Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andy Gross | 4756 | 77.01% | 12 | 28.57% |
Tomi Valkeinen | 931 | 15.07% | 10 | 23.81% |
Rob Clark | 189 | 3.06% | 3 | 7.14% |
Peter Ujfalusi | 154 | 2.49% | 4 | 9.52% |
Laurent Pinchart | 51 | 0.83% | 3 | 7.14% |
Archit Taneja | 39 | 0.63% | 1 | 2.38% |
Russell King | 24 | 0.39% | 2 | 4.76% |
Grygorii Strashko | 12 | 0.19% | 1 | 2.38% |
Christophe Jaillet | 6 | 0.10% | 1 | 2.38% |
Joe Perches | 4 | 0.06% | 1 | 2.38% |
Kees Cook | 4 | 0.06% | 1 | 2.38% |
Arnd Bergmann | 3 | 0.05% | 1 | 2.38% |
Luis R. Rodriguez | 2 | 0.03% | 1 | 2.38% |
Andrew F. Davis | 1 | 0.02% | 1 | 2.38% |
Total | 6176 | 42 |
/* * DMM IOMMU driver support functions for TI OMAP processors. * * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ * Author: Rob Clark <rob@ti.com> * Andy Gross <andy.gross@ti.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/completion.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/platform_device.h> /* platform_device() */ #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/vmalloc.h> #include <linux/wait.h> #include "omap_dmm_tiler.h" #include "omap_dmm_priv.h" #define DMM_DRIVER_NAME "dmm" /* mappings for associating views to luts */ static struct tcm *containers[TILFMT_NFORMATS]; static struct dmm *omap_dmm; #if defined(CONFIG_OF) static const struct of_device_id dmm_of_match[]; #endif /* global spinlock for protecting lists */ static DEFINE_SPINLOCK(list_lock); /* Geometry table */ #define GEOM(xshift, yshift, bytes_per_pixel) { \ .x_shft = (xshift), \ .y_shft = (yshift), \ .cpp = (bytes_per_pixel), \ .slot_w = 1 << (SLOT_WIDTH_BITS - (xshift)), \ .slot_h = 1 << (SLOT_HEIGHT_BITS - (yshift)), \ } static const struct { u32 x_shft; /* unused X-bits (as part of bpp) */ u32 y_shft; /* unused Y-bits (as part of bpp) */ u32 cpp; /* bytes/chars per pixel */ u32 slot_w; /* width of each slot (in pixels) */ u32 slot_h; /* height of each slot (in pixels) */ } geom[TILFMT_NFORMATS] = { [TILFMT_8BIT] = GEOM(0, 0, 1), [TILFMT_16BIT] = GEOM(0, 1, 2), [TILFMT_32BIT] = GEOM(1, 1, 4), [TILFMT_PAGE] = GEOM(SLOT_WIDTH_BITS, SLOT_HEIGHT_BITS, 1), }; /* lookup table for registers w/ per-engine instances */ static const u32 reg[][4] = { [PAT_STATUS] = {DMM_PAT_STATUS__0, DMM_PAT_STATUS__1, DMM_PAT_STATUS__2, DMM_PAT_STATUS__3}, [PAT_DESCR] = {DMM_PAT_DESCR__0, DMM_PAT_DESCR__1, DMM_PAT_DESCR__2, DMM_PAT_DESCR__3}, }; static int dmm_dma_copy(struct dmm *dmm, dma_addr_t src, dma_addr_t dst) { struct dma_device *dma_dev = dmm->wa_dma_chan->device; struct dma_async_tx_descriptor *tx; enum dma_status status; dma_cookie_t cookie; tx = dma_dev->device_prep_dma_memcpy(dmm->wa_dma_chan, dst, src, 4, 0); if (!tx) { dev_err(dmm->dev, "Failed to prepare DMA memcpy\n"); return -EIO; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { dev_err(dmm->dev, "Failed to do DMA tx_submit\n"); return -EIO; } dma_async_issue_pending(dmm->wa_dma_chan); status = dma_sync_wait(dmm->wa_dma_chan, cookie); if (status != DMA_COMPLETE) dev_err(dmm->dev, "i878 wa DMA copy failure\n"); dmaengine_terminate_all(dmm->wa_dma_chan); return 0; } static u32 dmm_read_wa(struct dmm *dmm, u32 reg) { dma_addr_t src, dst; int r; src = dmm->phys_base + reg; dst = dmm->wa_dma_handle; r = dmm_dma_copy(dmm, src, dst); if (r) { dev_err(dmm->dev, "sDMA read transfer timeout\n"); return readl(dmm->base + reg); } /* * As per i878 workaround, the DMA is used to access the DMM registers. * Make sure that the readl is not moved by the compiler or the CPU * earlier than the DMA finished writing the value to memory. */ rmb(); return readl(dmm->wa_dma_data); } static void dmm_write_wa(struct dmm *dmm, u32 