Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 18308 | 72.28% | 141 | 81.98% |
Jérôme Glisse | 5008 | 19.77% | 1 | 0.58% |
Christian König | 713 | 2.82% | 1 | 0.58% |
Dave Airlie | 592 | 2.34% | 8 | 4.65% |
Slava Grigorev | 212 | 0.84% | 3 | 1.74% |
Yang Zhao | 128 | 0.51% | 1 | 0.58% |
Rafał Miłecki | 104 | 0.41% | 2 | 1.16% |
Cédric Cano | 66 | 0.26% | 1 | 0.58% |
Prarit Bhargava | 40 | 0.16% | 1 | 0.58% |
Kees Cook | 35 | 0.14% | 1 | 0.58% |
Mathias Fröhlich | 20 | 0.08% | 1 | 0.58% |
Alexander Müller | 19 | 0.08% | 1 | 0.58% |
John Lindgren | 18 | 0.07% | 1 | 0.58% |
Jean Delvare | 14 | 0.06% | 1 | 0.58% |
Tyson Whitehead | 13 | 0.05% | 1 | 0.58% |
Tvrtko A. Ursulin | 12 | 0.05% | 1 | 0.58% |
Andre Heider | 8 | 0.03% | 1 | 0.58% |
Ville Syrjälä | 8 | 0.03% | 1 | 0.58% |
Baoyou Xie | 3 | 0.01% | 1 | 0.58% |
Michele Curti | 3 | 0.01% | 1 | 0.58% |
David Howells | 2 | 0.01% | 1 | 0.58% |
Dan Carpenter | 2 | 0.01% | 1 | 0.58% |
Total | 25328 | 172 |
/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include <drm/drmP.h> #include <drm/radeon_drm.h> #include "radeon.h" #include "atom.h" #include "atom-bits.h" #include "radeon_asic.h" extern void radeon_add_atom_encoder(struct drm_device *dev, uint32_t encoder_enum, uint32_t supported_device, u16 caps); /* from radeon_legacy_encoder.c */ extern void radeon_add_legacy_encoder(struct drm_device *dev, uint32_t encoder_enum, uint32_t supported_device); union atom_supported_devices { struct _ATOM_SUPPORTED_DEVICES_INFO info; struct _ATOM_SUPPORTED_DEVICES_INFO_2 info_2; struct _ATOM_SUPPORTED_DEVICES_INFO_2d1 info_2d1; }; static void radeon_lookup_i2c_gpio_quirks(struct radeon_device *rdev, ATOM_GPIO_I2C_ASSIGMENT *gpio, u8 index) { /* r4xx mask is technically not used by the hw, so patch in the legacy mask bits */ if ((rdev->family == CHIP_R420) || (rdev->family == CHIP_R423) || (rdev->family == CHIP_RV410)) { if ((le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x0018) || (le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x0019) || (le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x001a)) { gpio->ucClkMaskShift = 0x19; gpio->ucDataMaskShift = 0x18; } } /* some evergreen boards have bad data for this entry */ if (ASIC_IS_DCE4(rdev)) { if ((index == 7) && (le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x1936) && (gpio->sucI2cId.ucAccess == 0)) { gpio->sucI2cId.ucAccess = 0x97; gpio->ucDataMaskShift = 8; gpio->ucDataEnShift = 8; gpio->ucDataY_Shift = 8; gpio->ucDataA_Shift = 8; } } /* some DCE3 boards have bad data for this entry */ if (ASIC_IS_DCE3(rdev)) { if ((index == 4) && (le16_to_cpu(gpio->usClkMaskRegisterIndex) == 0x1fda) && (gpio->sucI2cId.ucAccess == 0x94)) gpio->sucI2cId.ucAccess = 0x14; } } static struct radeon_i2c_bus_rec radeon_get_bus_rec_for_i2c_gpio(ATOM_GPIO_I2C_ASSIGMENT *gpio) { struct radeon_i2c_bus_rec i2c; memset(&i2c, 0, sizeof(struct radeon_i2c_bus_rec)); i2c.mask_clk_reg = le16_to_cpu(gpio->usClkMaskRegisterIndex) * 4; i2c.mask_data_reg = le16_to_cpu(gpio->usDataMaskRegisterIndex) * 4; i2c.en_clk_reg = le16_to_cpu(gpio->usClkEnRegisterIndex) * 4; i2c.en_data_reg = le16_to_cpu(gpio->usDataEnRegisterIndex) * 4; i2c.y_clk_reg = le16_to_cpu(gpio->usClkY_RegisterIndex) * 4; i2c.y_data_reg = le16_to_cpu(gpio->usDataY_RegisterIndex) * 4; i2c.a_clk_reg = le16_to_cpu(gpio->usClkA_RegisterIndex) * 4; i2c.a_data_reg = le16_to_cpu(gpio->usDataA_RegisterIndex) * 4; i2c.mask_clk_mask = (1 << gpio->ucClkMaskShift); i2c.mask_data_mask = (1 << gpio->ucDataMaskShift); i2c.en_clk_mask = (1 << gpio->ucClkEnShift); i2c.en_data_mask = (1 << gpio->ucDataEnShift); i2c.y_clk_mask = (1 << gpio->ucClkY_Shift); i2c.y_data_mask = (1 << gpio->ucDataY_Shift); i2c.a_clk_mask = (1 << gpio->ucClkA_Shift); i2c.a_data_mask = (1 << gpio->ucDataA_Shift); if (gpio->sucI2cId.sbfAccess.bfHW_Capable) i2c.hw_capable = true; else i2c.hw_capable = false; if (gpio->sucI2cId.ucAccess == 0xa0) i2c.mm_i2c = true; else i2c.mm_i2c = false; i2c.i2c_id = gpio->sucI2cId.ucAccess; if (i2c.mask_clk_reg) i2c.valid = true; else i2c.valid = false; return i2c; } static struct radeon_i2c_bus_rec radeon_lookup_i2c_gpio(struct radeon_device *rdev, uint8_t id) { struct atom_context *ctx = rdev->mode_info.atom_context; ATOM_GPIO_I2C_ASSIGMENT *gpio; struct radeon_i2c_bus_rec i2c; int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info); struct _ATOM_GPIO_I2C_INFO *i2c_info; uint16_t data_offset, size; int i, num_indices; memset(&i2c, 0, sizeof(struct radeon_i2c_bus_rec)); i2c.valid = false; if (atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) { i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_I2C_ASSIGMENT); gpio = &i2c_info->asGPIO_Info[0]; for (i = 0; i < num_indices; i++) { radeon_lookup_i2c_gpio_quirks(rdev, gpio, i); if (gpio->sucI2cId.ucAccess == id) { i2c = radeon_get_bus_rec_for_i2c_gpio(gpio); break; } gpio = (ATOM_GPIO_I2C_ASSIGMENT *) ((u8 *)gpio + sizeof(ATOM_GPIO_I2C_ASSIGMENT)); } } return i2c; } void radeon_atombios_i2c_init(struct radeon_device *rdev) { struct atom_context *ctx = rdev->mode_info.atom_context; ATOM_GPIO_I2C_ASSIGMENT *gpio; struct radeon_i2c_bus_rec i2c; int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info); struct _ATOM_GPIO_I2C_INFO *i2c_info; uint16_t data_offset, size; int i, num_indices; char stmp[32]; if (atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) { i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_I2C_ASSIGMENT); gpio = &i2c_info->asGPIO_Info[0]; for (i = 0; i < num_indices; i++) { radeon_lookup_i2c_gpio_quirks(rdev, gpio, i); i2c = radeon_get_bus_rec_for_i2c_gpio(gpio); if (i2c.valid) { sprintf(stmp, "0x%x", i2c.i2c_id); rdev->i2c_bus[i] = radeon_i2c_create(rdev->ddev, &i2c, stmp); } gpio = (ATOM_GPIO_I2C_ASSIGMENT *) ((u8 *)gpio + sizeof(ATOM_GPIO_I2C_ASSIGMENT)); } } } struct radeon_gpio_rec radeon_atombios_lookup_gpio(struct radeon_device *rdev, u8 id) { struct atom_context *ctx = rdev->mode_info.atom_context; struct radeon_gpio_rec gpio; int index = GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT); struct _ATOM_GPIO_PIN_LUT *gpio_info; ATOM_GPIO_PIN_ASSIGNMENT *pin; u16 data_offset, size; int i, num_indices; memset(&gpio, 0, sizeof(struct radeon_gpio_rec)); gpio.valid = false; if (atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) { gpio_info = (struct _ATOM_GPIO_PIN_LUT *)(ctx->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_PIN_ASSIGNMENT); pin = gpio_info->asGPIO_Pin; for (i = 0; i < num_indices; i++) { if (id == pin->ucGPIO_ID) { gpio.id = pin->ucGPIO_ID; gpio.reg = le16_to_cpu(pin->usGpioPin_AIndex) * 4; gpio.shift = pin->ucGpioPinBitShift; gpio.mask = (1 << pin->ucGpioPinBitShift); gpio.valid = true; break; } pin = (ATOM_GPIO_PIN_ASSIGNMENT *) ((u8 *)pin + sizeof(ATOM_GPIO_PIN_ASSIGNMENT)); } } return gpio; } static struct radeon_hpd radeon_atom_get_hpd_info_from_gpio(struct radeon_device *rdev, struct radeon_gpio_rec *gpio) { struct radeon_hpd hpd; u32 reg; memset(&hpd, 0, sizeof(struct radeon_hpd)); if (ASIC_IS_DCE6(rdev)) reg = SI_DC_GPIO_HPD_A; else if (ASIC_IS_DCE4(rdev)) reg = EVERGREEN_DC_GPIO_HPD_A; else reg = AVIVO_DC_GPIO_HPD_A; hpd.gpio = *gpio; if (gpio->reg == reg) { switch(gpio->mask) { case (1 << 0): hpd.hpd = RADEON_HPD_1; break; case (1 << 8): hpd.hpd = RADEON_HPD_2; break; case (1 << 16): hpd.hpd = RADEON_HPD_3; break; case (1 << 24): hpd.hpd = RADEON_HPD_4; break; case (1 << 26): hpd.hpd = RADEON_HPD_5; break; case (1 << 28): hpd.hpd = RADEON_HPD_6; break; default: hpd.hpd = RADEON_HPD_NONE; break; } } else hpd.hpd = RADEON_HPD_NONE; return hpd; } static bool radeon_atom_apply_quirks(struct drm_device *dev, uint32_t supported_device, int *connector_type, struct radeon_i2c_bus_rec *i2c_bus, uint16_t *line_mux, struct radeon_hpd *hpd) { /* Asus M2A-VM HDMI board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x791e) && (dev->pdev->subsystem_vendor == 0x1043) && (dev->pdev->subsystem_device == 0x826d)) { if ((*connector_type == DRM_MODE_CONNECTOR_HDMIA) && (supported_device == ATOM_DEVICE_DFP3_SUPPORT)) *connector_type = DRM_MODE_CONNECTOR_DVID; } /* Asrock RS600 board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x7941) && (dev->pdev->subsystem_vendor == 0x1849) && (dev->pdev->subsystem_device == 0x7941)) { if ((*connector_type == DRM_MODE_CONNECTOR_HDMIA) && (supported_device == ATOM_DEVICE_DFP3_SUPPORT)) *connector_type = DRM_MODE_CONNECTOR_DVID; } /* MSI K9A2GM V2/V3 board has no HDMI or DVI */ if ((dev->pdev->device == 0x796e) && (dev->pdev->subsystem_vendor == 0x1462) && (dev->pdev->subsystem_device == 0x7302)) { if ((supported_device == ATOM_DEVICE_DFP2_SUPPORT) || (supported_device == ATOM_DEVICE_DFP3_SUPPORT)) return false; } /* a-bit f-i90hd - ciaranm on #radeonhd - this board has no DVI */ if ((dev->pdev->device == 0x7941) && (dev->pdev->subsystem_vendor == 0x147b) && (dev->pdev->subsystem_device == 0x2412)) { if (*connector_type == DRM_MODE_CONNECTOR_DVII) return false; } /* Falcon NW laptop lists vga ddc line for LVDS */ if ((dev->pdev->device == 0x5653) && (dev->pdev->subsystem_vendor == 0x1462) && (dev->pdev->subsystem_device == 0x0291)) { if (*connector_type == DRM_MODE_CONNECTOR_LVDS) { i2c_bus->valid = false; *line_mux = 53; } } /* HIS X1300 is DVI+VGA, not DVI+DVI */ if ((dev->pdev->device == 0x7146) && (dev->pdev->subsystem_vendor == 0x17af) && (dev->pdev->subsystem_device == 0x2058)) { if (supported_device == ATOM_DEVICE_DFP1_SUPPORT) return false; } /* Gigabyte X1300 is DVI+VGA, not DVI+DVI */ if ((dev->pdev->device == 0x7142) && (dev->pdev->subsystem_vendor == 0x1458) && (dev->pdev->subsystem_device == 0x2134)) { if (supported_device == ATOM_DEVICE_DFP1_SUPPORT) return false; } /* Funky macbooks */ if ((dev->pdev->device == 0x71C5) && (dev->pdev->subsystem_vendor == 0x106b) && (dev->pdev->subsystem_device == 0x0080)) { if ((supported_device == ATOM_DEVICE_CRT1_SUPPORT) || (supported_device == ATOM_DEVICE_DFP2_SUPPORT)) return false; if (supported_device == ATOM_DEVICE_CRT2_SUPPORT) *line_mux = 0x90; } /* mac rv630, rv730, others */ if ((supported_device == ATOM_DEVICE_TV1_SUPPORT) && (*connector_type == DRM_MODE_CONNECTOR_DVII)) { *connector_type = DRM_MODE_CONNECTOR_9PinDIN; *line_mux = CONNECTOR_7PIN_DIN_ENUM_ID1; } /* ASUS HD 3600 XT board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x9598) && (dev->pdev->subsystem_vendor == 0x1043) && (dev->pdev->subsystem_device == 0x01da)) { if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) { *connector_type = DRM_MODE_CONNECTOR_DVII; } } /* ASUS HD 3600 board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x9598) && (dev->pdev->subsystem_vendor == 0x1043) && (dev->pdev->subsystem_device == 0x01e4)) { if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) { *connector_type = DRM_MODE_CONNECTOR_DVII; } } /* ASUS HD 3450 board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x95C5) && (dev->pdev->subsystem_vendor == 0x1043) && (dev->pdev->subsystem_device == 0x01e2)) { if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) { *connector_type = DRM_MODE_CONNECTOR_DVII; } } /* some BIOSes seem to report DAC on HDMI - usually this is a board with * HDMI + VGA reporting as HDMI */ if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) { if (supported_device & (ATOM_DEVICE_CRT_SUPPORT)) { *connector_type = DRM_MODE_CONNECTOR_VGA; *line_mux = 0; } } /* Acer laptop (Acer TravelMate 5730/5730G) has an HDMI port * on the laptop and a DVI port on the docking station and * both share the same encoder, hpd pin, and ddc line. * So while the bios table is technically correct, * we drop the DVI port here since xrandr has no concept of * encoders and will try and drive both connectors * with different crtcs which isn't possible on the hardware * side and leaves no crtcs for LVDS or VGA. */ if (((dev->pdev->device == 0x95c4) || (dev->pdev->device == 0x9591)) && (dev->pdev->subsystem_vendor == 0x1025) && (dev->pdev->subsystem_device == 0x013c)) { if ((*connector_type == DRM_MODE_CONNECTOR_DVII) && (supported_device == ATOM_DEVICE_DFP1_SUPPORT)) { /* actually it's a DVI-D port not DVI-I */ *connector_type = DRM_MODE_CONNECTOR_DVID; return false; } } /* XFX Pine Group device rv730 reports no VGA DDC lines * even though they are wired up to record 0x93 */ if ((dev->pdev->device == 0x9498) && (dev->pdev->subsystem_vendor == 0x1682) && (dev->pdev->subsystem_device == 0x2452) && (i2c_bus->valid == false) && !