi_ps_control_vact(dsi); mtk_dsi_set_vm_cmd(dsi); mtk_dsi_config_vdo_timing(dsi); mtk_dsi_set_interrupt_enable(dsi); mtk_dsi_clk_ulp_mode_leave(dsi); mtk_dsi_lane0_ulp_mode_leave(dsi); mtk_dsi_clk_hs_mode(dsi, 0); if (dsi->panel) { if (drm_panel_prepare(dsi->panel)) { DRM_ERROR("failed to prepare the panel\n"); goto err_disable_digital_clk; } } return 0; err_disable_digital_clk: clk_disable_unprepare(dsi->digital_clk); err_disable_engine_clk: clk_disable_unprepare(dsi->engine_clk); err_phy_power_off: phy_power_off(dsi->phy); err_refcount: dsi->refcount--; return ret; } static void mtk_dsi_poweroff(struct mtk_dsi *dsi) { if (WARN_ON(dsi->refcount == 0)) return; if (--dsi->refcount != 0) return; if (!mtk_dsi_switch_to_cmd_mode(dsi, VM_DONE_INT_FLAG, 500)) { if (dsi->panel) { if (drm_panel_unprepare(dsi->panel)) { DRM_ERROR("failed to unprepare the panel\n"); return; } } } mtk_dsi_reset_engine(dsi); mtk_dsi_lane0_ulp_mode_enter(dsi); mtk_dsi_clk_ulp_mode_enter(dsi); mtk_dsi_disable(dsi); clk_disable_unprepare(dsi->engine_clk); clk_disable_unprepare(dsi->digital_clk); phy_power_off(dsi->phy); } static void mtk_output_dsi_enable(struct mtk_dsi *dsi) { int ret; if (dsi->enabled) return; ret = mtk_dsi_poweron(dsi); if (ret < 0) { DRM_ERROR("failed to power on dsi\n"); return; } mtk_dsi_set_mode(dsi); mtk_dsi_clk_hs_mode(dsi, 1); mtk_dsi_start(dsi); if (dsi->panel) { if (drm_panel_enable(dsi->panel)) { DRM_ERROR("failed to enable the panel\n"); goto err_dsi_power_off; } } dsi->enabled = true; return; err_dsi_power_off: mtk_dsi_stop(dsi); mtk_dsi_poweroff(dsi); } static void mtk_output_dsi_disable(struct mtk_dsi *dsi) { if (!dsi->enabled) return; if (dsi->panel) { if (drm_panel_disable(dsi->panel)) { DRM_ERROR("failed to disable the panel\n"); return; } } mtk_dsi_stop(dsi); mtk_dsi_poweroff(dsi); dsi->enabled = false; } static void mtk_dsi_encoder_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); } static const struct drm_encoder_funcs mtk_dsi_encoder_funcs = { .destroy = mtk_dsi_encoder_destroy, }; static bool mtk_dsi_encoder_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static void mtk_dsi_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted) { struct mtk_dsi *dsi = encoder_to_dsi(encoder); drm_display_mode_to_videomode(adjusted, &dsi->vm); } static void mtk_dsi_encoder_disable(struct drm_encoder *encoder) { struct mtk_dsi *dsi = encoder_to_dsi(encoder); mtk_output_dsi_disable(dsi); } static void mtk_dsi_encoder_enable(struct drm_encoder *encoder) { struct mtk_dsi *dsi = encoder_to_dsi(encoder); mtk_output_dsi_enable(dsi); } static int mtk_dsi_connector_get_modes(struct drm_connector *connector) { struct mtk_dsi *dsi = connector_to_dsi(connector); return drm_panel_get_modes(dsi->panel); } static const struct drm_encoder_helper_funcs mtk_dsi_encoder_helper_funcs = { .mode_fixup = mtk_dsi_encoder_mode_fixup, .mode_set = mtk_dsi_encoder_mode_set, .disable = mtk_dsi_encoder_disable, .enable = mtk_dsi_encoder_enable, }; static const struct drm_connector_funcs mtk_dsi_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static const struct drm_connector_helper_funcs mtk_dsi_connector_helper_funcs = { .get_modes = mtk_dsi_connector_get_modes, }; static int mtk_dsi_create_connector(struct drm_device *drm, struct mtk_dsi *dsi) { int ret; ret = drm_connector_init(drm, &dsi->conn, &mtk_dsi_connector_funcs, DRM_MODE_CONNECTOR_DSI); if (ret) { DRM_ERROR("Failed to connector init to drm\n"); return ret; } drm_connector_helper_add(&dsi->conn, &mtk_dsi_connector_helper_funcs); dsi->conn.dpms = DRM_MODE_DPMS_OFF; drm_connector_attach_encoder(&dsi->conn, &dsi->encoder); if (dsi->panel) { ret = drm_panel_attach(dsi->panel, &dsi->conn); if (ret) { DRM_ERROR("Failed to attach panel to drm\n"); goto err_connector_cleanup; } } return 0; err_connector_cleanup: drm_connector_cleanup(&dsi->conn); return ret; } static int mtk_dsi_create_conn_enc(struct drm_device *drm, struct mtk_dsi *dsi) { int ret; ret = drm_encoder_init(drm, &dsi->encoder, &mtk_dsi_encoder_funcs, DRM_MODE_ENCODER_DSI, NULL); if (ret) { DRM_ERROR("Failed to encoder init to drm\n"); return ret; } drm_encoder_helper_add(&dsi->encoder, &mtk_dsi_encoder_helper_funcs); /* * Currently display data paths are statically assigned to a crtc each. * crtc 0 is OVL0 -> COLOR0 -> AAL -> OD -> RDMA0 -> UFOE -> DSI0 */ dsi->encoder.possible_crtcs = 1; /* If there's a bridge, attach to it and let it create the connector */ if (dsi->bridge) { ret = drm_bridge_attach(&dsi->encoder, dsi->bridge, NULL); if (ret) { DRM_ERROR("Failed to attach bridge to drm\n"); goto err_encoder_cleanup; } } else { /* Otherwise create our own connector and attach to a panel */ ret = mtk_dsi_create_connector(drm, dsi); if (ret) goto err_encoder_cleanup; } return 0; err_encoder_cleanup: drm_encoder_cleanup(&dsi->encoder); return ret; } static void mtk_dsi_destroy_conn_enc(struct mtk_dsi *dsi) { drm_encoder_cleanup(&dsi->encoder); /* Skip connector cleanup if creation was delegated to the bridge */ if (dsi->conn.dev) drm_connector_cleanup(&dsi->conn); } static void mtk_dsi_ddp_start(struct mtk_ddp_comp *comp) { struct mtk_dsi *dsi = container_of(comp, struct mtk_dsi, ddp_comp); mtk_dsi_poweron(dsi); } static void mtk_dsi_ddp_stop(struct mtk_ddp_comp *comp) { struct mtk_dsi *dsi = container_of(comp, struct mtk_dsi, ddp_comp); mtk_dsi_poweroff(dsi); } static const struct mtk_ddp_comp_funcs mtk_dsi_funcs = { .start = mtk_dsi_ddp_start, .stop = mtk_dsi_ddp_stop, }; static int mtk_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct mtk_dsi *dsi = host_to_dsi(host); dsi->lanes = device->lanes; dsi->format = device->format; dsi->mode_flags = device->mode_flags; if (dsi->conn.dev) drm_helper_hpd_irq_event(dsi->conn.dev); return 0; } static int mtk_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct mtk_dsi *dsi = host_to_dsi(host); if (dsi->conn.dev) drm_helper_hpd_irq_event(dsi->conn.dev); return 0; } static void mtk_dsi_wait_for_idle(struct mtk_dsi *dsi) { int ret; u32 val; ret = readl_poll_timeout(dsi->regs + DSI_INTSTA, val, !(val & DSI_BUSY), 4, 2000000); if (ret) { DRM_WARN("polling dsi wait not busy timeout!