val, u32 reg) { dma_addr_t src, dst; int r; writel(val, dmm->wa_dma_data); /* * As per i878 workaround, the DMA is used to access the DMM registers. * Make sure that the writel is not moved by the compiler or the CPU, so * the data will be in place before we start the DMA to do the actual * register write. */ wmb(); src = dmm->wa_dma_handle; dst = dmm->phys_base + reg; r = dmm_dma_copy(dmm, src, dst); if (r) { dev_err(dmm->dev, "sDMA write transfer timeout\n"); writel(val, dmm->base + reg); } } static u32 dmm_read(struct dmm *dmm, u32 reg) { if (dmm->dmm_workaround) { u32 v; unsigned long flags; spin_lock_irqsave(&dmm->wa_lock, flags); v = dmm_read_wa(dmm, reg); spin_unlock_irqrestore(&dmm->wa_lock, flags); return v; } else { return readl(dmm->base + reg); } } static void dmm_write(struct dmm *dmm, u32 val, u32 reg) { if (dmm->dmm_workaround) { unsigned long flags; spin_lock_irqsave(&dmm->wa_lock, flags); dmm_write_wa(dmm, val, reg); spin_unlock_irqrestore(&dmm->wa_lock, flags); } else { writel(val, dmm->base + reg); } } static int dmm_workaround_init(struct dmm *dmm) { dma_cap_mask_t mask; spin_lock_init(&dmm->wa_lock); dmm->wa_dma_data = dma_alloc_coherent(dmm->dev, sizeof(u32), &dmm->wa_dma_handle, GFP_KERNEL); if (!dmm->wa_dma_data) return -ENOMEM; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); dmm->wa_dma_chan = dma_request_channel(mask, NULL, NULL); if (!dmm->wa_dma_chan) { dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); return -ENODEV; } return 0; } static void dmm_workaround_uninit(struct dmm *dmm) { dma_release_channel(dmm->wa_dma_chan); dma_free_coherent(dmm->dev, 4, dmm->wa_dma_data, dmm->wa_dma_handle); } /* simple allocator to grab next 16 byte aligned memory from txn */ static void *alloc_dma(struct dmm_txn *txn, size_t sz, dma_addr_t *pa) { void *ptr; struct refill_engine *engine = txn->engine_handle; /* dmm programming requires 16 byte aligned addresses */ txn->current_pa = round_up(txn->current_pa, 16); txn->current_va = (void *)round_up((long)txn->current_va, 16); ptr = txn->current_va; *pa = txn->current_pa; txn->current_pa += sz; txn->current_va += sz; BUG_ON((txn->current_va - engine->refill_va) > REFILL_BUFFER_SIZE); return ptr; } /* check status and spin until wait_mask comes true */ static int wait_status(struct refill_engine *engine, u32 wait_mask) { struct dmm *dmm = engine->dmm; u32 r = 0, err, i; i = DMM_FIXED_RETRY_COUNT; while (true) { r = dmm_read(dmm, reg[PAT_STATUS][engine->id]); err = r & DMM_PATSTATUS_ERR; if (err) { dev_err(dmm->dev, "%s: error (engine%d). PAT_STATUS: 0x%08x\n", __func__, engine->id, r); return -EFAULT; } if ((r & wait_mask) == wait_mask) break; if (--i == 0) { dev_err(dmm->dev, "%s: timeout (engine%d). PAT_STATUS: 0x%08x\n", __func__, engine->id, r); return -ETIMEDOUT; } udelay(1); } return 0; } static void release_engine(struct refill_engine *engine) { unsigned long flags; spin_lock_irqsave(&list_lock, flags); list_add(&engine->idle_node, &omap_dmm->idle_head); spin_unlock_irqrestore(&list_lock, flags); atomic_inc(&omap_dmm->engine_counter); wake_up_interruptible(&omap_dmm->engine_queue); } static irqreturn_t omap_dmm_irq_handler(int irq, void *arg) { struct dmm *dmm = arg; u32 status = dmm_read(dmm, DMM_PAT_IRQSTATUS); int i; /* ack IRQ */ dmm_write(dmm, status, DMM_PAT_IRQSTATUS); for (i = 0; i < dmm->num_engines; i++) { if (status & DMM_IRQSTAT_ERR_MASK) dev_err(dmm->dev, "irq error(engine%d): IRQSTAT 0x%02x\n", i, status & 0xff); if (status & DMM_IRQSTAT_LST) { if (dmm->engines[i].async) release_engine(&dmm->engines[i]); complete(&dmm->engines[i].compl); } status >>= 8; } return IRQ_HANDLED; } /** * Get a handle for a DMM