(supported_device & (ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT))) { struct radeon_device *rdev = dev->dev_private; *i2c_bus = radeon_lookup_i2c_gpio(rdev, 0x93); } /* Fujitsu D3003-S2 board lists DVI-I as DVI-D and VGA */ if (((dev->pdev->device == 0x9802) || (dev->pdev->device == 0x9805) || (dev->pdev->device == 0x9806)) && (dev->pdev->subsystem_vendor == 0x1734) && (dev->pdev->subsystem_device == 0x11bd)) { if (*connector_type == DRM_MODE_CONNECTOR_VGA) { *connector_type = DRM_MODE_CONNECTOR_DVII; *line_mux = 0x3103; } else if (*connector_type == DRM_MODE_CONNECTOR_DVID) { *connector_type = DRM_MODE_CONNECTOR_DVII; } } return true; } static const int supported_devices_connector_convert[] = { DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_VGA, DRM_MODE_CONNECTOR_DVII, DRM_MODE_CONNECTOR_DVID, DRM_MODE_CONNECTOR_DVIA, DRM_MODE_CONNECTOR_SVIDEO, DRM_MODE_CONNECTOR_Composite, DRM_MODE_CONNECTOR_LVDS, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_HDMIA, DRM_MODE_CONNECTOR_HDMIB, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_9PinDIN, DRM_MODE_CONNECTOR_DisplayPort }; static const uint16_t supported_devices_connector_object_id_convert[] = { CONNECTOR_OBJECT_ID_NONE, CONNECTOR_OBJECT_ID_VGA, CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_I, /* not all boards support DL */ CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_D, /* not all boards support DL */ CONNECTOR_OBJECT_ID_VGA, /* technically DVI-A */ CONNECTOR_OBJECT_ID_COMPOSITE, CONNECTOR_OBJECT_ID_SVIDEO, CONNECTOR_OBJECT_ID_LVDS, CONNECTOR_OBJECT_ID_9PIN_DIN, CONNECTOR_OBJECT_ID_9PIN_DIN, CONNECTOR_OBJECT_ID_DISPLAYPORT, CONNECTOR_OBJECT_ID_HDMI_TYPE_A, CONNECTOR_OBJECT_ID_HDMI_TYPE_B, CONNECTOR_OBJECT_ID_SVIDEO }; static const int object_connector_convert[] = { DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_DVII, DRM_MODE_CONNECTOR_DVII, DRM_MODE_CONNECTOR_DVID, DRM_MODE_CONNECTOR_DVID, DRM_MODE_CONNECTOR_VGA, DRM_MODE_CONNECTOR_Composite, DRM_MODE_CONNECTOR_SVIDEO, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_9PinDIN, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_HDMIA, DRM_MODE_CONNECTOR_HDMIB, DRM_MODE_CONNECTOR_LVDS, DRM_MODE_CONNECTOR_9PinDIN, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_DisplayPort, DRM_MODE_CONNECTOR_eDP, DRM_MODE_CONNECTOR_Unknown }; bool radeon_get_atom_connector_info_from_object_table(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; struct atom_context *ctx = mode_info->atom_context; int index = GetIndexIntoMasterTable(DATA, Object_Header); u16 size, data_offset; u8 frev, crev; ATOM_CONNECTOR_OBJECT_TABLE *con_obj; ATOM_ENCODER_OBJECT_TABLE *enc_obj; ATOM_OBJECT_TABLE *router_obj; ATOM_DISPLAY_OBJECT_PATH_TABLE *path_obj; ATOM_OBJECT_HEADER *obj_header; int i, j, k, path_size, device_support; int connector_type; u16 igp_lane_info, conn_id, connector_object_id; struct radeon_i2c_bus_rec ddc_bus; struct radeon_router router; struct radeon_gpio_rec gpio; struct radeon_hpd hpd; if (!atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) return false; if (crev < 2) return false; obj_header = (ATOM_OBJECT_HEADER *) (ctx->bios + data_offset); path_obj = (ATOM_DISPLAY_OBJECT_PATH_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usDisplayPathTableOffset)); con_obj = (ATOM_CONNECTOR_OBJECT_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usConnectorObjectTableOffset)); enc_obj = (ATOM_ENCODER_OBJECT_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usEncoderObjectTableOffset)); router_obj = (ATOM_OBJECT_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usRouterObjectTableOffset)); device_support = le16_to_cpu(obj_header->usDeviceSupport); path_size = 0; for (i = 0; i < path_obj->ucNumOfDispPath; i++) { uint8_t *addr = (uint8_t *) path_obj->asDispPath; ATOM_DISPLAY_OBJECT_PATH *path; addr += path_size; path = (ATOM_DISPLAY_OBJECT_PATH *) addr; path_size += le16_to_cpu(path->usSize); if (device_support & le16_to_cpu(path->usDeviceTag)) { uint8_t con_obj_id, con_obj_num, con_obj_type; con_obj_id = (le16_to_cpu(path->usConnObjectId) & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT; con_obj_num = (le16_to_cpu(path->usConnObjectId) & ENUM_ID_MASK) >> ENUM_ID_SHIFT; con_obj_type = (le16_to_cpu(path->usConnObjectId) & OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT; /* TODO CV support */ if (le16_to_cpu(path->usDeviceTag) == ATOM_DEVICE_CV_SUPPORT) continue; /* IGP chips */ if ((rdev->flags & RADEON_IS_IGP) && (con_obj_id == CONNECTOR_OBJECT_ID_PCIE_CONNECTOR)) { uint16_t igp_offset = 0; ATOM_INTEGRATED_SYSTEM_INFO_V2 *igp_obj; index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); if (atom_parse_data_header(ctx, index, &size, &frev, &crev, &igp_offset)) { if (crev >= 2) { igp_obj = (ATOM_INTEGRATED_SYSTEM_INFO_V2 *) (ctx->bios + igp_offset); if (igp_obj) { uint32_t slot_config, ct; if (con_obj_num == 1) slot_config = igp_obj-> ulDDISlot1Config; else slot_config = igp_obj-> ulDDISlot2Config; ct = (slot_config >> 16) & 0xff; connector_type = object_connector_convert [ct]; connector_object_id = ct; igp_lane_info = slot_config & 0xffff; } else continue; } else continue; } else { igp_lane_info = 0; connector_type = object_connector_convert[con_obj_id]; connector_object_id = con_obj_id; } } else { igp_lane_info = 0; connector_type = object_connector_convert[con_obj_id]; connector_object_id = con_obj_id; } if (connector_type == DRM_MODE_CONNECTOR_Unknown) continue; router.ddc_valid = false; router.cd_valid = false; for (j = 0; j < ((le16_to_cpu(path->usSize) - 8) / 2); j++) { uint8_t grph_obj_id, grph_obj_num, grph_obj_type; grph_obj_id = (le16_to_cpu(path->usGraphicObjIds[j]) & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT; grph_obj_num = (le16_to_cpu(path->usGraphicObjIds[j]) & ENUM_ID_MASK) >> ENUM_ID_SHIFT; grph_obj_type = (le16_to_cpu(path->usGraphicObjIds[j]) & OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT; if (grph_obj_type == GRAPH_OBJECT_TYPE_ENCODER) { for (k = 0; k < enc_obj->ucNumberOfObjects; k++) { u16 encoder_obj = le16_to_cpu(enc_obj->asObjects[k].usObjectID); if (le16_to_cpu(path->usGraphicObjIds[j]) == encoder_obj) { ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *) (ctx->bios + data_offset + le16_to_cpu(enc_obj->asObjects[k].usRecordOffset)); ATOM_ENCODER_CAP_RECORD *cap_record; u16 caps = 0; while (record->ucRecordSize > 0 && record->ucRecordType > 0 && record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) { switch (record->ucRecordType) { case ATOM_ENCODER_CAP_RECORD_TYPE: cap_record =(ATOM_ENCODER_CAP_RECORD *) record; caps = le16_to_cpu(cap_record->usEncoderCap); break; } record = (ATOM_COMMON_RECORD_HEADER *) ((char *)record + record->ucRecordSize); } radeon_add_atom_encoder(dev, encoder_obj, le16_to_cpu (path-> usDeviceTag), caps); } } } else if (grph_obj_type == GRAPH_OBJECT_TYPE_ROUTER) { for (k = 0; k < router_obj->ucNumberOfObjects; k++) { u16 router_obj_id = le16_to_cpu(router_obj->asObjects[k].usObjectID); if (le16_to_cpu(path->usGraphicObjIds[j]) == router_obj_id) { ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *) (ctx->bios + data_offset + le16_to_cpu(router_obj->asObjects[k].usRecordOffset)); ATOM_I2C_RECORD *i2c_record; ATOM_I2C_ID_CONFIG_ACCESS *i2c_config; ATOM_ROUTER_DDC_PATH_SELECT_RECORD *ddc_path; ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *cd_path; ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *router_src_dst_table = (ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *) (ctx->bios + data_offset + le16_to_cpu(router_obj->asObjects[k].usSrcDstTableOffset)); u8 *num_dst_objs = (u8 *) ((u8 *)router_src_dst_table + 1 + (router_src_dst_table->ucNumberOfSrc * 2)); u16 *dst_objs = (u16 *)(num_dst_objs + 1); int enum_id; router.router_id = router_obj_id; for (enum_id = 0; enum_id < (*num_dst_objs); enum_id++) { if (le16_to_cpu(path->usConnObjectId) == le16_to_cpu(dst_objs[enum_id])) break; } while (record->ucRecordSize > 0 && record->ucRecordType > 0 && record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) { switch (record->ucRecordType) { case ATOM_I2C_RECORD_TYPE: i2c_record = (ATOM_I2C_RECORD *) record; i2c_config = (ATOM_I2C_ID_CONFIG_ACCESS *) &i2c_record->sucI2cId; router.i2c_info = radeon_lookup_i2c_gpio(rdev, i2c_config-> ucAccess); router.i2c_addr = i2c_record->ucI2CAddr >> 1; break; case ATOM_ROUTER_DDC_PATH_SELECT_RECORD_TYPE: ddc_path = (ATOM_ROUTER_DDC_PATH_SELECT_RECORD *) record; router.ddc_valid = true; router.ddc_mux_type = ddc_path->ucMuxType; router.ddc_mux_control_pin = ddc_path->ucMuxControlPin; router.ddc_mux_state = ddc_path->ucMuxState[enum_id]; break; case ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD_TYPE: cd_path = (ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *) record; router.cd_valid = true; router.cd_mux_type = cd_path->ucMuxType; router.cd_mux_control_pin = cd_path->ucMuxControlPin; router.cd_mux_state = cd_path->ucMuxState[enum_id]; break; } record = (ATOM_COMMON_RECORD_HEADER *) ((char *)record + record->ucRecordSize); } } } } } /* look up gpio for ddc, hpd */ ddc_bus.valid = false; hpd.hpd = RADEON_HPD_NONE; if ((le16_to_cpu(path->usDeviceTag) & (ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT)) == 0) { for (j = 0; j < con_obj->ucNumberOfObjects; j++) { if (le16_to_cpu(path->usConnObjectId) == le16_to_cpu(con_obj->asObjects[j]. usObjectID)) { ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *) (ctx->bios + data_offset + le16_to_cpu(con_obj-> asObjects[j]. usRecordOffset)); ATOM_I2C_RECORD *i2c_record; ATOM_HPD_INT_RECORD *hpd_record; ATOM_I2C_ID_CONFIG_ACCESS *i2c_config; while (record->ucRecordSize > 0 && record->ucRecordType > 0 && record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) { switch (record->ucRecordType) { case ATOM_I2C_RECORD_TYPE: i2c_record = (ATOM_I2C_RECORD *) record; i2c_config = (ATOM_I2C_ID_CONFIG_ACCESS *) &i2c_record->sucI2cId; ddc_bus = radeon_lookup_i2c_gpio(rdev, i2c_config-> ucAccess); break; case ATOM_HPD_INT_RECORD_TYPE: hpd_record = (ATOM_HPD_INT_RECORD *) record; gpio = radeon_atombios_lookup_gpio(rdev, hpd_record->ucHPDIntGPIOID); hpd = radeon_atom_get_hpd_info_from_gpio(rdev, &gpio); hpd.plugged_state = hpd_record->ucPlugged_PinState; break; } record = (ATOM_COMMON_RECORD_HEADER *) ((char *)record + record-> ucRecordSize); } break; } } } /* needed for aux chan transactions */ ddc_bus.hpd = hpd.hpd; conn_id = le16_to_cpu(path->usConnObjectId); if (!radeon_atom_apply_quirks (dev, le16_to_cpu(path->usDeviceTag), &connector_type, &ddc_bus, &conn_id, &hpd)) continue; radeon_add_atom_connector(dev, conn_id, le16_to_cpu(path-> usDeviceTag), connector_type, &ddc_bus, igp_lane_info, connector_object_id, &hpd, &router); } } radeon_link_encoder_connector(dev); radeon_setup_mst_connector(dev); return true; } static uint16_t atombios_get_connector_object_id(struct drm_device *dev, int connector_type, uint16_t devices) { struct radeon_device *rdev = dev->dev_private; if (rdev->flags & RADEON_IS_IGP) { return supported_devices_connector_object_id_convert [connector_type]; } else if (((connector_type == DRM_MODE_CONNECTOR_DVII) || (connector_type == DRM_MODE_CONNECTOR_DVID)) && (devices & ATOM_DEVICE_DFP2_SUPPORT)) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct atom_context *ctx = mode_info->atom_context; int index = GetIndexIntoMasterTable(DATA, XTMDS_Info); uint16_t size, data_offset; uint8_t frev, crev; ATOM_XTMDS_INFO *xtmds; if (atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) { xtmds = (ATOM_XTMDS_INFO *)(ctx->bios + data_offset); if (xtmds->ucSupportedLink & ATOM_XTMDS_SUPPORTED_DUALLINK) { if (connector_type == DRM_MODE_CONNECTOR_DVII) return CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_I; else return CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_D; } else { if (connector_type == DRM_MODE_CONNECTOR_DVII) return CONNECTOR_OBJECT_ID_SINGLE_LINK_DVI_I; else return CONNECTOR_OBJECT_ID_SINGLE_LINK_DVI_D; } } else return supported_devices_connector_object_id_convert [connector_type]; } else { return supported_devices_connector_object_id_convert [connector_type]; } } struct bios_connector { bool valid; uint16_t line_mux; uint16_t devices; int connector_type; struct radeon_i2c_bus_rec ddc_bus; struct radeon_hpd hpd; }; bool radeon_get_atom_connector_info_from_supported_devices_table(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; struct atom_context *ctx = mode_info->atom_context; int index = GetIndexIntoMasterTable(DATA, SupportedDevicesInfo); uint16_t size, data_offset; uint8_t frev, crev; uint16_t device_support; uint8_t dac; union atom_supported_devices *supported_devices; int i, j, max_device; struct bios_connector *bios_connectors; size_t bc_size = sizeof(*bios_connectors) * ATOM_MAX_SUPPORTED_DEVICE; struct radeon_router router; router.ddc_valid = false; router.cd_valid = false; bios_connectors = kzalloc(bc_size, GFP_KERNEL); if (!bios_connectors) return false; if (!atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) { kfree(bios_connectors); return false; } supported_devices = (union atom_supported_devices *)(ctx->bios + data_offset); device_support = le16_to_cpu(supported_devices->info.usDeviceSupport); if (frev > 1) max_device = ATOM_MAX_SUPPORTED_DEVICE; else max_device = ATOM_MAX_SUPPORTED_DEVICE_INFO; for (i = 0; i < max_device; i++) { ATOM_CONNECTOR_INFO_I2C ci = supported_devices->info.asConnInfo[i]; bios_connectors[i].valid = false; if (!