\n"); mtk_dsi_enable(dsi); mtk_dsi_reset_engine(dsi); } } static u32 mtk_dsi_recv_cnt(u8 type, u8 *read_data) { switch (type) { case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: return 1; case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: return 2; case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: return read_data[1] + read_data[2] * 16; case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: DRM_INFO("type is 0x02, try again\n"); break; default: DRM_INFO("type(0x%x) not recognized\n", type); break; } return 0; } static void mtk_dsi_cmdq(struct mtk_dsi *dsi, const struct mipi_dsi_msg *msg) { const char *tx_buf = msg->tx_buf; u8 config, cmdq_size, cmdq_off, type = msg->type; u32 reg_val, cmdq_mask, i; if (MTK_DSI_HOST_IS_READ(type)) config = BTA; else config = (msg->tx_len > 2) ? LONG_PACKET : SHORT_PACKET; if (msg->tx_len > 2) { cmdq_size = 1 + (msg->tx_len + 3) / 4; cmdq_off = 4; cmdq_mask = CONFIG | DATA_ID | DATA_0 | DATA_1; reg_val = (msg->tx_len << 16) | (type << 8) | config; } else { cmdq_size = 1; cmdq_off = 2; cmdq_mask = CONFIG | DATA_ID; reg_val = (type << 8) | config; } for (i = 0; i < msg->tx_len; i++) writeb(tx_buf[i], dsi->regs + DSI_CMDQ0 + cmdq_off + i); mtk_dsi_mask(dsi, DSI_CMDQ0, cmdq_mask, reg_val); mtk_dsi_mask(dsi, DSI_CMDQ_SIZE, CMDQ_SIZE, cmdq_size); } static ssize_t mtk_dsi_host_send_cmd(struct mtk_dsi *dsi, const struct mipi_dsi_msg *msg, u8 flag) { mtk_dsi_wait_for_idle(dsi); mtk_dsi_irq_data_clear(dsi, flag); mtk_dsi_cmdq(dsi, msg); mtk_dsi_start(dsi); if (!mtk_dsi_wait_for_irq_done(dsi, flag, 2000)) return -ETIME; else return 0; } static ssize_t mtk_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct mtk_dsi *dsi = host_to_dsi(host); u32 recv_cnt, i; u8 read_data[16]; void *src_addr; u8 irq_flag = CMD_DONE_INT_FLAG; if (readl(dsi->regs + DSI_MODE_CTRL) & MODE) { DRM_ERROR("dsi engine is not command mode\n"); return -EINVAL; } if (MTK_DSI_HOST_IS_READ(msg->type)) irq_flag |= LPRX_RD_RDY_INT_FLAG; if (mtk_dsi_host_send_cmd(dsi, msg, irq_flag) < 0) return -ETIME; if (!MTK_DSI_HOST_IS_READ(msg->type)) return 0; if (!msg->rx_buf) { DRM_ERROR("dsi receive buffer size may be NULL\n"); return -EINVAL; } for (i = 0; i < 16; i++) *(read_data + i) = readb(dsi->regs + DSI_RX_DATA0 + i); recv_cnt = mtk_dsi_recv_cnt(read_data[0], read_data); if (recv_cnt > 2) src_addr = &read_data[4]; else src_addr = &read_data[1]; if (recv_cnt > 10) recv_cnt = 10; if (recv_cnt > msg->rx_len) recv_cnt = msg->rx_len; if (recv_cnt) memcpy(msg->rx_buf, src_addr, recv_cnt); DRM_INFO("dsi get %d byte data from the panel address(0x%x)\n", recv_cnt, *((u8 *)(msg->tx_buf))); return recv_cnt; } static const struct mipi_dsi_host_ops mtk_dsi_ops = { .attach = mtk_dsi_host_attach, .detach = mtk_dsi_host_detach, .transfer = mtk_dsi_host_transfer, }; static int mtk_dsi_bind(struct device *dev, struct device *master, void *data) { int ret; struct drm_device *drm = data; struct mtk_dsi *dsi = dev_get_drvdata(dev); ret = mtk_ddp_comp_register(drm, &dsi->ddp_comp); if (ret < 0) { dev_err(dev, "Failed to register component %pOF: %d\n", dev->of_node, ret); return ret; } ret = mipi_dsi_host_register(&dsi->host); if (ret < 0) { dev_err(dev, "failed to register DSI host: %d\n", ret); goto err_ddp_comp_unregister; } ret = mtk_dsi_create_conn_enc(drm, dsi); if (ret) { DRM_ERROR("Encoder create failed with %d\n", ret); goto err_unregister; } return 