transaction */ static struct dmm_txn *dmm_txn_init(struct dmm *dmm, struct tcm *tcm) { struct dmm_txn *txn = NULL; struct refill_engine *engine = NULL; int ret; unsigned long flags; /* wait until an engine is available */ ret = wait_event_interruptible(omap_dmm->engine_queue, atomic_add_unless(&omap_dmm->engine_counter, -1, 0)); if (ret) return ERR_PTR(ret); /* grab an idle engine */ spin_lock_irqsave(&list_lock, flags); if (!list_empty(&dmm->idle_head)) { engine = list_entry(dmm->idle_head.next, struct refill_engine, idle_node); list_del(&engine->idle_node); } spin_unlock_irqrestore(&list_lock, flags); BUG_ON(!engine); txn = &engine->txn; engine->tcm = tcm; txn->engine_handle = engine; txn->last_pat = NULL; txn->current_va = engine->refill_va; txn->current_pa = engine->refill_pa; return txn; } /** * Add region to DMM transaction. If pages or pages[i] is NULL, then the * corresponding slot is cleared (ie. dummy_pa is programmed) */ static void dmm_txn_append(struct dmm_txn *txn, struct pat_area *area, struct page **pages, u32 npages, u32 roll) { dma_addr_t pat_pa = 0, data_pa = 0; u32 *data; struct pat *pat; struct refill_engine *engine = txn->engine_handle; int columns = (1 + area->x1 - area->x0); int rows = (1 + area->y1 - area->y0); int i = columns*rows; pat = alloc_dma(txn, sizeof(*pat), &pat_pa); if (txn->last_pat) txn->last_pat->next_pa = (u32)pat_pa; pat->area = *area; /* adjust Y coordinates based off of container parameters */ pat->area.y0 += engine->tcm->y_offset; pat->area.y1 += engine->tcm->y_offset; pat->ctrl = (struct pat_ctrl){ .start = 1, .lut_id = engine->tcm->lut_id, }; data = alloc_dma(txn, 4*i, &data_pa); /* FIXME: what if data_pa is more than 32-bit ? */ pat->data_pa = data_pa; while (i--) { int n = i + roll; if (n >= npages) n -= npages; data[i] = (pages && pages[n]) ? page_to_phys(pages[n]) : engine->dmm->dummy_pa; } txn->last_pat = pat; return; } /** * Commit the DMM transaction. */ static int dmm_txn_commit(struct dmm_txn *txn, bool wait) { int ret = 0; struct refill_engine *engine = txn->engine_handle; struct dmm *dmm = engine->dmm; if (!txn->last_pat) { dev_err(engine->dmm->dev, "need at least one txn\n"); ret = -EINVAL; goto cleanup; } txn->last_pat->next_pa = 0; /* ensure that the written descriptors are visible to DMM */ wmb(); /* * NOTE: the wmb() above should be enough, but there seems to be a bug * in OMAP's memory barrier implementation, which in some rare cases may * cause the writes not to be observable after wmb(). */ /* read back to ensure the data is in RAM */ readl(&txn->last_pat->next_pa); /* write to PAT_DESCR to clear out any pending transaction */ dmm_write(dmm, 0x0, reg[PAT_DESCR][engine->id]); /* wait for engine ready: */ ret = wait_status(engine, DMM_PATSTATUS_READY); if (ret) { ret = -EFAULT; goto cleanup; } /* mark whether it is async to denote list management in IRQ handler */ engine->async = wait ? false : true; reinit_completion(&engine->compl); /* verify that the irq handler sees the 'async' and completion value */ smp_mb(); /* kick reload */ dmm_write(dmm, engine->refill_pa, reg[PAT_DESCR][engine->id]); if (wait) { if (!wait_for_completion_timeout(&engine->compl, msecs_to_jiffies(100))) { dev_err(dmm->dev, "timed out waiting for done\n"); ret = -ETIMEDOUT; goto cleanup; } /* Check the engine status before continue */ ret = wait_status(engine, DMM_PATSTATUS_READY | DMM_PATSTATUS_VALID | DMM_PATSTATUS_DONE); } cleanup: /* only place engine back on list if we are done with it */ if (ret || wait) release_engine(engine); return ret; } /* * DMM programming */ static int fill(struct tcm_area *area, struct page **pages, u32 npages, u32 roll, bool wait) { int