(device_support & (1 << i))) { continue; } if (i == ATOM_DEVICE_CV_INDEX) { DRM_DEBUG_KMS("Skipping Component Video\n"); continue; } bios_connectors[i].connector_type = supported_devices_connector_convert[ci.sucConnectorInfo. sbfAccess. bfConnectorType]; if (bios_connectors[i].connector_type == DRM_MODE_CONNECTOR_Unknown) continue; dac = ci.sucConnectorInfo.sbfAccess.bfAssociatedDAC; bios_connectors[i].line_mux = ci.sucI2cId.ucAccess; /* give tv unique connector ids */ if (i == ATOM_DEVICE_TV1_INDEX) { bios_connectors[i].ddc_bus.valid = false; bios_connectors[i].line_mux = 50; } else if (i == ATOM_DEVICE_TV2_INDEX) { bios_connectors[i].ddc_bus.valid = false; bios_connectors[i].line_mux = 51; } else if (i == ATOM_DEVICE_CV_INDEX) { bios_connectors[i].ddc_bus.valid = false; bios_connectors[i].line_mux = 52; } else bios_connectors[i].ddc_bus = radeon_lookup_i2c_gpio(rdev, bios_connectors[i].line_mux); if ((crev > 1) && (frev > 1)) { u8 isb = supported_devices->info_2d1.asIntSrcInfo[i].ucIntSrcBitmap; switch (isb) { case 0x4: bios_connectors[i].hpd.hpd = RADEON_HPD_1; break; case 0xa: bios_connectors[i].hpd.hpd = RADEON_HPD_2; break; default: bios_connectors[i].hpd.hpd = RADEON_HPD_NONE; break; } } else { if (i == ATOM_DEVICE_DFP1_INDEX) bios_connectors[i].hpd.hpd = RADEON_HPD_1; else if (i == ATOM_DEVICE_DFP2_INDEX) bios_connectors[i].hpd.hpd = RADEON_HPD_2; else bios_connectors[i].hpd.hpd = RADEON_HPD_NONE; } /* Always set the connector type to VGA for CRT1/CRT2. if they are * shared with a DVI port, we'll pick up the DVI connector when we * merge the outputs. Some bioses incorrectly list VGA ports as DVI. */ if (i == ATOM_DEVICE_CRT1_INDEX || i == ATOM_DEVICE_CRT2_INDEX) bios_connectors[i].connector_type = DRM_MODE_CONNECTOR_VGA; if (!radeon_atom_apply_quirks (dev, (1 << i), &bios_connectors[i].connector_type, &bios_connectors[i].ddc_bus, &bios_connectors[i].line_mux, &bios_connectors[i].hpd)) continue; bios_connectors[i].valid = true; bios_connectors[i].devices = (1 << i); if (ASIC_IS_AVIVO(rdev) || radeon_r4xx_atom) radeon_add_atom_encoder(dev, radeon_get_encoder_enum(dev, (1 << i), dac), (1 << i), 0); else radeon_add_legacy_encoder(dev, radeon_get_encoder_enum(dev, (1 << i), dac), (1 << i)); } /* combine shared connectors */ for (i = 0; i < max_device; i++) { if (bios_connectors[i].valid) { for (j = 0; j < max_device; j++) { if (bios_connectors[j].valid && (i != j)) { if (bios_connectors[i].line_mux == bios_connectors[j].line_mux) { /* make sure not to combine LVDS */ if (bios_connectors[i].devices & (ATOM_DEVICE_LCD_SUPPORT)) { bios_connectors[i].line_mux = 53; bios_connectors[i].ddc_bus.valid = false; continue; } if (bios_connectors[j].devices & (ATOM_DEVICE_LCD_SUPPORT)) { bios_connectors[j].line_mux = 53; bios_connectors[j].ddc_bus.valid = false; continue; } /* combine analog and digital for DVI-I */ if (((bios_connectors[i].devices & (ATOM_DEVICE_DFP_SUPPORT)) && (bios_connectors[j].devices & (ATOM_DEVICE_CRT_SUPPORT))) || ((bios_connectors[j].devices & (ATOM_DEVICE_DFP_SUPPORT)) && (bios_connectors[i].devices & (ATOM_DEVICE_CRT_SUPPORT)))) { bios_connectors[i].devices |= bios_connectors[j].devices; bios_connectors[i].connector_type = DRM_MODE_CONNECTOR_DVII; if (bios_connectors[j].devices & (ATOM_DEVICE_DFP_SUPPORT)) bios_connectors[i].hpd = bios_connectors[j].hpd; bios_connectors[j].valid = false; } } } } } } /* add the connectors */ for (i = 0; i < max_device; i++) { if (bios_connectors[i].valid) { uint16_t connector_object_id = atombios_get_connector_object_id(dev, bios_connectors[i].connector_type, bios_connectors[i].devices); radeon_add_atom_connector(dev, bios_connectors[i].line_mux, bios_connectors[i].devices, bios_connectors[i]. connector_type, &bios_connectors[i].ddc_bus, 0, connector_object_id, &bios_connectors[i].hpd, &router); } } radeon_link_encoder_connector(dev); kfree(bios_connectors); return true; } union firmware_info { ATOM_FIRMWARE_INFO info; ATOM_FIRMWARE_INFO_V1_2 info_12; ATOM_FIRMWARE_INFO_V1_3 info_13; ATOM_FIRMWARE_INFO_V1_4 info_14; ATOM_FIRMWARE_INFO_V2_1 info_21; ATOM_FIRMWARE_INFO_V2_2 info_22; }; union igp_info { struct _ATOM_INTEGRATED_SYSTEM_INFO info; struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2; struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8; }; static void radeon_atombios_get_dentist_vco_freq(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); union igp_info *igp_info; u8 frev, crev; u16 data_offset; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { igp_info = (union igp_info *)(mode_info->atom_context->bios + data_offset); rdev->clock.vco_freq = le32_to_cpu(igp_info->info_6.ulDentistVCOFreq); } } bool radeon_atom_get_clock_info(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); union firmware_info *firmware_info; uint8_t frev, crev; struct radeon_pll *p1pll = &rdev->clock.p1pll; struct radeon_pll *p2pll = &rdev->clock.p2pll; struct radeon_pll *dcpll = &rdev->clock.dcpll; struct radeon_pll *spll = &rdev->clock.spll; struct radeon_pll *mpll = &rdev->clock.mpll; uint16_t data_offset; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { firmware_info = (union firmware_info *)(mode_info->atom_context->bios + data_offset); /* pixel clocks */ p1pll->reference_freq = le16_to_cpu(firmware_info->info.usReferenceClock); p1pll->reference_div = 0; if ((frev < 2) && (crev < 2)) p1pll->pll_out_min = le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Output); else p1pll->pll_out_min = le32_to_cpu(firmware_info->info_12.ulMinPixelClockPLL_Output); p1pll->pll_out_max = le32_to_cpu(firmware_info->info.ulMaxPixelClockPLL_Output); if (((frev < 2) && (crev >= 4)) || (frev >= 2)) { p1pll->lcd_pll_out_min = le16_to_cpu(firmware_info->info_14.usLcdMinPixelClockPLL_Output) * 100; if (p1pll->lcd_pll_out_min == 0) p1pll->lcd_pll_out_min = p1pll->pll_out_min; p1pll->lcd_pll_out_max = le16_to_cpu(firmware_info->info_14.usLcdMaxPixelClockPLL_Output) * 100; if (p1pll->lcd_pll_out_max == 0) p1pll->lcd_pll_out_max = p1pll->pll_out_max; } else { p1pll->lcd_pll_out_min = p1pll->pll_out_min; p1pll->lcd_pll_out_max = p1pll->pll_out_max; } if (p1pll->pll_out_min == 0) { if (ASIC_IS_AVIVO(rdev)) p1pll->pll_out_min = 64800; else p1pll->pll_out_min = 20000; } p1pll->pll_in_min = le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Input); p1pll->pll_in_max = le16_to_cpu(firmware_info->info.usMaxPixelClockPLL_Input); *p2pll = *p1pll; /* system clock */ if (ASIC_IS_DCE4(rdev)) spll->reference_freq = le16_to_cpu(firmware_info->info_21.usCoreReferenceClock); else spll->reference_freq = le16_to_cpu(firmware_info->info.usReferenceClock); spll->reference_div = 0; spll->pll_out_min = le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Output); spll->pll_out_max = le32_to_cpu(firmware_info->info.ulMaxEngineClockPLL_Output); /* ??? */ if (spll->pll_out_min == 0) { if (ASIC_IS_AVIVO(rdev)) spll->pll_out_min = 64800; else spll->pll_out_min = 20000; } spll->pll_in_min = le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Input); spll->pll_in_max = le16_to_cpu(firmware_info->info.usMaxEngineClockPLL_Input); /* memory clock */ if (ASIC_IS_DCE4(rdev)) mpll->reference_freq = le16_to_cpu(firmware_info->info_21.usMemoryReferenceClock); else mpll->reference_freq = le16_to_cpu(firmware_info->info.usReferenceClock); mpll->reference_div = 0; mpll->pll_out_min = le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Output); mpll->pll_out_max = le32_to_cpu(firmware_info->info.ulMaxMemoryClockPLL_Output); /* ??? */ if (mpll->pll_out_min == 0) { if (ASIC_IS_AVIVO(rdev)) mpll->pll_out_min = 64800; else mpll->pll_out_min = 20000; } mpll->pll_in_min = le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Input); mpll->pll_in_max = le16_to_cpu(firmware_info->info.usMaxMemoryClockPLL_Input); rdev->clock.default_sclk = le32_to_cpu(firmware_info->info.ulDefaultEngineClock); rdev->clock.default_mclk = le32_to_cpu(firmware_info->info.ulDefaultMemoryClock); if (ASIC_IS_DCE4(rdev)) { rdev->clock.default_dispclk = le32_to_cpu(firmware_info->info_21.ulDefaultDispEngineClkFreq); if (rdev->clock.default_dispclk == 0) { if (ASIC_IS_DCE6(rdev)) rdev->clock.default_dispclk = 60000; /* 600 Mhz */ else if (ASIC_IS_DCE5(rdev)) rdev->clock.default_dispclk = 54000; /* 540 Mhz */ else rdev->clock.default_dispclk = 60000; /* 600 Mhz */ } /* set a reasonable default for DP */ if (ASIC_IS_DCE6(rdev) && (rdev->clock.default_dispclk < 53900)) { DRM_INFO("Changing default dispclk from %dMhz to 600Mhz\n", rdev->clock.default_dispclk / 100); rdev->clock.default_dispclk = 60000; } rdev->clock.dp_extclk = le16_to_cpu(firmware_info->info_21.usUniphyDPModeExtClkFreq); rdev->clock.current_dispclk = rdev->clock.default_dispclk; } *dcpll = *p1pll; rdev->clock.max_pixel_clock = le16_to_cpu(firmware_info->info.usMaxPixelClock); if (rdev->clock.max_pixel_clock == 0) rdev->clock.max_pixel_clock = 40000; /* not technically a clock, but... */ rdev->mode_info.firmware_flags = le16_to_cpu(firmware_info->info.usFirmwareCapability.susAccess); if (ASIC_IS_DCE8(rdev)) rdev->clock.vco_freq = le32_to_cpu(firmware_info->info_22.ulGPUPLL_OutputFreq); else if (ASIC_IS_DCE5(rdev)) rdev->clock.vco_freq = rdev->clock.current_dispclk; else if (ASIC_IS_DCE41(rdev)) radeon_atombios_get_dentist_vco_freq(rdev); else rdev->clock.vco_freq = rdev->clock.current_dispclk; if (rdev->clock.vco_freq == 0) rdev->clock.vco_freq = 360000; /* 3.6 GHz */ return true; } return false; } bool radeon_atombios_sideport_present(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); union igp_info *igp_info; u8 frev, crev; u16 data_offset; /* sideport is AMD only */ if (rdev->family == CHIP_RS600) return false; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { igp_info = (union igp_info *)(mode_info->atom_context->bios + data_offset); switch (crev) { case 1: if (le32_to_cpu(igp_info->info.ulBootUpMemoryClock)) return true; break; case 2: if (le32_to_cpu(igp_info->info_2.ulBootUpSidePortClock)) return true; break; default: DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev); break; } } return false; } bool radeon_atombios_get_tmds_info(struct radeon_encoder *encoder, struct radeon_encoder_int_tmds *tmds) { struct drm_device *dev = encoder->base.dev; struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, TMDS_Info); uint16_t data_offset; struct _ATOM_TMDS_INFO *tmds_info; uint8_t frev, crev; uint16_t maxfreq; int i; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { tmds_info = (struct _ATOM_TMDS_INFO *)(mode_info->atom_context->bios + data_offset); maxfreq = le16_to_cpu(tmds_info->usMaxFrequency); for (i = 0; i < 4; i++) { tmds->tmds_pll[i].freq = le16_to_cpu(tmds_info->asMiscInfo[i].usFrequency); tmds->tmds_pll[i].value = tmds_info->asMiscInfo[i].ucPLL_ChargePump & 0x3f; tmds->tmds_pll[i].value |= (tmds_info->asMiscInfo[i]. ucPLL_VCO_Gain & 0x3f) << 6; tmds->tmds_pll[i].value |= (tmds_info->asMiscInfo[i]. ucPLL_DutyCycle & 0xf) << 12; tmds->tmds_pll[i].value |= (tmds_info->asMiscInfo[i]. ucPLL_VoltageSwing & 0xf) << 16; DRM_DEBUG_KMS("TMDS PLL From ATOMBIOS %u %x\n", tmds->tmds_pll[i].freq, tmds->tmds_pll[i].value); if (maxfreq == tmds->tmds_pll[i].freq) { tmds->tmds_pll[i].freq = 0xffffffff; break; } } return true; } return false; } bool radeon_atombios_get_ppll_ss_info(struct radeon_device *rdev, struct radeon_atom_ss *ss, int id) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, PPLL_SS_Info); uint16_t data_offset, size; struct _ATOM_SPREAD_SPECTRUM_INFO *ss_info; struct _ATOM_SPREAD_SPECTRUM_ASSIGNMENT *ss_assign; uint8_t frev, crev; int i, num_indices; memset(ss, 0, sizeof(struct radeon_atom_ss)); if (atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { ss_info = (struct _ATOM_SPREAD_SPECTRUM_INFO *)(mode_info->atom_context->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_SPREAD_SPECTRUM_ASSIGNMENT); ss_assign = (struct _ATOM_SPREAD_SPECTRUM_ASSIGNMENT*) ((u8 *)&ss_info->asSS_Info[0]); for (i = 0; i < num_indices; i++) { if (ss_assign->ucSS_Id == id) { ss->percentage = le16_to_cpu(ss_assign->usSpreadSpectrumPercentage); ss->type = ss_assign->ucSpreadSpectrumType; ss->step = ss_assign->ucSS_Step; ss->delay = ss_assign->ucSS_Delay; ss->range = ss_assign->ucSS_Range; ss->refdiv = ss_assign->ucRecommendedRef_Div; return true; } ss_assign = (struct _ATOM_SPREAD_SPECTRUM_ASSIGNMENT*) ((u8 *)ss_assign + sizeof(struct _ATOM_SPREAD_SPECTRUM_ASSIGNMENT)); } } return false; } static void radeon_atombios_get_igp_ss_overrides(struct radeon_device *rdev, struct radeon_atom_ss *ss, int id) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); u16 data_offset, size; union igp_info *igp_info; u8 frev, crev; u16 percentage = 0, rate = 0; /* get any igp specific overrides */ if (atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { igp_info = (union igp_info *) (mode_info->atom_context->bios + data_offset); switch (crev) { case 6: switch (id) { case ASIC_INTERNAL_SS_ON_TMDS: percentage = le16_to_cpu(igp_info->info_6.usDVISSPercentage); rate = le16_to_cpu(igp_info->info_6.usDVISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_HDMI: percentage = le16_to_cpu(igp_info->info_6.usHDMISSPercentage); rate = le16_to_cpu(igp_info->info_6.usHDMISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_LVDS: percentage = le16_to_cpu(igp_info->info_6.usLvdsSSPercentage); rate = le16_to_cpu(igp_info->info_6.usLvdsSSpreadRateIn10Hz); break; } break; case 7: switch (id) { case ASIC_INTERNAL_SS_ON_TMDS: percentage = le16_to_cpu(igp_info->info_7.usDVISSPercentage); rate = le16_to_cpu(igp_info->info_7.usDVISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_HDMI: percentage = le16_to_cpu(igp_info->info_7.usHDMISSPercentage); rate = le16_to_cpu(igp_info->info_7.usHDMISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_LVDS: percentage = le16_to_cpu(igp_info->info_7.usLvdsSSPercentage); rate = le16_to_cpu(igp_info->info_7.usLvdsSSpreadRateIn10Hz); break; } break; case 8: switch (id) { case ASIC_INTERNAL_SS_ON_TMDS: percentage = le16_to_cpu(igp_info->info_8.usDVISSPercentage); rate = le16_to_cpu(igp_info->info_8.usDVISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_HDMI: percentage = le16_to_cpu(igp_info->info_8.usHDMISSPercentage); rate = le16_to_cpu(igp_info->info_8.usHDMISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_LVDS: percentage = le16_to_cpu(igp_info->info_8.usLvdsSSPercentage); rate = le16_to_cpu(igp_info->info_8.usLvdsSSpreadRateIn10Hz); break; } break; default: DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev); break; } if (percentage) ss->percentage = percentage; if (rate) ss->rate = rate; } } union asic_ss_info { struct _ATOM_ASIC_INTERNAL_SS_INFO info; struct _ATOM_ASIC_INTERNAL_SS_INFO_V2 info_2; struct _ATOM_ASIC_INTERNAL_SS_INFO_V3 info_3; }; union asic_ss_assignment { struct _ATOM_ASIC_SS_ASSIGNMENT v1; struct _ATOM_ASIC_SS_ASSIGNMENT_V2 v2; struct _ATOM_ASIC_SS_ASSIGNMENT_V3 v3; }; bool radeon_atombios_get_asic_ss_info(struct radeon_device *rdev, struct radeon_atom_ss *ss, int id, u32 clock) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info); uint16_t data_offset, size; union asic_ss_info *ss_info; union asic_ss_assignment *ss_assign; uint8_t frev, crev; int i, num_indices; if (id == ASIC_INTERNAL_MEMORY_SS) { if (!(rdev->mode_info.firmware_flags & ATOM_BIOS_INFO_MEMORY_CLOCK_SS_SUPPORT)) return false; } if (id == ASIC_INTERNAL_ENGINE_SS) { if (!