0; err_unregister: mipi_dsi_host_unregister(&dsi->host); err_ddp_comp_unregister: mtk_ddp_comp_unregister(drm, &dsi->ddp_comp); return ret; } static void mtk_dsi_unbind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = data; struct mtk_dsi *dsi = dev_get_drvdata(dev); mtk_dsi_destroy_conn_enc(dsi); mipi_dsi_host_unregister(&dsi->host); mtk_ddp_comp_unregister(drm, &dsi->ddp_comp); } static const struct component_ops mtk_dsi_component_ops = { .bind = mtk_dsi_bind, .unbind = mtk_dsi_unbind, }; static int mtk_dsi_probe(struct platform_device *pdev) { struct mtk_dsi *dsi; struct device *dev = &pdev->dev; struct resource *regs; int irq_num; int comp_id; int ret; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dsi->host.ops = &mtk_dsi_ops; dsi->host.dev = dev; ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, &dsi->panel, &dsi->bridge); if (ret) return ret; dsi->engine_clk = devm_clk_get(dev, "engine"); if (IS_ERR(dsi->engine_clk)) { ret = PTR_ERR(dsi->engine_clk); dev_err(dev, "Failed to get engine clock: %d\n", ret); return ret; } dsi->digital_clk = devm_clk_get(dev, "digital"); if (IS_ERR(dsi->digital_clk)) { ret = PTR_ERR(dsi->digital_clk); dev_err(dev, "Failed to get digital clock: %d\n", ret); return ret; } dsi->hs_clk = devm_clk_get(dev, "hs"); if (IS_ERR(dsi->hs_clk)) { ret = PTR_ERR(dsi->hs_clk); dev_err(dev, "Failed to get hs clock: %d\n", ret); return ret; } regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); dsi->regs = devm_ioremap_resource(dev, regs); if (IS_ERR(dsi->regs)) { ret = PTR_ERR(dsi->regs); dev_err(dev, "Failed to ioremap memory: %d\n", ret); return ret; } dsi->phy = devm_phy_get(dev, "dphy"); if (IS_ERR(dsi->phy)) { ret = PTR_ERR(dsi->phy); dev_err(dev, "Failed to get MIPI-DPHY: %d\n", ret); return ret; } comp_id = mtk_ddp_comp_get_id(dev->of_node, MTK_DSI); if (comp_id < 0) { dev_err(dev, "Failed to identify by alias: %d\n", comp_id); return comp_id; } ret = mtk_ddp_comp_init(dev, dev->of_node, &dsi->ddp_comp, comp_id, &mtk_dsi_funcs); if (ret) { dev_err(dev, "Failed to initialize component: %d\n", ret); return ret; } irq_num = platform_get_irq(pdev, 0); if (irq_num < 0) { dev_err(&pdev->dev, "failed to request dsi irq resource\n"); return -EPROBE_DEFER; } irq_set_status_flags(irq_num, IRQ_TYPE_LEVEL_LOW); ret = devm_request_irq(&pdev->dev, irq_num, mtk_dsi_irq, IRQF_TRIGGER_LOW, dev_name(&pdev->dev), dsi); if (ret) { dev_err(&pdev->dev, "failed to request mediatek dsi irq\n"); return -EPROBE_DEFER; } init_waitqueue_head(&dsi->irq_wait_queue); platform_set_drvdata(pdev, dsi); return component_add(&pdev->dev, &mtk_dsi_component_ops); } static int mtk_dsi_remove(struct platform_device *pdev) { struct mtk_dsi *dsi = platform_get_drvdata(pdev); mtk_output_dsi_disable(dsi); component_del(&pdev->dev, &mtk_dsi_component_ops); return 0; } static const struct of_device_id mtk_dsi_of_match[] = { { .compatible = "mediatek,mt2701-dsi" }, { .compatible = "mediatek,mt8173-dsi" }, { }, }; struct platform_driver mtk_dsi_driver = { .probe = mtk_dsi_probe, .remove = mtk_dsi_remove, .driver = { .name = "mtk-dsi", .of_match_table = mtk_dsi_of_match, }, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1