ret = 0; struct tcm_area slice, area_s; struct dmm_txn *txn; /* * FIXME * * Asynchronous fill does not work reliably, as the driver does not * handle errors in the async code paths. The fill operation may * silently fail, leading to leaking DMM engines, which may eventually * lead to deadlock if we run out of DMM engines. * * For now, always set 'wait' so that we only use sync fills. Async * fills should be fixed, or alternatively we could decide to only * support sync fills and so the whole async code path could be removed. */ wait = true; txn = dmm_txn_init(omap_dmm, area->tcm); if (IS_ERR_OR_NULL(txn)) return -ENOMEM; tcm_for_each_slice(slice, *area, area_s) { struct pat_area p_area = { .x0 = slice.p0.x, .y0 = slice.p0.y, .x1 = slice.p1.x, .y1 = slice.p1.y, }; dmm_txn_append(txn, &p_area, pages, npages, roll); roll += tcm_sizeof(slice); } ret = dmm_txn_commit(txn, wait); return ret; } /* * Pin/unpin */ /* note: slots for which pages[i] == NULL are filled w/ dummy page */ int tiler_pin(struct tiler_block *block, struct page **pages, u32 npages, u32 roll, bool wait) { int ret; ret = fill(&block->area, pages, npages, roll, wait); if (ret) tiler_unpin(block); return ret; } int tiler_unpin(struct tiler_block *block) { return fill(&block->area, NULL, 0, 0, false); } /* * Reserve/release */ struct tiler_block *tiler_reserve_2d(enum tiler_fmt fmt, u16 w, u16 h, u16 align) { struct tiler_block *block; u32 min_align = 128; int ret; unsigned long flags; u32 slot_bytes; block = kzalloc(sizeof(*block), GFP_KERNEL); if (!block) return ERR_PTR(-ENOMEM); BUG_ON(!validfmt(fmt)); /* convert width/height to slots */ w = DIV_ROUND_UP(w, geom[fmt].slot_w); h = DIV_ROUND_UP(h, geom[fmt].slot_h); /* convert alignment to slots */ slot_bytes = geom[fmt].slot_w * geom[fmt].cpp; min_align = max(min_align, slot_bytes); align = (align > min_align) ? ALIGN(align, min_align) : min_align; align /= slot_bytes; block->fmt = fmt; ret = tcm_reserve_2d(containers[fmt], w, h, align, -1, slot_bytes, &block->area); if (ret) { kfree(block); return ERR_PTR(-ENOMEM); } /* add to allocation list */ spin_lock_irqsave(&list_lock, flags); list_add(&block->alloc_node, &omap_dmm->alloc_head); spin_unlock_irqrestore(&list_lock, flags); return block; } struct tiler_block *tiler_reserve_1d(size_t size) { struct tiler_block *block = kzalloc(sizeof(*block), GFP_KERNEL); int num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; unsigned long flags; if (!block) return ERR_PTR(-ENOMEM); block->fmt = TILFMT_PAGE; if (tcm_reserve_1d(containers[TILFMT_PAGE], num_pages, &block->area)) { kfree(block); return ERR_PTR(-ENOMEM); } spin_lock_irqsave(&list_lock, flags); list_add(&block->alloc_node, &omap_dmm->alloc_head); spin_unlock_irqrestore(&list_lock, flags); return block; } /* note: if you have pin'd pages, you should have already unpin'd first! */ int tiler_release(struct tiler_block *block) { int ret = tcm_free(&block->area); unsigned long flags; if (block->area.tcm) dev_err(omap_dmm->dev, "failed to release block\n"); spin_lock_irqsave(&list_lock, flags); list_del(&block->alloc_node); spin_unlock_irqrestore(&list_lock, flags); kfree(block); return ret; } /* * Utils */ /* calculate the tiler space address of a pixel in a view orientation... * below description copied from the display subsystem section of TRM: * * When the TILER is addressed, the bits: * [28:27] = 0x0 for 8-bit tiled * 0x1 for 16-bit tiled * 0x2 for 32-bit tiled * 0x3 for page mode * [31:29] = 0x0 for 0-degree view * 0x1 for 180-degree view + mirroring * 0x2 for 0-degree view + mirroring * 0x3 for 180-degree view * 0x4 for 270-degree view + mirroring * 0x5 for 270-degree view * 0x6 for 