(rdev->mode_info.firmware_flags & ATOM_BIOS_INFO_ENGINE_CLOCK_SS_SUPPORT)) return false; } memset(ss, 0, sizeof(struct radeon_atom_ss)); if (atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { ss_info = (union asic_ss_info *)(mode_info->atom_context->bios + data_offset); switch (frev) { case 1: num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT); ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info.asSpreadSpectrum[0]); for (i = 0; i < num_indices; i++) { if ((ss_assign->v1.ucClockIndication == id) && (clock <= le32_to_cpu(ss_assign->v1.ulTargetClockRange))) { ss->percentage = le16_to_cpu(ss_assign->v1.usSpreadSpectrumPercentage); ss->type = ss_assign->v1.ucSpreadSpectrumMode; ss->rate = le16_to_cpu(ss_assign->v1.usSpreadRateInKhz); ss->percentage_divider = 100; return true; } ss_assign = (union asic_ss_assignment *) ((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT)); } break; case 2: num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2); ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info_2.asSpreadSpectrum[0]); for (i = 0; i < num_indices; i++) { if ((ss_assign->v2.ucClockIndication == id) && (clock <= le32_to_cpu(ss_assign->v2.ulTargetClockRange))) { ss->percentage = le16_to_cpu(ss_assign->v2.usSpreadSpectrumPercentage); ss->type = ss_assign->v2.ucSpreadSpectrumMode; ss->rate = le16_to_cpu(ss_assign->v2.usSpreadRateIn10Hz); ss->percentage_divider = 100; if ((crev == 2) && ((id == ASIC_INTERNAL_ENGINE_SS) || (id == ASIC_INTERNAL_MEMORY_SS))) ss->rate /= 100; return true; } ss_assign = (union asic_ss_assignment *) ((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2)); } break; case 3: num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3); ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info_3.asSpreadSpectrum[0]); for (i = 0; i < num_indices; i++) { if ((ss_assign->v3.ucClockIndication == id) && (clock <= le32_to_cpu(ss_assign->v3.ulTargetClockRange))) { ss->percentage = le16_to_cpu(ss_assign->v3.usSpreadSpectrumPercentage); ss->type = ss_assign->v3.ucSpreadSpectrumMode; ss->rate = le16_to_cpu(ss_assign->v3.usSpreadRateIn10Hz); if (ss_assign->v3.ucSpreadSpectrumMode & SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK) ss->percentage_divider = 1000; else ss->percentage_divider = 100; if ((id == ASIC_INTERNAL_ENGINE_SS) || (id == ASIC_INTERNAL_MEMORY_SS)) ss->rate /= 100; if (rdev->flags & RADEON_IS_IGP) radeon_atombios_get_igp_ss_overrides(rdev, ss, id); return true; } ss_assign = (union asic_ss_assignment *) ((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3)); } break; default: DRM_ERROR("Unsupported ASIC_InternalSS_Info table: %d %d\n", frev, crev); break; } } return false; } union lvds_info { struct _ATOM_LVDS_INFO info; struct _ATOM_LVDS_INFO_V12 info_12; }; struct radeon_encoder_atom_dig *radeon_atombios_get_lvds_info(struct radeon_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, LVDS_Info); uint16_t data_offset, misc; union lvds_info *lvds_info; uint8_t frev, crev; struct radeon_encoder_atom_dig *lvds = NULL; int encoder_enum = (encoder->encoder_enum & ENUM_ID_MASK) >> ENUM_ID_SHIFT; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { lvds_info = (union lvds_info *)(mode_info->atom_context->bios + data_offset); lvds = kzalloc(sizeof(struct radeon_encoder_atom_dig), GFP_KERNEL); if (!lvds) return NULL; lvds->native_mode.clock = le16_to_cpu(lvds_info->info.sLCDTiming.usPixClk) * 10; lvds->native_mode.hdisplay = le16_to_cpu(lvds_info->info.sLCDTiming.usHActive); lvds->native_mode.vdisplay = le16_to_cpu(lvds_info->info.sLCDTiming.usVActive); lvds->native_mode.htotal = lvds->native_mode.hdisplay + le16_to_cpu(lvds_info->info.sLCDTiming.usHBlanking_Time); lvds->native_mode.hsync_start = lvds->native_mode.hdisplay + le16_to_cpu(lvds_info->info.sLCDTiming.usHSyncOffset); lvds->native_mode.hsync_end = lvds->native_mode.hsync_start + le16_to_cpu(lvds_info->info.sLCDTiming.usHSyncWidth); lvds->native_mode.vtotal = lvds->native_mode.vdisplay + le16_to_cpu(lvds_info->info.sLCDTiming.usVBlanking_Time); lvds->native_mode.vsync_start = lvds->native_mode.vdisplay + le16_to_cpu(lvds_info->info.sLCDTiming.usVSyncOffset); lvds->native_mode.vsync_end = lvds->native_mode.vsync_start + le16_to_cpu(lvds_info->info.sLCDTiming.usVSyncWidth); lvds->panel_pwr_delay = le16_to_cpu(lvds_info->info.usOffDelayInMs); lvds->lcd_misc = lvds_info->info.ucLVDS_Misc; misc = le16_to_cpu(lvds_info->info.sLCDTiming.susModeMiscInfo.usAccess); if (misc & ATOM_VSYNC_POLARITY) lvds->native_mode.flags |= DRM_MODE_FLAG_NVSYNC; if (misc & ATOM_HSYNC_POLARITY) lvds->native_mode.flags |= DRM_MODE_FLAG_NHSYNC; if (misc & ATOM_COMPOSITESYNC) lvds->native_mode.flags |= DRM_MODE_FLAG_CSYNC; if (misc & ATOM_INTERLACE) lvds->native_mode.flags |= DRM_MODE_FLAG_INTERLACE; if (misc & ATOM_DOUBLE_CLOCK_MODE) lvds->native_mode.flags |= DRM_MODE_FLAG_DBLSCAN; lvds->native_mode.width_mm = le16_to_cpu(lvds_info->info.sLCDTiming.usImageHSize); lvds->native_mode.height_mm = le16_to_cpu(lvds_info->info.sLCDTiming.usImageVSize); /* set crtc values */ drm_mode_set_crtcinfo(&lvds->native_mode, CRTC_INTERLACE_HALVE_V); lvds->lcd_ss_id = lvds_info->info.ucSS_Id; encoder->native_mode = lvds->native_mode; if (encoder_enum == 2) lvds->linkb = true; else lvds->linkb = false; /* parse the lcd record table */ if (le16_to_cpu(lvds_info->info.usModePatchTableOffset)) { ATOM_FAKE_EDID_PATCH_RECORD *fake_edid_record; ATOM_PANEL_RESOLUTION_PATCH_RECORD *panel_res_record; bool bad_record = false; u8 *record; if ((frev == 1) && (crev < 2)) /* absolute */ record = (u8 *)(mode_info->atom_context->bios + le16_to_cpu(lvds_info->info.usModePatchTableOffset)); else /* relative */ record = (u8 *)(mode_info->atom_context->bios + data_offset + le16_to_cpu(lvds_info->info.usModePatchTableOffset)); while (*record != ATOM_RECORD_END_TYPE) { switch (*record) { case LCD_MODE_PATCH_RECORD_MODE_TYPE: record += sizeof(ATOM_PATCH_RECORD_MODE); break; case LCD_RTS_RECORD_TYPE: record += sizeof(ATOM_LCD_RTS_RECORD); break; case LCD_CAP_RECORD_TYPE: record += sizeof(ATOM_LCD_MODE_CONTROL_CAP); break; case LCD_FAKE_EDID_PATCH_RECORD_TYPE: fake_edid_record = (ATOM_FAKE_EDID_PATCH_RECORD *)record; if (fake_edid_record->ucFakeEDIDLength) { struct edid *edid; int edid_size = max((int)EDID_LENGTH, (int)fake_edid_record->ucFakeEDIDLength); edid = kmalloc(edid_size, GFP_KERNEL); if (edid) { memcpy((u8 *)edid, (u8 *)&fake_edid_record->ucFakeEDIDString[0], fake_edid_record->ucFakeEDIDLength); if (drm_edid_is_valid(edid)) { rdev->mode_info.bios_hardcoded_edid = edid; rdev->mode_info.bios_hardcoded_edid_size = edid_size; } else kfree(edid); } } record += fake_edid_record->ucFakeEDIDLength ? fake_edid_record->ucFakeEDIDLength + 2 : sizeof(ATOM_FAKE_EDID_PATCH_RECORD); break; case LCD_PANEL_RESOLUTION_RECORD_TYPE: panel_res_record = (ATOM_PANEL_RESOLUTION_PATCH_RECORD *)record; lvds->native_mode.width_mm = panel_res_record->usHSize; lvds->native_mode.height_mm = panel_res_record->usVSize; record += sizeof(ATOM_PANEL_RESOLUTION_PATCH_RECORD); break; default: DRM_ERROR("Bad LCD record %d\n", *record); bad_record = true; break; } if (bad_record) break; } } } return lvds; } struct radeon_encoder_primary_dac * radeon_atombios_get_primary_dac_info(struct radeon_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, CompassionateData); uint16_t data_offset; struct _COMPASSIONATE_DATA *dac_info; uint8_t frev, crev; uint8_t bg, dac; struct radeon_encoder_primary_dac *p_dac = NULL; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { dac_info = (struct _COMPASSIONATE_DATA *) (mode_info->atom_context->bios + data_offset); p_dac = kzalloc(sizeof(struct radeon_encoder_primary_dac), GFP_KERNEL); if (!p_dac) return NULL; bg = dac_info->ucDAC1_BG_Adjustment; dac = dac_info->ucDAC1_DAC_Adjustment; p_dac->ps2_pdac_adj = (bg << 8) | (dac); } return p_dac; } bool radeon_atom_get_tv_timings(struct radeon_device *rdev, int index, struct drm_display_mode *mode) { struct radeon_mode_info *mode_info = &rdev->mode_info; ATOM_ANALOG_TV_INFO *tv_info; ATOM_ANALOG_TV_INFO_V1_2 *tv_info_v1_2; ATOM_DTD_FORMAT *dtd_timings; int data_index = GetIndexIntoMasterTable(DATA, AnalogTV_Info); u8 frev, crev; u16 data_offset, misc; if (!atom_parse_data_header(mode_info->atom_context, data_index, NULL, &frev, &crev, &data_offset)) return false; switch (crev) { case 1: tv_info = (ATOM_ANALOG_TV_INFO *)(mode_info->atom_context->bios + data_offset); if (index >= MAX_SUPPORTED_TV_TIMING) return false; mode->crtc_htotal = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_Total); mode->crtc_hdisplay = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_Disp); mode->crtc_hsync_start = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncStart); mode->crtc_hsync_end = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncStart) + le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncWidth); mode->crtc_vtotal = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_Total); mode->crtc_vdisplay = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_Disp); mode->crtc_vsync_start = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncStart); mode->crtc_vsync_end = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncStart) + le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncWidth); mode->flags = 0; misc = le16_to_cpu(tv_info->aModeTimings[index].susModeMiscInfo.usAccess); if (misc & ATOM_VSYNC_POLARITY) mode->flags |= DRM_MODE_FLAG_NVSYNC; if (misc & ATOM_HSYNC_POLARITY) mode->flags |= DRM_MODE_FLAG_NHSYNC; if (misc & ATOM_COMPOSITESYNC) mode->flags |= DRM_MODE_FLAG_CSYNC; if (misc & ATOM_INTERLACE) mode->flags |= DRM_MODE_FLAG_INTERLACE; if (misc & ATOM_DOUBLE_CLOCK_MODE) mode->flags |= DRM_MODE_FLAG_DBLSCAN; mode->crtc_clock = mode->clock = le16_to_cpu(tv_info->aModeTimings[index].usPixelClock) * 10; if (index == 1) { /* PAL timings appear to have wrong values for totals */ mode->crtc_htotal -= 1; mode->crtc_vtotal -= 1; } break; case 2: tv_info_v1_2 = (ATOM_ANALOG_TV_INFO_V1_2 *)(mode_info->atom_context->bios + data_offset); if (index >= MAX_SUPPORTED_TV_TIMING_V1_2) return false; dtd_timings = &tv_info_v1_2->aModeTimings[index]; mode->crtc_htotal = le16_to_cpu(dtd_timings->usHActive) + le16_to_cpu(dtd_timings->usHBlanking_Time); mode->crtc_hdisplay = le16_to_cpu(dtd_timings->usHActive); mode->crtc_hsync_start = le16_to_cpu(dtd_timings->usHActive) + le16_to_cpu(dtd_timings->usHSyncOffset); mode->crtc_hsync_end = mode->crtc_hsync_start + le16_to_cpu(dtd_timings->usHSyncWidth); mode->crtc_vtotal = le16_to_cpu(dtd_timings->usVActive) + le16_to_cpu(dtd_timings->usVBlanking_Time); mode->crtc_vdisplay = le16_to_cpu(dtd_timings->usVActive); mode->crtc_vsync_start = le16_to_cpu(dtd_timings->usVActive) + le16_to_cpu(dtd_timings->usVSyncOffset); mode->crtc_vsync_end = mode->crtc_vsync_start + le16_to_cpu(dtd_timings->usVSyncWidth); mode->flags = 0; misc = le16_to_cpu(dtd_timings->susModeMiscInfo.usAccess); if (misc & ATOM_VSYNC_POLARITY) mode->flags |= DRM_MODE_FLAG_NVSYNC; if (misc & ATOM_HSYNC_POLARITY) mode->flags |= DRM_MODE_FLAG_NHSYNC; if (misc & ATOM_COMPOSITESYNC) mode->flags |= DRM_MODE_FLAG_CSYNC; if (misc & ATOM_INTERLACE) mode->flags |= DRM_MODE_FLAG_INTERLACE; if (misc & ATOM_DOUBLE_CLOCK_MODE) mode->flags |= DRM_MODE_FLAG_DBLSCAN; mode->crtc_clock = mode->clock = le16_to_cpu(dtd_timings->usPixClk) * 10; break; } return true; } enum radeon_tv_std radeon_atombios_get_tv_info(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, AnalogTV_Info); uint16_t data_offset; uint8_t frev, crev; struct _ATOM_ANALOG_TV_INFO *tv_info; enum radeon_tv_std tv_std = TV_STD_NTSC; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { tv_info = (struct _ATOM_ANALOG_TV_INFO *) (mode_info->atom_context->bios + data_offset); switch (tv_info->ucTV_BootUpDefaultStandard) { case ATOM_TV_NTSC: tv_std = TV_STD_NTSC; DRM_DEBUG_KMS("Default TV standard: NTSC\n"); break; case ATOM_TV_NTSCJ: tv_std = TV_STD_NTSC_J; DRM_DEBUG_KMS("Default TV standard: NTSC-J\n"); break; case ATOM_TV_PAL: tv_std = TV_STD_PAL; DRM_DEBUG_KMS("Default TV standard: PAL\n"); break; case ATOM_TV_PALM: tv_std = TV_STD_PAL_M; DRM_DEBUG_KMS("Default TV standard: PAL-M\n"); break; case ATOM_TV_PALN: tv_std = TV_STD_PAL_N; DRM_DEBUG_KMS("Default TV standard: PAL-N\n"); break; case ATOM_TV_PALCN: tv_std = TV_STD_PAL_CN; DRM_DEBUG_KMS("Default TV standard: PAL-CN\n"); break; case ATOM_TV_PAL60: tv_std = TV_STD_PAL_60; DRM_DEBUG_KMS("Default TV standard: PAL-60\n"); break; case ATOM_TV_SECAM: tv_std = TV_STD_SECAM; DRM_DEBUG_KMS("Default TV standard: SECAM\n"); break; default: tv_std = TV_STD_NTSC; DRM_DEBUG_KMS("Unknown TV standard; defaulting to NTSC\n"); break; } } return tv_std; } struct radeon_encoder_tv_dac * radeon_atombios_get_tv_dac_info(struct radeon_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, CompassionateData); uint16_t data_offset; struct _COMPASSIONATE_DATA *dac_info; uint8_t frev, crev; uint8_t bg, dac; struct radeon_encoder_tv_dac *tv_dac = NULL; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { dac_info = (struct _COMPASSIONATE_DATA *) (mode_info->atom_context->bios + data_offset); tv_dac = kzalloc(sizeof(struct radeon_encoder_tv_dac), GFP_KERNEL); if (!tv_dac) return NULL; bg = dac_info->ucDAC2_CRT2_BG_Adjustment; dac = dac_info->ucDAC2_CRT2_DAC_Adjustment; tv_dac->ps2_tvdac_adj = (bg << 16) | (dac << 20); bg = dac_info->ucDAC2_PAL_BG_Adjustment; dac = dac_info->ucDAC2_PAL_DAC_Adjustment; tv_dac->pal_tvdac_adj = (bg << 16) | (dac << 20); bg = dac_info->ucDAC2_NTSC_BG_Adjustment; dac = dac_info->ucDAC2_NTSC_DAC_Adjustment; tv_dac->ntsc_tvdac_adj = (bg << 16) | (dac << 20); tv_dac->tv_std = radeon_atombios_get_tv_info(rdev); } return tv_dac; } static const char *thermal_controller_names[] = { "NONE", "lm63", "adm1032", "adm1030", "max6649", "lm63", /* lm64 */ "f75375", "asc7xxx", }; static const char *pp_lib_thermal_controller_names[] = { "NONE", "lm63", "adm1032", "adm1030", "max6649", "lm63", /* lm64 */ "f75375", "RV6xx", "RV770", "adt7473", "NONE", "External GPIO", "Evergreen", "emc2103", "Sumo", "Northern Islands", "Southern Islands", "lm96163", "Sea Islands", }; union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; struct _ATOM_PPLIB_SI_CLOCK_INFO si; struct _ATOM_PPLIB_CI_CLOCK_INFO ci; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void radeon_atombios_parse_misc_flags_1_3(struct radeon_device *rdev, int state_index, u32 misc, u32 misc2) { rdev->pm.power_state[state_index].misc = misc; rdev->pm.power_state[state_index].misc2 = misc2; /* order matters! */ if (misc & ATOM_PM_MISCINFO_POWER_SAVING_MODE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_POWERSAVE; if (misc & ATOM_PM_MISCINFO_DEFAULT_DC_STATE_ENTRY_TRUE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BATTERY; if (misc & ATOM_PM_MISCINFO_DEFAULT_LOW_DC_STATE_ENTRY_TRUE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BATTERY; if (misc & ATOM_PM_MISCINFO_LOAD_BALANCE_EN) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BALANCED; if (misc & ATOM_PM_MISCINFO_3D_ACCELERATION_EN) { rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_PERFORMANCE; rdev->pm.power_state[state_index].flags &= ~RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; } if (misc2 & ATOM_PM_MISCINFO2_SYSTEM_AC_LITE_MODE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BALANCED; if (misc & ATOM_PM_MISCINFO_DRIVER_DEFAULT_MODE) { rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = state_index; rdev->pm.power_state[state_index].default_clock_mode = &rdev->pm.power_state[state_index].clock_info[0]; } else if (state_index == 0) { rdev->pm.power_state[state_index].clock_info[0].flags |= RADEON_PM_MODE_NO_DISPLAY; } } static int radeon_atombios_parse_power_table_1_3(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; u32 misc, misc2 = 0; int num_modes = 0, i; int state_index = 0; struct radeon_i2c_bus_rec i2c_bus; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return state_index; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); /* add the i2c bus for thermal/fan chip */ if ((power_info->info.ucOverdriveThermalController > 0) && (power_info->info.ucOverdriveThermalController < ARRAY_SIZE(thermal_controller_names))) { DRM_INFO("Possible %s thermal controller at 0x%02x\n", thermal_controller_names[power_info->info.ucOverdriveThermalController], power_info->info.ucOverdriveControllerAddress >> 1); i2c_bus = radeon_lookup_i2c_gpio(rdev, power_info->info.ucOverdriveI2cLine); rdev->pm.i2c_bus = radeon_i2c_lookup(rdev, &i2c_bus); if (rdev->pm.i2c_bus) { struct i2c_board_info info = { }; const char *name = thermal_controller_names[power_info->info. ucOverdriveThermalController]; info.addr = power_info->info.ucOverdriveControllerAddress >> 1; strlcpy(info.type, name, sizeof(info.type)); i2c_new_device(&rdev->pm.i2c_bus->adapter, &info); } } num_modes = power_info->info.ucNumOfPowerModeEntries; if (num_modes > ATOM_MAX_NUMBEROF_POWER_BLOCK) num_modes = ATOM_MAX_NUMBEROF_POWER_BLOCK; if (num_modes == 0) return state_index; rdev->pm.power_state = kcalloc(num_modes, sizeof(struct radeon_power_state), GFP_KERNEL); if (!rdev->pm.power_state) return state_index; /* last mode is usually default, array is low to high */ for (i = 0; i < num_modes; i++) { rdev->pm.power_state[state_index].clock_info = kcalloc(1, sizeof(struct radeon_pm_clock_info), GFP_KERNEL); if (!rdev->pm.power_state[state_index].clock_info) return state_index; rdev->pm.power_state[state_index].num_clock_modes = 1; rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_NONE; switch (frev) { case 1: rdev->pm.power_state[state_index].clock_info[0].mclk = le16_to_cpu(power_info->info.asPowerPlayInfo[i].usMemoryClock); rdev->pm.power_state[state_index].clock_info[0].sclk = le16_to_cpu(power_info->info.asPowerPlayInfo[i].usEngineClock); /* skip invalid modes */ if ((rdev->pm.power_state[state_index].clock_info[0].mclk == 0) || (rdev->pm.power_state[state_index].clock_info[0].sclk == 0)) continue; rdev->pm.power_state[state_index].pcie_lanes = power_info->info.asPowerPlayInfo[i].ucNumPciELanes; misc = le32_to_cpu(power_info->info.asPowerPlayInfo[i].ulMiscInfo); if ((misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) || (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_GPIO; rdev->pm.power_state[state_index].clock_info[0].voltage.gpio = radeon_atombios_lookup_gpio(rdev, power_info->info.asPowerPlayInfo[i].ucVoltageDropIndex); if (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH) rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = true; else rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = false; } else if (misc & ATOM_PM_MISCINFO_PROGRAM_VOLTAGE) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_VDDC; rdev->pm.power_state[state_index].clock_info[0].voltage.vddc_id = power_info->info.asPowerPlayInfo[i].ucVoltageDropIndex; } rdev->pm.power_state[state_index].flags = RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; radeon_atombios_parse_misc_flags_1_3(rdev, state_index, misc, 0); state_index++; break; case 2: rdev->pm.power_state[state_index].clock_info[0].mclk = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulMemoryClock); rdev->pm.power_state[state_index].clock_info[0].sclk = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulEngineClock); /* skip invalid modes */ if ((rdev->pm.power_state[state_index].clock_info[0].mclk == 0) || (rdev->pm.power_state[state_index].clock_info[0].sclk == 0)) continue; rdev->pm.power_state[state_index].pcie_lanes = power_info->info_2.asPowerPlayInfo[i].ucNumPciELanes; misc = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulMiscInfo); misc2 = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulMiscInfo2); if ((misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) || (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_GPIO; rdev->pm.power_state[state_index].clock_info[0].voltage.gpio = radeon_atombios_lookup_gpio(rdev, power_info->info_2.asPowerPlayInfo[i].ucVoltageDropIndex); if (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH) rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = true; else rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = false; } else if (misc & ATOM_PM_MISCINFO_PROGRAM_VOLTAGE) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_VDDC; rdev->pm.power_state[state_index].clock_info[0].voltage.vddc_id = power_info->info_2.asPowerPlayInfo[i].ucVoltageDropIndex; } rdev->pm.power_state[state_index].flags = RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; radeon_atombios_parse_misc_flags_1_3(rdev, state_index, misc, misc2); state_index++; break; case 3: rdev->pm.power_state[state_index].clock_info[0].mclk = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulMemoryClock); rdev->pm.power_state[state_index].clock_info[0].sclk = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulEngineClock); /* skip invalid modes */ if ((rdev->pm.power_state[state_index].clock_info[0].mclk == 0) || (rdev->pm.power_state[state_index].clock_info[0].sclk == 0)) continue; rdev->pm.power_state[state_index].pcie_lanes = power_info->info_3.asPowerPlayInfo[i].ucNumPciELanes; misc = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulMiscInfo); misc2 = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulMiscInfo2); if ((misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) || (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_GPIO; rdev->pm.power_state[state_index].clock_info[0].voltage.gpio = radeon_atombios_lookup_gpio(rdev, power_info->info_3.asPowerPlayInfo[i].ucVoltageDropIndex); if (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH) rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = true; else rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = false; } else if (misc & ATOM_PM_MISCINFO_PROGRAM_VOLTAGE) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_VDDC; rdev->pm.power_state[state_index].clock_info[0].voltage.vddc_id = power_info->info_3.asPowerPlayInfo[i].ucVoltageDropIndex; if (misc2 & ATOM_PM_MISCINFO2_VDDCI_DYNAMIC_VOLTAGE_EN) { rdev->pm.power_state[state_index].clock_info[0].voltage.vddci_enabled = true; rdev->pm.power_state[state_index].clock_info[0].voltage.vddci_id = power_info->info_3.asPowerPlayInfo[i].ucVDDCI_VoltageDropIndex; } } rdev->pm.power_state[state_index].flags = RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; radeon_atombios_parse_misc_flags_1_3(rdev, state_index, misc, misc2); state_index++; break; } } /* last mode is usually default */ if (rdev->pm.default_power_state_index == -1) { rdev->pm.power_state[state_index - 1].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = state_index - 1; rdev->pm.power_state[state_index - 1].default_clock_mode = &rdev->pm.power_state[state_index - 1].clock_info[0]; rdev->pm.power_state[state_index].flags &= ~RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; rdev->pm.power_state[state_index].misc = 0; rdev->pm.power_state[state_index].misc2 = 0; } return state_index; } static void radeon_atombios_add_pplib_thermal_controller(struct radeon_device *rdev, ATOM_PPLIB_THERMALCONTROLLER *controller) { struct radeon_i2c_bus_rec i2c_bus; /* add the i2c bus for thermal/fan chip */ if (controller->ucType > 0) { if (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) rdev->pm.no_fan = true; rdev->pm.fan_pulses_per_revolution = controller->ucFanParameters & ATOM_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; if (rdev->pm.fan_pulses_per_revolution) { rdev->pm.fan_min_rpm = controller->ucFanMinRPM; rdev->pm.fan_max_rpm = controller->ucFanMaxRPM; } if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV6xx) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_RV6XX; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV770) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_RV770; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EVERGREEN) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_EVERGREEN; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SUMO) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_SUMO; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_NISLANDS) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_NI; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SISLANDS) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_SI; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_CISLANDS) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_CI; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_KAVERI) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_KV; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EXTERNAL_GPIO) { DRM_INFO("External GPIO thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL_GPIO; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL) { DRM_INFO("ADT7473 with internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_ADT7473_WITH_INTERNAL; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL) { DRM_INFO("EMC2103 with internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_EMC2103_WITH_INTERNAL; } else if (controller->ucType < ARRAY_SIZE(pp_lib_thermal_controller_names)) { DRM_INFO("Possible %s thermal controller at 0x%02x %s fan control\n", pp_lib_thermal_controller_names[controller->ucType], controller->ucI2cAddress >> 1, (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL; i2c_bus = radeon_lookup_i2c_gpio(rdev, controller->ucI2cLine); rdev->pm.i2c_bus = radeon_i2c_lookup(rdev, &i2c_bus); if (rdev->pm.i2c_bus) { struct i2c_board_info info = { }; const char *name = pp_lib_thermal_controller_names[controller->ucType]; info.addr = controller->ucI2cAddress >> 1; strlcpy(info.type, name, sizeof(info.type)); i2c_new_device(&rdev->pm.i2c_bus->adapter, &info); } } else { DRM_INFO("Unknown thermal controller type %d at 0x%02x %s fan control\n", controller->ucType, controller->ucI2cAddress >> 1, (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); } } } void radeon_atombios_get_default_voltages(struct radeon_device *rdev, u16 *vddc, u16 *vddci, u16 *mvdd) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); u8 frev, crev; u16 data_offset; union firmware_info *firmware_info; *vddc = 0; *vddci = 0; *mvdd = 0; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { firmware_info = (union firmware_info *)(mode_info->atom_context->bios + data_offset); *vddc = le16_to_cpu(firmware_info->info_14.usBootUpVDDCVoltage); if ((frev == 2) && (crev >= 2)) { *vddci = le16_to_cpu(firmware_info->info_22.usBootUpVDDCIVoltage); *mvdd = le16_to_cpu(firmware_info->info_22.usBootUpMVDDCVoltage); } } } static void radeon_atombios_parse_pplib_non_clock_info(struct radeon_device *rdev, int state_index, int mode_index, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info) { int j; u32 misc = le32_to_cpu(non_clock_info->ulCapsAndSettings); u32 misc2 = le16_to_cpu(non_clock_info->usClassification); u16 vddc, vddci, mvdd; radeon_atombios_get_default_voltages(rdev, &vddc, &vddci, &mvdd); rdev->pm.power_state[state_index].misc = misc; rdev->pm.power_state[state_index].misc2 = misc2; rdev->pm.power_state[state_index].pcie_lanes = ((misc & ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >> ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1; switch (misc2 & ATOM_PPLIB_CLASSIFICATION_UI_MASK) { case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY: rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BATTERY; break; case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED: rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BALANCED; break; case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE: rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_PERFORMANCE; break; case ATOM_PPLIB_CLASSIFICATION_UI_NONE: if (misc2 & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_PERFORMANCE; break; } rdev->pm.power_state[state_index].flags = 0; if (misc & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) rdev->pm.power_state[state_index].flags |= RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; if (misc2 & ATOM_PPLIB_CLASSIFICATION_BOOT) { rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = state_index; rdev->pm.power_state[state_index].default_clock_mode = &rdev->pm.power_state[state_index].clock_info[mode_index - 1]; if ((rdev->family >= CHIP_BARTS) && !