90-degree view * 0x7 for 90-degree view + mirroring * Otherwise the bits indicated the corresponding bit address to access * the SDRAM. */ static u32 tiler_get_address(enum tiler_fmt fmt, u32 orient, u32 x, u32 y) { u32 x_bits, y_bits, tmp, x_mask, y_mask, alignment; x_bits = CONT_WIDTH_BITS - geom[fmt].x_shft; y_bits = CONT_HEIGHT_BITS - geom[fmt].y_shft; alignment = geom[fmt].x_shft + geom[fmt].y_shft; /* validate coordinate */ x_mask = MASK(x_bits); y_mask = MASK(y_bits); if (x < 0 || x > x_mask || y < 0 || y > y_mask) { DBG("invalid coords: %u < 0 || %u > %u || %u < 0 || %u > %u", x, x, x_mask, y, y, y_mask); return 0; } /* account for mirroring */ if (orient & MASK_X_INVERT) x ^= x_mask; if (orient & MASK_Y_INVERT) y ^= y_mask; /* get coordinate address */ if (orient & MASK_XY_FLIP) tmp = ((x << y_bits) + y); else tmp = ((y << x_bits) + x); return TIL_ADDR((tmp << alignment), orient, fmt); } dma_addr_t tiler_ssptr(struct tiler_block *block) { BUG_ON(!validfmt(block->fmt)); return TILVIEW_8BIT + tiler_get_address(block->fmt, 0, block->area.p0.x * geom[block->fmt].slot_w, block->area.p0.y * geom[block->fmt].slot_h); } dma_addr_t tiler_tsptr(struct tiler_block *block, u32 orient, u32 x, u32 y) { struct tcm_pt *p = &block->area.p0; BUG_ON(!validfmt(block->fmt)); return tiler_get_address(block->fmt, orient, (p->x * geom[block->fmt].slot_w) + x, (p->y * geom[block->fmt].slot_h) + y); } void tiler_align(enum tiler_fmt fmt, u16 *w, u16 *h) { BUG_ON(!validfmt(fmt)); *w = round_up(*w, geom[fmt].slot_w); *h = round_up(*h, geom[fmt].slot_h); } u32 tiler_stride(enum tiler_fmt fmt, u32 orient) { BUG_ON(!validfmt(fmt)); if (orient & MASK_XY_FLIP) return 1 << (CONT_HEIGHT_BITS + geom[fmt].x_shft); else return 1 << (CONT_WIDTH_BITS + geom[fmt].y_shft); } size_t tiler_size(enum tiler_fmt fmt, u16 w, u16 h) { tiler_align(fmt, &w, &h); return geom[fmt].cpp * w * h; } size_t tiler_vsize(enum tiler_fmt fmt, u16 w, u16 h) { BUG_ON(!validfmt(fmt)); return round_up(geom[fmt].cpp * w, PAGE_SIZE) * h; } u32 tiler_get_cpu_cache_flags(void) { return omap_dmm->plat_data->cpu_cache_flags; } bool dmm_is_available(void) { return omap_dmm ? true : false; } static int omap_dmm_remove(struct platform_device *dev) { struct tiler_block *block, *_block; int i; unsigned long flags; if (omap_dmm) { /* Disable all enabled interrupts */ dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_CLR); free_irq(omap_dmm->irq, omap_dmm); /* free all area regions */ spin_lock_irqsave(&list_lock, flags); list_for_each_entry_safe(block, _block, &omap_dmm->alloc_head, alloc_node) { list_del(&block->alloc_node); kfree(block); } spin_unlock_irqrestore(&list_lock, flags); for (i = 0; i < omap_dmm->num_lut; i++) if (omap_dmm->tcm && omap_dmm->tcm[i]) omap_dmm->tcm[i]->deinit(omap_dmm->tcm[i]); kfree(omap_dmm->tcm); kfree(omap_dmm->engines); if (omap_dmm->refill_va) dma_free_wc(omap_dmm->dev, REFILL_BUFFER_SIZE * omap_dmm->num_engines, omap_dmm->refill_va, omap_dmm->refill_pa); if (omap_dmm->dummy_page) __free_page(omap_dmm->dummy_page); if (omap_dmm->dmm_workaround) dmm_workaround_uninit(omap_dmm); iounmap(omap_dmm->base); kfree(omap_dmm); omap_dmm = NULL; } return 0; } static int omap_dmm_probe(struct platform_device *dev) { int ret = -EFAULT, i; struct tcm_area area = {0}; u32 hwinfo, pat_geom; struct resource *mem; omap_dmm = kzalloc(sizeof(*omap_dmm), GFP_KERNEL); if (!omap_dmm) goto fail; /* initialize lists */ INIT_LIST_HEAD(&omap_dmm->alloc_head); INIT_LIST_HEAD(&omap_dmm->idle_head); init_waitqueue_head(&omap_dmm->engine_queue); if (dev->dev.of_node) { const struct of_device_id *match; match = of_match_node(dmm_of_match, dev->dev.of_node); if (!match) { dev_err(&dev->dev, "failed to find matching device node\n"); ret = -ENODEV; goto fail; } omap_dmm->plat_data = match->data; } /* lookup hwmod data - base address and irq */ mem = platform_get_resource(dev, IORESOURCE_MEM, 0); if (!mem) { dev_err(&dev->dev, "failed to get base address resource\n"); goto fail; } omap_dmm->phys_base = mem->start; omap_dmm->base = ioremap(mem->start, SZ_2K); if (!omap_dmm->base) { dev_err(&dev->dev, "failed to get dmm base address\n"); goto fail; } omap_dmm->irq = platform_get_irq(dev, 0); if (omap_dmm->irq < 0) { dev_err(&dev->dev, "failed to get IRQ resource\n"); goto fail; } omap_dmm->dev = &dev->dev; if (of_machine_is_compatible("ti,dra7")) { /* * DRA7 Errata i878 says that MPU should not be used to access * RAM and DMM at the same time. As it's not possible to prevent * MPU accessing RAM, we need to access DMM via a proxy. */ if (!dmm_workaround_init(omap_dmm)) { omap_dmm->dmm_workaround = true; dev_info(&dev->dev, "workaround for errata i878 in use\n"); } else { dev_warn(&dev->dev, "failed to initialize work-around for i878\n"); } } hwinfo = dmm_read(omap_dmm, DMM_PAT_HWINFO); omap_dmm->num_engines = (hwinfo >> 24) & 0x1F; omap_dmm->num_lut = (hwinfo >> 16) & 0x1F; omap_dmm->container_width = 256; omap_dmm->container_height = 128; atomic_set(&omap_dmm->engine_counter, omap_dmm->num_engines); /* read out actual LUT width and height */ pat_geom = dmm_read(omap_dmm, DMM_PAT_GEOMETRY); omap_dmm->lut_width = ((pat_geom >> 16) & 0xF) << 5; omap_dmm->lut_height = ((pat_geom >> 24) & 0xF) << 5; /* increment LUT by one if on OMAP5 */ /* LUT has twice the height, and is split into a separate container */ if (omap_dmm->lut_height != omap_dmm->container_height) omap_dmm->num_lut++; /* initialize DMM registers */ dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__0); dmm_write(omap_dmm, 0x88888888, DMM_PAT_VIEW__1); dmm_write(omap_dmm, 0x80808080, DMM_PAT_VIEW_MAP__0); dmm_write(omap_dmm, 0x80000000, DMM_PAT_VIEW_MAP_BASE); dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__0); dmm_write(omap_dmm, 0x88888888, DMM_TILER_OR__1); omap_dmm->dummy_page = alloc_page(GFP_KERNEL | __GFP_DMA32); if (!omap_dmm->dummy_page) { dev_err(&dev->dev, "could not allocate dummy page\n"); ret = -ENOMEM; goto fail; } /* set dma mask for device */ ret = dma_set_coherent_mask(&dev->dev, DMA_BIT_MASK(32)); if (ret) goto fail; omap_dmm->dummy_pa = page_to_phys(omap_dmm->dummy_page); /* alloc refill memory */ omap_dmm->refill_va = dma_alloc_wc(&dev->dev, REFILL_BUFFER_SIZE * omap_dmm->num_engines, &omap_dmm->refill_pa, GFP_KERNEL); if (!omap_dmm->refill_va) { dev_err(&dev->dev, "could not allocate refill memory\n"); goto fail; } /* alloc engines */ omap_dmm->engines = kcalloc(omap_dmm->num_engines, sizeof(*omap_dmm->engines), GFP_KERNEL); if (!omap_dmm->engines) { ret = -ENOMEM; goto fail; } for (i = 0; i < omap_dmm->num_engines; i++) { omap_dmm->engines[i].id = i; omap_dmm->engines[i].dmm = omap_dmm; omap_dmm->engines[i].refill_va = omap_dmm->refill_va + (REFILL_BUFFER_SIZE * i); omap_dmm->engines[i].refill_pa = omap_dmm->refill_pa + (REFILL_BUFFER_SIZE * i); init_completion(&omap_dmm->engines[i].compl); list_add(&omap_dmm->engines[i].idle_node, &omap_dmm->idle_head); } omap_dmm->tcm = kcalloc(omap_dmm->num_lut, sizeof(*omap_dmm->tcm), GFP_KERNEL); if (!omap_dmm->tcm) { ret = -ENOMEM; goto fail; } /* init containers */ /* Each LUT is associated with a TCM (container manager). We use the lut_id to denote the lut_id used to identify the correct LUT for programming during reill operations */ for (i = 0; i < omap_dmm->num_lut; i++) { omap_dmm->tcm[i] = sita_init(omap_dmm->container_width, omap_dmm->container_height); if (!omap_dmm->tcm[i]) { dev_err(&dev->dev, "failed to allocate container\n"); ret = -ENOMEM; goto fail; } omap_dmm->tcm[i]->lut_id = i; } /* assign access mode containers to applicable tcm container */ /* OMAP 4 has 1 container for all 4 views */ /* OMAP 5 has 2 containers, 1 for 2D and 1 for 1D */ containers[TILFMT_8BIT] = omap_dmm->tcm[0]; containers[TILFMT_16BIT] = omap_dmm->tcm[0]; containers[TILFMT_32BIT] = omap_dmm->tcm[0]; if (omap_dmm->container_height != omap_dmm->lut_height) { /* second LUT is used for PAGE mode. Programming must use y offset that is added to all y coordinates. LUT id is still 0, because it is the same LUT, just the upper 128 lines */ containers[TILFMT_PAGE] = omap_dmm->tcm[1]; omap_dmm->tcm[1]->y_offset = OMAP5_LUT_OFFSET; omap_dmm->tcm[1]->lut_id = 0; } else { containers[TILFMT_PAGE] = omap_dmm->tcm[0]; } area = (struct tcm_area) { .tcm = NULL, .p1.x = omap_dmm->container_width - 1, .p1.y = omap_dmm->container_height - 1, }; ret = request_irq(omap_dmm->irq, omap_dmm_irq_handler, IRQF_SHARED, "omap_dmm_irq_handler", omap_dmm); if (ret) { dev_err(&dev->dev, "couldn't register IRQ %d, error %d\n", omap_dmm->irq, ret); omap_dmm->irq = -1; goto fail; } /* Enable all interrupts for each refill engine except * ERR_LUT_MISS<n> (which is just advisory, and we don't care * about because we want to be able to refill live scanout * buffers for accelerated pan/scroll) and FILL_DSC<n> which * we just generally don't care about. */ dmm_write(omap_dmm, 0x7e7e7e7e, DMM_PAT_IRQENABLE_SET); /* initialize all LUTs to dummy page entries */ for (i = 0; i < omap_dmm->num_lut; i++) { area.tcm = omap_dmm->tcm[i]; if (fill(&area, NULL, 0, 0, true)) dev_err(omap_dmm->dev, "refill failed"); } dev_info(omap_dmm->dev, "initialized all PAT entries\n"); return 0; fail: if (omap_dmm_remove(dev)) dev_err(&dev->dev, "cleanup failed\n"); return ret; } /* * debugfs support */ #ifdef CONFIG_DEBUG_FS static const char *alphabet = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; static const char *special = ".,:;'\"`~!^-+"; static void fill_map(char **map, int xdiv, int ydiv, struct tcm_area *a, char c, bool ovw) { int x, y; for (y = a->p0.y / ydiv; y <= a->p1.y / ydiv; y++) for (x = a->p0.x / xdiv; x <= a->p1.x / xdiv; x++) if (map[y][x] == ' ' || ovw) map[y][x] = c; } static void fill_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p, char c) { map[p->y / ydiv][p->x / xdiv] = c; } static char read_map_pt(char **map, int xdiv, int ydiv, struct tcm_pt *p) { return map[p->y / ydiv][p->x / xdiv]; } static int map_width(int xdiv, int x0, int x1) { return (x1 / xdiv) - (x0 / xdiv) + 1; } static void text_map(char **map, int xdiv, char *nice, int yd, int x0, int x1) { char *p = map[yd] + (x0 / xdiv); int w = (map_width(xdiv, x0, x1) - strlen(nice)) / 2; if (w >= 0) { p += w; while (*nice) *p++ = *nice++; } } static void map_1d_info(char **map, int xdiv, int ydiv, char *nice, struct tcm_area *a) { sprintf(nice, "%dK", tcm_sizeof(*a) * 4); if (a->p0.y + 1 < a->p1.y) { text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, 0, 256 - 1); } else if (a->p0.y < a->p1.y) { if (strlen(nice) < map_width(xdiv, a->p0.x, 256 - 1)) text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x + xdiv, 256 - 1); else if (strlen(nice) < map_width(xdiv, 0, a->p1.x)) text_map(map, xdiv, nice, a->p1.y / ydiv, 0, a->p1.y - xdiv); } else if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) { text_map(map, xdiv, nice, a->p0.y / ydiv, a->p0.x, a->p1.x); } } static void map_2d_info(char **map, int xdiv, int ydiv, char *nice, struct tcm_area *a) { sprintf(nice, "(%d*%d)", tcm_awidth(*a), tcm_aheight(*a)); if (strlen(nice) + 1 < map_width(xdiv, a->p0.x, a->p1.x)) text_map(map, xdiv, nice, (a->p0.y + a->p1.y) / 2 / ydiv, a->p0.x, a->p1.x); } int tiler_map_show(struct seq_file *s, void *arg) { int xdiv = 2, ydiv = 1; char **map = NULL, *global_map; struct tiler_block *block; struct tcm_area a, p; int i; const char *m2d = alphabet; const char *a2d = special; const char *m2dp = m2d, *a2dp = a2d; char nice[128]; int h_adj; int w_adj; unsigned long flags; int lut_idx; if (!omap_dmm) { /* early return if dmm/tiler device is not initialized */ return 0; } h_adj = omap_dmm->container_height / ydiv; w_adj = omap_dmm->container_width / xdiv; map = kmalloc_array(h_adj, sizeof(*map), GFP_KERNEL); global_map = kmalloc_array(w_adj + 1, h_adj, GFP_KERNEL); if (!map || !global_map) goto error; for (lut_idx = 0; lut_idx < omap_dmm->num_lut; lut_idx++) { memset(map, 0, h_adj * sizeof(*map)); memset(global_map, ' ', (w_adj + 1) * h_adj); for (i = 0; i < omap_dmm->container_height; i++) { map[i] = global_map + i * (w_adj + 1); map[i][w_adj] = 0; } spin_lock_irqsave(&list_lock, flags); list_for_each_entry(block, &omap_dmm->alloc_head, alloc_node) { if (block->area.tcm == omap_dmm->tcm[lut_idx]) { if (block->fmt != TILFMT_PAGE) { fill_map(map, xdiv, ydiv, &block->area, *m2dp, true); if (!*++a2dp) a2dp = a2d; if (!*++m2dp) m2dp = m2d; map_2d_info(map, xdiv, ydiv, nice, &block->area); } else { bool start = read_map_pt(map, xdiv, ydiv, &block->area.p0) == ' '; bool end = read_map_pt(map, xdiv, ydiv, &block->area.p1) == ' '; tcm_for_each_slice(a, block->area, p) fill_map(map, xdiv, ydiv, &a, '=', true); fill_map_pt(map, xdiv, ydiv, &block->area.p0, start ? '<' : 'X'); fill_map_pt(map, xdiv, ydiv, &block->area.p1, end ? '>' : 'X'); map_1d_info(map, xdiv, ydiv, nice, &block->area); } } } spin_unlock_irqrestore(&list_lock, flags); if (s) { seq_printf(s, "CONTAINER %d DUMP BEGIN\n", lut_idx); for (i = 0; i < 128; i++) seq_printf(s, "%03d:%s\n", i, map[i]); seq_printf(s, "CONTAINER %d DUMP END\n", lut_idx); } else { dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP BEGIN\n", lut_idx); for (i = 0; i < 128; i++) dev_dbg(omap_dmm->dev, "%03d:%s\n", i, map[i]); dev_dbg(omap_dmm->dev, "CONTAINER %d DUMP END\n", lut_idx); } } error: kfree(map); kfree(global_map); return 0; } #endif #ifdef CONFIG_PM_SLEEP static int omap_dmm_resume(struct device *dev) { struct tcm_area area; int i; if (!omap_dmm) return -ENODEV; area = (struct tcm_area) { .tcm = NULL, .p1.x = omap_dmm->container_width - 1, .p1.y = omap_dmm->container_height - 1, }; /* initialize all LUTs to dummy page entries */ for (i = 0; i < omap_dmm->num_lut; i++) { area.tcm = omap_dmm->tcm[i]; if (fill(&area, NULL, 0, 0, true)) dev_err(dev, "refill failed"); } return 0; } #endif static SIMPLE_DEV_PM_OPS(omap_dmm_pm_ops, NULL, omap_dmm_resume); #if defined(CONFIG_OF) static const struct dmm_platform_data dmm_omap4_platform_data = { .cpu_cache_flags = OMAP_BO_WC, }; static const struct dmm_platform_data dmm_omap5_platform_data = { .cpu_cache_flags = OMAP_BO_UNCACHED, }; static const struct of_device_id dmm_of_match[] = { { .compatible = "ti,omap4-dmm", .data = &dmm_omap4_platform_data, }, { .compatible = "ti,omap5-dmm", .data = &dmm_omap5_platform_data, }, {}, }; #endif struct platform_driver omap_dmm_driver = { .probe = omap_dmm_probe, .remove = omap_dmm_remove, .driver = { .owner = THIS_MODULE, .name = DMM_DRIVER_NAME, .of_match_table = of_match_ptr(dmm_of_match), .pm = &omap_dmm_pm_ops, }, }; MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Andy Gross <andy.gross@ti.com>"); MODULE_DESCRIPTION("OMAP DMM/Tiler Driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1