(rdev->flags & RADEON_IS_IGP)) { /* NI chips post without MC ucode, so default clocks are strobe mode only */ rdev->pm.default_sclk = rdev->pm.power_state[state_index].clock_info[0].sclk; rdev->pm.default_mclk = rdev->pm.power_state[state_index].clock_info[0].mclk; rdev->pm.default_vddc = rdev->pm.power_state[state_index].clock_info[0].voltage.voltage; rdev->pm.default_vddci = rdev->pm.power_state[state_index].clock_info[0].voltage.vddci; } else { u16 max_vddci = 0; if (ASIC_IS_DCE4(rdev)) radeon_atom_get_max_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDCI, &max_vddci); /* patch the table values with the default sclk/mclk from firmware info */ for (j = 0; j < mode_index; j++) { rdev->pm.power_state[state_index].clock_info[j].mclk = rdev->clock.default_mclk; rdev->pm.power_state[state_index].clock_info[j].sclk = rdev->clock.default_sclk; if (vddc) rdev->pm.power_state[state_index].clock_info[j].voltage.voltage = vddc; if (max_vddci) rdev->pm.power_state[state_index].clock_info[j].voltage.vddci = max_vddci; } } } } static bool radeon_atombios_parse_pplib_clock_info(struct radeon_device *rdev, int state_index, int mode_index, union pplib_clock_info *clock_info) { u32 sclk, mclk; u16 vddc; if (rdev->flags & RADEON_IS_IGP) { if (rdev->family >= CHIP_PALM) { sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); sclk |= clock_info->sumo.ucEngineClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; } else { sclk = le16_to_cpu(clock_info->rs780.usLowEngineClockLow); sclk |= clock_info->rs780.ucLowEngineClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; } } else if (rdev->family >= CHIP_BONAIRE) { sclk = le16_to_cpu(clock_info->ci.usEngineClockLow); sclk |= clock_info->ci.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->ci.usMemoryClockLow); mclk |= clock_info->ci.ucMemoryClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type = VOLTAGE_NONE; } else if (rdev->family >= CHIP_TAHITI) { sclk = le16_to_cpu(clock_info->si.usEngineClockLow); sclk |= clock_info->si.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->si.usMemoryClockLow); mclk |= clock_info->si.ucMemoryClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type = VOLTAGE_SW; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage = le16_to_cpu(clock_info->si.usVDDC); rdev->pm.power_state[state_index].clock_info[mode_index].voltage.vddci = le16_to_cpu(clock_info->si.usVDDCI); } else if (rdev->family >= CHIP_CEDAR) { sclk = le16_to_cpu(clock_info->evergreen.usEngineClockLow); sclk |= clock_info->evergreen.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->evergreen.usMemoryClockLow); mclk |= clock_info->evergreen.ucMemoryClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type = VOLTAGE_SW; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage = le16_to_cpu(clock_info->evergreen.usVDDC); rdev->pm.power_state[state_index].clock_info[mode_index].voltage.vddci = le16_to_cpu(clock_info->evergreen.usVDDCI); } else { sclk = le16_to_cpu(clock_info->r600.usEngineClockLow); sclk |= clock_info->r600.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->r600.usMemoryClockLow); mclk |= clock_info->r600.ucMemoryClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type = VOLTAGE_SW; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage = le16_to_cpu(clock_info->r600.usVDDC); } /* patch up vddc if necessary */ switch (rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage) { case ATOM_VIRTUAL_VOLTAGE_ID0: case ATOM_VIRTUAL_VOLTAGE_ID1: case ATOM_VIRTUAL_VOLTAGE_ID2: case ATOM_VIRTUAL_VOLTAGE_ID3: case ATOM_VIRTUAL_VOLTAGE_ID4: case ATOM_VIRTUAL_VOLTAGE_ID5: case ATOM_VIRTUAL_VOLTAGE_ID6: case ATOM_VIRTUAL_VOLTAGE_ID7: if (radeon_atom_get_max_vddc(rdev, VOLTAGE_TYPE_VDDC, rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage, &vddc) == 0) rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage = vddc; break; default: break; } if (rdev->flags & RADEON_IS_IGP) { /* skip invalid modes */ if (rdev->pm.power_state[state_index].clock_info[mode_index].sclk == 0) return false; } else { /* skip invalid modes */ if ((rdev->pm.power_state[state_index].clock_info[mode_index].mclk == 0) || (rdev->pm.power_state[state_index].clock_info[mode_index].sclk == 0)) return false; } return true; } static int radeon_atombios_parse_power_table_4_5(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j; int state_index = 0, mode_index = 0; union pplib_clock_info *clock_info; bool valid; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return state_index; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); radeon_atombios_add_pplib_thermal_controller(rdev, &power_info->pplib.sThermalController); if (power_info->pplib.ucNumStates == 0) return state_index; rdev->pm.power_state = kcalloc(power_info->pplib.ucNumStates, sizeof(struct radeon_power_state), GFP_KERNEL); if (!rdev->pm.power_state) return state_index; /* first mode is usually default, followed by low to high */ for (i = 0; i < power_info->pplib.ucNumStates; i++) { mode_index = 0; power_state = (union pplib_power_state *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset) + i * power_info->pplib.ucStateEntrySize); non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) + (power_state->v1.ucNonClockStateIndex * power_info->pplib.ucNonClockSize)); rdev->pm.power_state[i].clock_info = kcalloc((power_info->pplib.ucStateEntrySize - 1) ? (power_info->pplib.ucStateEntrySize - 1) : 1, sizeof(struct radeon_pm_clock_info), GFP_KERNEL); if (!rdev->pm.power_state[i].clock_info) return state_index; if (power_info->pplib.ucStateEntrySize - 1) { for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) { clock_info = (union pplib_clock_info *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) + (power_state->v1.ucClockStateIndices[j] * power_info->pplib.ucClockInfoSize)); valid = radeon_atombios_parse_pplib_clock_info(rdev, state_index, mode_index, clock_info); if (valid) mode_index++; } } else { rdev->pm.power_state[state_index].clock_info[0].mclk = rdev->clock.default_mclk; rdev->pm.power_state[state_index].clock_info[0].sclk = rdev->clock.default_sclk; mode_index++; } rdev->pm.power_state[state_index].num_clock_modes = mode_index; if (mode_index) { radeon_atombios_parse_pplib_non_clock_info(rdev, state_index, mode_index, non_clock_info); state_index++; } } /* if multiple clock modes, mark the lowest as no display */ for (i = 0; i < state_index; i++) { if (rdev->pm.power_state[i].num_clock_modes > 1) rdev->pm.power_state[i].clock_info[0].flags |= RADEON_PM_MODE_NO_DISPLAY; } /* first mode is usually default */ if (rdev->pm.default_power_state_index == -1) { rdev->pm.power_state[0].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = 0; rdev->pm.power_state[0].default_clock_mode = &rdev->pm.power_state[0].clock_info[0]; } return state_index; } static int radeon_atombios_parse_power_table_6(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j, non_clock_array_index, clock_array_index; int state_index = 0, mode_index = 0; union pplib_clock_info *clock_info; struct _StateArray *state_array; struct _ClockInfoArray *clock_info_array; struct _NonClockInfoArray *non_clock_info_array; bool valid; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; u8 *power_state_offset; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return state_index; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); radeon_atombios_add_pplib_thermal_controller(rdev, &power_info->pplib.sThermalController); state_array = (struct _StateArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset)); clock_info_array = (struct _ClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset)); non_clock_info_array = (struct _NonClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset)); if (state_array->ucNumEntries == 0) return state_index; rdev->pm.power_state = kcalloc(state_array->ucNumEntries, sizeof(struct radeon_power_state), GFP_KERNEL); if (!rdev->pm.power_state) return state_index; power_state_offset = (u8 *)state_array->states; for (i = 0; i < state_array->ucNumEntries; i++) { mode_index = 0; power_state = (union pplib_power_state *)power_state_offset; non_clock_array_index = power_state->v2.nonClockInfoIndex; non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) &non_clock_info_array->nonClockInfo[non_clock_array_index]; rdev->pm.power_state[i].clock_info = kcalloc(power_state->v2.ucNumDPMLevels ? power_state->v2.ucNumDPMLevels : 1, sizeof(struct radeon_pm_clock_info), GFP_KERNEL); if (!rdev->pm.power_state[i].clock_info) return state_index; if (power_state->v2.ucNumDPMLevels) { for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) { clock_array_index = power_state->v2.clockInfoIndex[j]; clock_info = (union pplib_clock_info *) &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize]; valid = radeon_atombios_parse_pplib_clock_info(rdev, state_index, mode_index, clock_info); if (valid) mode_index++; } } else { rdev->pm.power_state[state_index].clock_info[0].mclk = rdev->clock.default_mclk; rdev->pm.power_state[state_index].clock_info[0].sclk = rdev->clock.default_sclk; mode_index++; } rdev->pm.power_state[state_index].num_clock_modes = mode_index; if (mode_index) { radeon_atombios_parse_pplib_non_clock_info(rdev, state_index, mode_index, non_clock_info); state_index++; } power_state_offset += 2 + power_state->v2.ucNumDPMLevels; } /* if multiple clock modes, mark the lowest as no display */ for (i = 0; i < state_index; i++) { if (rdev->pm.power_state[i].num_clock_modes > 1) rdev->pm.power_state[i].clock_info[0].flags |= RADEON_PM_MODE_NO_DISPLAY; } /* first mode is usually default */ if (rdev->pm.default_power_state_index == -1) { rdev->pm.power_state[0].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = 0; rdev->pm.power_state[0].default_clock_mode = &rdev->pm.power_state[0].clock_info[0]; } return state_index; } void radeon_atombios_get_power_modes(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; int state_index = 0; rdev->pm.default_power_state_index = -1; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { switch (frev) { case 1: case 2: case 3: state_index = radeon_atombios_parse_power_table_1_3(rdev); break; case 4: case 5: state_index = radeon_atombios_parse_power_table_4_5(rdev); break; case 6: state_index = radeon_atombios_parse_power_table_6(rdev); break; default: break; } } if (state_index == 0) { rdev->pm.power_state = kzalloc(sizeof(struct radeon_power_state), GFP_KERNEL); if (rdev->pm.power_state) { rdev->pm.power_state[0].clock_info = kcalloc(1, sizeof(struct radeon_pm_clock_info), GFP_KERNEL); if (rdev->pm.power_state[0].clock_info) { /* add the default mode */ rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.power_state[state_index].num_clock_modes = 1; rdev->pm.power_state[state_index].clock_info[0].mclk = rdev->clock.default_mclk; rdev->pm.power_state[state_index].clock_info[0].sclk = rdev->clock.default_sclk; rdev->pm.power_state[state_index].default_clock_mode = &rdev->pm.power_state[state_index].clock_info[0]; rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_NONE; rdev->pm.power_state[state_index].pcie_lanes = 16; rdev->pm.default_power_state_index = state_index; rdev->pm.power_state[state_index].flags = 0; state_index++; } } } rdev->pm.num_power_states = state_index; rdev->pm.current_power_state_index = rdev->pm.default_power_state_index; rdev->pm.current_clock_mode_index = 0; if (rdev->pm.default_power_state_index >= 0) rdev->pm.current_vddc = rdev->pm.power_state[rdev->pm.default_power_state_index].clock_info[0].voltage.voltage; else rdev->pm.current_vddc = 0; } union get_clock_dividers { struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS v1; struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V2 v2; struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V3 v3; struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 v4; struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V5 v5; struct _COMPUTE_GPU_CLOCK_INPUT_PARAMETERS_V1_6 v6_in; struct _COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 v6_out; }; int radeon_atom_get_clock_dividers(struct radeon_device *rdev, u8 clock_type, u32 clock, bool strobe_mode, struct atom_clock_dividers *dividers) { union get_clock_dividers args; int index = GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL); u8 frev, crev; memset(&args, 0, sizeof(args)); memset(dividers, 0, sizeof(struct atom_clock_dividers)); if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return -EINVAL; switch (crev) { case 1: /* r4xx, r5xx */ args.v1.ucAction = clock_type; args.v1.ulClock = cpu_to_le32(clock); /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); dividers->post_div = args.v1.ucPostDiv; dividers->fb_div = args.v1.ucFbDiv; dividers->enable_post_div = true; break; case 2: case 3: case 5: /* r6xx, r7xx, evergreen, ni, si */ if (rdev->family <= CHIP_RV770) { args.v2.ucAction = clock_type; args.v2.ulClock = cpu_to_le32(clock); /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); dividers->post_div = args.v2.ucPostDiv; dividers->fb_div = le16_to_cpu(args.v2.usFbDiv); dividers->ref_div = args.v2.ucAction; if (rdev->family == CHIP_RV770) { dividers->enable_post_div = (le32_to_cpu(args.v2.ulClock) & (1 << 24)) ? true : false; dividers->vco_mode = (le32_to_cpu(args.v2.ulClock) & (1 << 25)) ? 1 : 0; } else dividers->enable_post_div = (dividers->fb_div & 1) ? true : false; } else { if (clock_type == COMPUTE_ENGINE_PLL_PARAM) { args.v3.ulClockParams = cpu_to_le32((clock_type << 24) | clock); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); dividers->post_div = args.v3.ucPostDiv; dividers->enable_post_div = (args.v3.ucCntlFlag & ATOM_PLL_CNTL_FLAG_PLL_POST_DIV_EN) ? true : false; dividers->enable_dithen = (args.v3.ucCntlFlag & ATOM_PLL_CNTL_FLAG_FRACTION_DISABLE) ? false : true; dividers->whole_fb_div = le16_to_cpu(args.v3.ulFbDiv.usFbDiv); dividers->frac_fb_div = le16_to_cpu(args.v3.ulFbDiv.usFbDivFrac); dividers->ref_div = args.v3.ucRefDiv; dividers->vco_mode = (args.v3.ucCntlFlag & ATOM_PLL_CNTL_FLAG_MPLL_VCO_MODE) ? 1 : 0; } else { /* for SI we use ComputeMemoryClockParam for memory plls */ if (rdev->family >= CHIP_TAHITI) return -EINVAL; args.v5.ulClockParams = cpu_to_le32((clock_type << 24) | clock); if (strobe_mode) args.v5.ucInputFlag = ATOM_PLL_INPUT_FLAG_PLL_STROBE_MODE_EN; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); dividers->post_div = args.v5.ucPostDiv; dividers->enable_post_div = (args.v5.ucCntlFlag & ATOM_PLL_CNTL_FLAG_PLL_POST_DIV_EN) ? true : false; dividers->enable_dithen = (args.v5.ucCntlFlag & ATOM_PLL_CNTL_FLAG_FRACTION_DISABLE) ? false : true; dividers->whole_fb_div = le16_to_cpu(args.v5.ulFbDiv.usFbDiv); dividers->frac_fb_div = le16_to_cpu(args.v5.ulFbDiv.usFbDivFrac); dividers->ref_div = args.v5.ucRefDiv; dividers->vco_mode = (args.v5.ucCntlFlag & ATOM_PLL_CNTL_FLAG_MPLL_VCO_MODE) ? 1 : 0; } } break; case 4: /* fusion */ args.v4.ulClock = cpu_to_le32(clock); /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); dividers->post_divider = dividers->post_div = args.v4.ucPostDiv; dividers->real_clock = le32_to_cpu(args.v4.ulClock); break; case 6: /* CI */ /* COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, COMPUTE_GPUCLK_INPUT_FLAG_SCLK */ args.v6_in.ulClock.ulComputeClockFlag = clock_type; args.v6_in.ulClock.ulClockFreq = cpu_to_le32(clock); /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); dividers->whole_fb_div = le16_to_cpu(args.v6_out.ulFbDiv.usFbDiv); dividers->frac_fb_div = le16_to_cpu(args.v6_out.ulFbDiv.usFbDivFrac); dividers->ref_div = args.v6_out.ucPllRefDiv; dividers->post_div = args.v6_out.ucPllPostDiv; dividers->flags = args.v6_out.ucPllCntlFlag; dividers->real_clock = le32_to_cpu(args.v6_out.ulClock.ulClock); dividers->post_divider = args.v6_out.ulClock.ucPostDiv; break; default: return -EINVAL; } return 0; } int radeon_atom_get_memory_pll_dividers(struct radeon_device *rdev, u32 clock, bool strobe_mode, struct atom_mpll_param *mpll_param) { COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 args; int index = GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam); u8 frev, crev; memset(&args, 0, sizeof(args)); memset(mpll_param, 0, sizeof(struct atom_mpll_param)); if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return -EINVAL; switch (frev) { case 2: switch (crev) { case 1: /* SI */ args.ulClock = cpu_to_le32(clock); /* 10 khz */ args.ucInputFlag = 0; if (strobe_mode) args.ucInputFlag |= MPLL_INPUT_FLAG_STROBE_MODE_EN; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); mpll_param->clkfrac = le16_to_cpu(args.ulFbDiv.usFbDivFrac); mpll_param->clkf = le16_to_cpu(args.ulFbDiv.usFbDiv); mpll_param->post_div = args.ucPostDiv; mpll_param->dll_speed = args.ucDllSpeed; mpll_param->bwcntl = args.ucBWCntl; mpll_param->vco_mode = (args.ucPllCntlFlag & MPLL_CNTL_FLAG_VCO_MODE_MASK); mpll_param->yclk_sel = (args.ucPllCntlFlag & MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0; mpll_param->qdr = (args.ucPllCntlFlag & MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0; mpll_param->half_rate = (args.ucPllCntlFlag & MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0; break; default: return -EINVAL; } break; default: return -EINVAL; } return 0; } void radeon_atom_set_clock_gating(struct radeon_device *rdev, int enable) { DYNAMIC_CLOCK_GATING_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, DynamicClockGating); args.ucEnable = enable; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } uint32_t radeon_atom_get_engine_clock(struct radeon_device *rdev) { GET_ENGINE_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, GetEngineClock); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); return le32_to_cpu(args.ulReturnEngineClock); } uint32_t radeon_atom_get_memory_clock(struct radeon_device *rdev) { GET_MEMORY_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, GetMemoryClock); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); return le32_to_cpu(args.ulReturnMemoryClock); } void radeon_atom_set_engine_clock(struct radeon_device *rdev, uint32_t eng_clock) { SET_ENGINE_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, SetEngineClock); args.ulTargetEngineClock = cpu_to_le32(eng_clock); /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } void radeon_atom_set_memory_clock(struct radeon_device *rdev, uint32_t mem_clock) { SET_MEMORY_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, SetMemoryClock); if (rdev->flags & RADEON_IS_IGP) return; args.ulTargetMemoryClock = cpu_to_le32(mem_clock); /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } void radeon_atom_set_engine_dram_timings(struct radeon_device *rdev, u32 eng_clock, u32 mem_clock) { SET_ENGINE_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings); u32 tmp; memset(&args, 0, sizeof(args)); tmp = eng_clock & SET_CLOCK_FREQ_MASK; tmp |= (COMPUTE_ENGINE_PLL_PARAM << 24); args.ulTargetEngineClock = cpu_to_le32(tmp); if (mem_clock) args.sReserved.ulClock = cpu_to_le32(mem_clock & SET_CLOCK_FREQ_MASK); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } void radeon_atom_update_memory_dll(struct radeon_device *rdev, u32 mem_clock) { u32 args; int index = GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings); args = cpu_to_le32(mem_clock); /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } void radeon_atom_set_ac_timing(struct radeon_device *rdev, u32 mem_clock) { SET_MEMORY_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings); u32 tmp = mem_clock | (COMPUTE_MEMORY_PLL_PARAM << 24); args.ulTargetMemoryClock = cpu_to_le32(tmp); /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } union set_voltage { struct _SET_VOLTAGE_PS_ALLOCATION alloc; struct _SET_VOLTAGE_PARAMETERS v1; struct _SET_VOLTAGE_PARAMETERS_V2 v2; struct _SET_VOLTAGE_PARAMETERS_V1_3 v3; }; void radeon_atom_set_voltage(struct radeon_device *rdev, u16 voltage_level, u8 voltage_type) { union set_voltage args; int index = GetIndexIntoMasterTable(COMMAND, SetVoltage); u8 frev, crev, volt_index = voltage_level; if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return; /* 0xff01 is a flag rather then an actual voltage */ if (voltage_level == 0xff01) return; switch (crev) { case 1: args.v1.ucVoltageType = voltage_type; args.v1.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_ALL_SOURCE; args.v1.ucVoltageIndex = volt_index; break; case 2: args.v2.ucVoltageType = voltage_type; args.v2.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_SET_VOLTAGE; args.v2.usVoltageLevel = cpu_to_le16(voltage_level); break; case 3: args.v3.ucVoltageType = voltage_type; args.v3.ucVoltageMode = ATOM_SET_VOLTAGE; args.v3.usVoltageLevel = cpu_to_le16(voltage_level); break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } int radeon_atom_get_max_vddc(struct radeon_device *rdev, u8 voltage_type, u16 voltage_id, u16 *voltage) { union set_voltage args; int index = GetIndexIntoMasterTable(COMMAND, SetVoltage); u8 frev, crev; if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return -EINVAL; switch (crev) { case 1: return -EINVAL; case 2: args.v2.ucVoltageType = SET_VOLTAGE_GET_MAX_VOLTAGE; args.v2.ucVoltageMode = 0; args.v2.usVoltageLevel = 0; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); *voltage = le16_to_cpu(args.v2.usVoltageLevel); break; case 3: args.v3.ucVoltageType = voltage_type; args.v3.ucVoltageMode = ATOM_GET_VOLTAGE_LEVEL; args.v3.usVoltageLevel = cpu_to_le16(voltage_id); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); *voltage = le16_to_cpu(args.v3.usVoltageLevel); break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } int radeon_atom_get_leakage_vddc_based_on_leakage_idx(struct radeon_device *rdev, u16 *voltage, u16 leakage_idx) { return radeon_atom_get_max_vddc(rdev, VOLTAGE_TYPE_VDDC, leakage_idx, voltage); } int radeon_atom_get_leakage_id_from_vbios(struct radeon_device *rdev, u16 *leakage_id) { union set_voltage args; int index = GetIndexIntoMasterTable(COMMAND, SetVoltage); u8 frev, crev; if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return -EINVAL; switch (crev) { case 3: case 4: args.v3.ucVoltageType = 0; args.v3.ucVoltageMode = ATOM_GET_LEAKAGE_ID; args.v3.usVoltageLevel = 0; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); *leakage_id = le16_to_cpu(args.v3.usVoltageLevel); break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } int radeon_atom_get_leakage_vddc_based_on_leakage_params(struct radeon_device *rdev, u16 *vddc, u16 *vddci, u16 virtual_voltage_id, u16 vbios_voltage_id) { int index = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo); u8 frev, crev; u16 data_offset, size; int i, j; ATOM_ASIC_PROFILING_INFO_V2_1 *profile; u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf; *vddc = 0; *vddci = 0; if (!atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) return -EINVAL; profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *) (rdev->mode_info.atom_context->bios + data_offset); switch (frev) { case 1: return -EINVAL; case 2: switch (crev) { case 1: if (size < sizeof(ATOM_ASIC_PROFILING_INFO_V2_1)) return -EINVAL; leakage_bin = (u16 *) (rdev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usLeakageBinArrayOffset)); vddc_id_buf = (u16 *) (rdev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usElbVDDC_IdArrayOffset)); vddc_buf = (u16 *) (rdev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usElbVDDC_LevelArrayOffset)); vddci_id_buf = (u16 *) (rdev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usElbVDDCI_IdArrayOffset)); vddci_buf = (u16 *) (rdev->mode_info.atom_context->bios + data_offset + le16_to_cpu(profile->usElbVDDCI_LevelArrayOffset)); if (profile->ucElbVDDC_Num > 0) { for (i = 0; i < profile->ucElbVDDC_Num; i++) { if (vddc_id_buf[i] == virtual_voltage_id) { for (j = 0; j < profile->ucLeakageBinNum; j++) { if (vbios_voltage_id <= leakage_bin[j]) { *vddc = vddc_buf[j * profile->ucElbVDDC_Num + i]; break; } } break; } } } if (profile->ucElbVDDCI_Num > 0) { for (i = 0; i < profile->ucElbVDDCI_Num; i++) { if (vddci_id_buf[i] == virtual_voltage_id) { for (j = 0; j < profile->ucLeakageBinNum; j++) { if (vbios_voltage_id <= leakage_bin[j]) { *vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i]; break; } } break; } } } break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } union get_voltage_info { struct _GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 in; struct _GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 evv_out; }; int radeon_atom_get_voltage_evv(struct radeon_device *rdev, u16 virtual_voltage_id, u16 *voltage) { int index = GetIndexIntoMasterTable(COMMAND, GetVoltageInfo); u32 entry_id; u32 count = rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; union get_voltage_info args; for (entry_id = 0; entry_id < count; entry_id++) { if (rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[entry_id].v == virtual_voltage_id) break; } if (entry_id >= count) return -EINVAL; args.in.ucVoltageType = VOLTAGE_TYPE_VDDC; args.in.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE; args.in.usVoltageLevel = cpu_to_le16(virtual_voltage_id); args.in.ulSCLKFreq = cpu_to_le32(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[entry_id].clk); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); *voltage = le16_to_cpu(args.evv_out.usVoltageLevel); return 0; } int radeon_atom_get_voltage_gpio_settings(struct radeon_device *rdev, u16 voltage_level, u8 voltage_type, u32 *gpio_value, u32 *gpio_mask) { union set_voltage args; int index = GetIndexIntoMasterTable(COMMAND, SetVoltage); u8 frev, crev; if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return -EINVAL; switch (crev) { case 1: return -EINVAL; case 2: args.v2.ucVoltageType = voltage_type; args.v2.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_GET_GPIOMASK; args.v2.usVoltageLevel = cpu_to_le16(voltage_level); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); *gpio_mask = le32_to_cpu(*(u32 *)&args.v2); args.v2.ucVoltageType = voltage_type; args.v2.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_GET_GPIOVAL; args.v2.usVoltageLevel = cpu_to_le16(voltage_level); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); *gpio_value = le32_to_cpu(*(u32 *)&args.v2); break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } union voltage_object_info { struct _ATOM_VOLTAGE_OBJECT_INFO v1; struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2; struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3; }; union voltage_object { struct _ATOM_VOLTAGE_OBJECT v1; struct _ATOM_VOLTAGE_OBJECT_V2 v2; union _ATOM_VOLTAGE_OBJECT_V3 v3; }; static ATOM_VOLTAGE_OBJECT *atom_lookup_voltage_object_v1(ATOM_VOLTAGE_OBJECT_INFO *v1, u8 voltage_type) { u32 size = le16_to_cpu(v1->sHeader.usStructureSize); u32 offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO, asVoltageObj[0]); u8 *start = (u8 *)v1; while (offset < size) { ATOM_VOLTAGE_OBJECT *vo = (ATOM_VOLTAGE_OBJECT *)(start + offset); if (vo->ucVoltageType == voltage_type) return vo; offset += offsetof(ATOM_VOLTAGE_OBJECT, asFormula.ucVIDAdjustEntries) + vo->asFormula.ucNumOfVoltageEntries; } return NULL; } static ATOM_VOLTAGE_OBJECT_V2 *atom_lookup_voltage_object_v2(ATOM_VOLTAGE_OBJECT_INFO_V2 *v2, u8 voltage_type) { u32 size = le16_to_cpu(v2->sHeader.usStructureSize); u32 offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V2, asVoltageObj[0]); u8 *start = (u8*)v2; while (offset < size) { ATOM_VOLTAGE_OBJECT_V2 *vo = (ATOM_VOLTAGE_OBJECT_V2 *)(start + offset); if (vo->ucVoltageType == voltage_type) return vo; offset += offsetof(ATOM_VOLTAGE_OBJECT_V2, asFormula.asVIDAdjustEntries) + (vo->asFormula.ucNumOfVoltageEntries * sizeof(VOLTAGE_LUT_ENTRY)); } return NULL; } static ATOM_VOLTAGE_OBJECT_V3 *atom_lookup_voltage_object_v3(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *v3, u8 voltage_type, u8 voltage_mode) { u32 size = le16_to_cpu(v3->sHeader.usStructureSize); u32 offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]); u8 *start = (u8*)v3; while (offset < size) { ATOM_VOLTAGE_OBJECT_V3 *vo = (ATOM_VOLTAGE_OBJECT_V3 *)(start + offset); if ((vo->asGpioVoltageObj.sHeader.ucVoltageType == voltage_type) && (vo->asGpioVoltageObj.sHeader.ucVoltageMode == voltage_mode)) return vo; offset += le16_to_cpu(vo->asGpioVoltageObj.sHeader.usSize); } return NULL; } bool radeon_atom_is_voltage_gpio(struct radeon_device *rdev, u8 voltage_type, u8 voltage_mode) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 data_offset, size; union voltage_object_info *voltage_info; union voltage_object *voltage_object = NULL; if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { voltage_info = (union voltage_object_info *) (rdev->mode_info.atom_context->bios + data_offset); switch (frev) { case 1: case 2: switch (crev) { case 1: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v1(&voltage_info->v1, voltage_type); if (voltage_object && (voltage_object->v1.asControl.ucVoltageControlId == VOLTAGE_CONTROLLED_BY_GPIO)) return true; break; case 2: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v2(&voltage_info->v2, voltage_type); if (voltage_object && (voltage_object->v2.asControl.ucVoltageControlId == VOLTAGE_CONTROLLED_BY_GPIO)) return true; break; default: DRM_ERROR("unknown voltage object table\n"); return false; } break; case 3: switch (crev) { case 1: if (atom_lookup_voltage_object_v3(&voltage_info->v3, voltage_type, voltage_mode)) return true; break; default: DRM_ERROR("unknown voltage object table\n"); return false; } break; default: DRM_ERROR("unknown voltage object table\n"); return false; } } return false; } int radeon_atom_get_svi2_info(struct radeon_device *rdev, u8 voltage_type, u8 *svd_gpio_id, u8 *svc_gpio_id) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 data_offset, size; union voltage_object_info *voltage_info; union voltage_object *voltage_object = NULL; if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { voltage_info = (union voltage_object_info *) (rdev->mode_info.atom_context->bios + data_offset); switch (frev) { case 3: switch (crev) { case 1: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v3(&voltage_info->v3, voltage_type, VOLTAGE_OBJ_SVID2); if (voltage_object) { *svd_gpio_id = voltage_object->v3.asSVID2Obj.ucSVDGpioId; *svc_gpio_id = voltage_object->v3.asSVID2Obj.ucSVCGpioId; } else { return -EINVAL; } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } } return 0; } int radeon_atom_get_max_voltage(struct radeon_device *rdev, u8 voltage_type, u16 *max_voltage) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 data_offset, size; union voltage_object_info *voltage_info; union voltage_object *voltage_object = NULL; if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { voltage_info = (union voltage_object_info *) (rdev->mode_info.atom_context->bios + data_offset); switch (crev) { case 1: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v1(&voltage_info->v1, voltage_type); if (voltage_object) { ATOM_VOLTAGE_FORMULA *formula = &voltage_object->v1.asFormula; if (formula->ucFlag & 1) *max_voltage = le16_to_cpu(formula->usVoltageBaseLevel) + formula->ucNumOfVoltageEntries / 2 * le16_to_cpu(formula->usVoltageStep); else *max_voltage = le16_to_cpu(formula->usVoltageBaseLevel) + (formula->ucNumOfVoltageEntries - 1) * le16_to_cpu(formula->usVoltageStep); return 0; } break; case 2: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v2(&voltage_info->v2, voltage_type); if (voltage_object) { ATOM_VOLTAGE_FORMULA_V2 *formula = &voltage_object->v2.asFormula; if (formula->ucNumOfVoltageEntries) { VOLTAGE_LUT_ENTRY *lut = (VOLTAGE_LUT_ENTRY *) ((u8 *)&formula->asVIDAdjustEntries[0] + (sizeof(VOLTAGE_LUT_ENTRY) * (formula->ucNumOfVoltageEntries - 1))); *max_voltage = le16_to_cpu(lut->usVoltageValue); return 0; } } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } } return -EINVAL; } int radeon_atom_get_min_voltage(struct radeon_device *rdev, u8 voltage_type, u16 *min_voltage) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 data_offset, size; union voltage_object_info *voltage_info; union voltage_object *voltage_object = NULL; if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { voltage_info = (union voltage_object_info *) (rdev->mode_info.atom_context->bios + data_offset); switch (crev) { case 1: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v1(&voltage_info->v1, voltage_type); if (voltage_object) { ATOM_VOLTAGE_FORMULA *formula = &voltage_object->v1.asFormula; *min_voltage = le16_to_cpu(formula->usVoltageBaseLevel); return 0; } break; case 2: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v2(&voltage_info->v2, voltage_type); if (voltage_object) { ATOM_VOLTAGE_FORMULA_V2 *formula = &voltage_object->v2.asFormula; if (formula->ucNumOfVoltageEntries) { *min_voltage = le16_to_cpu(formula->asVIDAdjustEntries[ 0 ].usVoltageValue); return 0; } } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } } return -EINVAL; } int radeon_atom_get_voltage_step(struct radeon_device *rdev, u8 voltage_type, u16 *voltage_step) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 data_offset, size; union voltage_object_info *voltage_info; union voltage_object *voltage_object = NULL; if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { voltage_info = (union voltage_object_info *) (rdev->mode_info.atom_context->bios + data_offset); switch (crev) { case 1: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v1(&voltage_info->v1, voltage_type); if (voltage_object) { ATOM_VOLTAGE_FORMULA *formula = &voltage_object->v1.asFormula; if (formula->ucFlag & 1) *voltage_step = (le16_to_cpu(formula->usVoltageStep) + 1) / 2; else *voltage_step = le16_to_cpu(formula->usVoltageStep); return 0; } break; case 2: return -EINVAL; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } } return -EINVAL; } int radeon_atom_round_to_true_voltage(struct radeon_device *rdev, u8 voltage_type, u16 nominal_voltage, u16 *true_voltage) { u16 min_voltage, max_voltage, voltage_step; if (radeon_atom_get_max_voltage(rdev, voltage_type, &max_voltage)) return -EINVAL; if (radeon_atom_get_min_voltage(rdev, voltage_type, &min_voltage)) return -EINVAL; if (radeon_atom_get_voltage_step(rdev, voltage_type, &voltage_step)) return -EINVAL; if (nominal_voltage <= min_voltage) *true_voltage = min_voltage; else if (nominal_voltage >= max_voltage) *true_voltage = max_voltage; else *true_voltage = min_voltage + ((nominal_voltage - min_voltage) / voltage_step) * voltage_step; return 0; } int radeon_atom_get_voltage_table(struct radeon_device *rdev, u8 voltage_type, u8 voltage_mode, struct atom_voltage_table *voltage_table) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 data_offset, size; int i, ret; union voltage_object_info *voltage_info; union voltage_object *voltage_object = NULL; if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { voltage_info = (union voltage_object_info *) (rdev->mode_info.atom_context->bios + data_offset); switch (frev) { case 1: case 2: switch (crev) { case 1: DRM_ERROR("old table version %d, %d\n", frev, crev); return -EINVAL; case 2: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v2(&voltage_info->v2, voltage_type); if (voltage_object) { ATOM_VOLTAGE_FORMULA_V2 *formula = &voltage_object->v2.asFormula; VOLTAGE_LUT_ENTRY *lut; if (formula->ucNumOfVoltageEntries > MAX_VOLTAGE_ENTRIES) return -EINVAL; lut = &formula->asVIDAdjustEntries[0]; for (i = 0; i < formula->ucNumOfVoltageEntries; i++) { voltage_table->entries[i].value = le16_to_cpu(lut->usVoltageValue); ret = radeon_atom_get_voltage_gpio_settings(rdev, voltage_table->entries[i].value, voltage_type, &voltage_table->entries[i].smio_low, &voltage_table->mask_low); if (ret) return ret; lut = (VOLTAGE_LUT_ENTRY *) ((u8 *)lut + sizeof(VOLTAGE_LUT_ENTRY)); } voltage_table->count = formula->ucNumOfVoltageEntries; return 0; } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } break; case 3: switch (crev) { case 1: voltage_object = (union voltage_object *) atom_lookup_voltage_object_v3(&voltage_info->v3, voltage_type, voltage_mode); if (voltage_object) { ATOM_GPIO_VOLTAGE_OBJECT_V3 *gpio = &voltage_object->v3.asGpioVoltageObj; VOLTAGE_LUT_ENTRY_V2 *lut; if (gpio->ucGpioEntryNum > MAX_VOLTAGE_ENTRIES) return -EINVAL; lut = &gpio->asVolGpioLut[0]; for (i = 0; i < gpio->ucGpioEntryNum; i++) { voltage_table->entries[i].value = le16_to_cpu(lut->usVoltageValue); voltage_table->entries[i].smio_low = le32_to_cpu(lut->ulVoltageId); lut = (VOLTAGE_LUT_ENTRY_V2 *) ((u8 *)lut + sizeof(VOLTAGE_LUT_ENTRY_V2)); } voltage_table->mask_low = le32_to_cpu(gpio->ulGpioMaskVal); voltage_table->count = gpio->ucGpioEntryNum; voltage_table->phase_delay = gpio->ucPhaseDelay; return 0; } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } break; default: DRM_ERROR("unknown voltage object table\n"); return -EINVAL; } } return -EINVAL; } union vram_info { struct _ATOM_VRAM_INFO_V3 v1_3; struct _ATOM_VRAM_INFO_V4 v1_4; struct _ATOM_VRAM_INFO_HEADER_V2_1 v2_1; }; int radeon_atom_get_memory_info(struct radeon_device *rdev, u8 module_index, struct atom_memory_info *mem_info) { int index = GetIndexIntoMasterTable(DATA, VRAM_Info); u8 frev, crev, i; u16 data_offset, size; union vram_info *vram_info; memset(mem_info, 0, sizeof(struct atom_memory_info)); if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { vram_info = (union vram_info *) (rdev->mode_info.atom_context->bios + data_offset); switch (frev) { case 1: switch (crev) { case 3: /* r6xx */ if (module_index < vram_info->v1_3.ucNumOfVRAMModule) { ATOM_VRAM_MODULE_V3 *vram_module = (ATOM_VRAM_MODULE_V3 *)vram_info->v1_3.aVramInfo; for (i = 0; i < module_index; i++) { if (le16_to_cpu(vram_module->usSize) == 0) return -EINVAL; vram_module = (ATOM_VRAM_MODULE_V3 *) ((u8 *)vram_module + le16_to_cpu(vram_module->usSize)); } mem_info->mem_vendor = vram_module->asMemory.ucMemoryVenderID & 0xf; mem_info->mem_type = vram_module->asMemory.ucMemoryType & 0xf0; } else return -EINVAL; break; case 4: /* r7xx, evergreen */ if (module_index < vram_info->v1_4.ucNumOfVRAMModule) { ATOM_VRAM_MODULE_V4 *vram_module = (ATOM_VRAM_MODULE_V4 *)vram_info->v1_4.aVramInfo; for (i = 0; i < module_index; i++) { if (le16_to_cpu(vram_module->usModuleSize) == 0) return -EINVAL; vram_module = (ATOM_VRAM_MODULE_V4 *) ((u8 *)vram_module + le16_to_cpu(vram_module->usModuleSize)); } mem_info->mem_vendor = vram_module->ucMemoryVenderID & 0xf; mem_info->mem_type = vram_module->ucMemoryType & 0xf0; } else return -EINVAL; break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } break; case 2: switch (crev) { case 1: /* ni */ if (module_index < vram_info->v2_1.ucNumOfVRAMModule) { ATOM_VRAM_MODULE_V7 *vram_module = (ATOM_VRAM_MODULE_V7 *)vram_info->v2_1.aVramInfo; for (i = 0; i < module_index; i++) { if (le16_to_cpu(vram_module->usModuleSize) == 0) return -EINVAL; vram_module = (ATOM_VRAM_MODULE_V7 *) ((u8 *)vram_module + le16_to_cpu(vram_module->usModuleSize)); } mem_info->mem_vendor = vram_module->ucMemoryVenderID & 0xf; mem_info->mem_type = vram_module->ucMemoryType & 0xf0; } else return -EINVAL; break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } return -EINVAL; } int radeon_atom_get_mclk_range_table(struct radeon_device *rdev, bool gddr5, u8 module_index, struct atom_memory_clock_range_table *mclk_range_table) { int index = GetIndexIntoMasterTable(DATA, VRAM_Info); u8 frev, crev, i; u16 data_offset, size; union vram_info *vram_info; u32 mem_timing_size = gddr5 ? sizeof(ATOM_MEMORY_TIMING_FORMAT_V2) : sizeof(ATOM_MEMORY_TIMING_FORMAT); memset(mclk_range_table, 0, sizeof(struct atom_memory_clock_range_table)); if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { vram_info = (union vram_info *) (rdev->mode_info.atom_context->bios + data_offset); switch (frev) { case 1: switch (crev) { case 3: DRM_ERROR("old table version %d, %d\n", frev, crev); return -EINVAL; case 4: /* r7xx, evergreen */ if (module_index < vram_info->v1_4.ucNumOfVRAMModule) { ATOM_VRAM_MODULE_V4 *vram_module = (ATOM_VRAM_MODULE_V4 *)vram_info->v1_4.aVramInfo; ATOM_MEMORY_TIMING_FORMAT *format; for (i = 0; i < module_index; i++) { if (le16_to_cpu(vram_module->usModuleSize) == 0) return -EINVAL; vram_module = (ATOM_VRAM_MODULE_V4 *) ((u8 *)vram_module + le16_to_cpu(vram_module->usModuleSize)); } mclk_range_table->num_entries = (u8) ((le16_to_cpu(vram_module->usModuleSize) - offsetof(ATOM_VRAM_MODULE_V4, asMemTiming)) / mem_timing_size); format = &vram_module->asMemTiming[0]; for (i = 0; i < mclk_range_table->num_entries; i++) { mclk_range_table->mclk[i] = le32_to_cpu(format->ulClkRange); format = (ATOM_MEMORY_TIMING_FORMAT *) ((u8 *)format + mem_timing_size); } } else return -EINVAL; break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } break; case 2: DRM_ERROR("new table version %d, %d\n", frev, crev); return -EINVAL; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } return -EINVAL; } #define MEM_ID_MASK 0xff000000 #define MEM_ID_SHIFT 24 #define CLOCK_RANGE_MASK 0x00ffffff #define CLOCK_RANGE_SHIFT 0 #define LOW_NIBBLE_MASK 0xf #define DATA_EQU_PREV 0 #define DATA_FROM_TABLE 4 int radeon_atom_init_mc_reg_table(struct radeon_device *rdev, u8 module_index, struct atom_mc_reg_table *reg_table) { int index = GetIndexIntoMasterTable(DATA, VRAM_Info); u8 frev, crev, num_entries, t_mem_id, num_ranges = 0; u32 i = 0, j; u16 data_offset, size; union vram_info *vram_info; memset(reg_table, 0, sizeof(struct atom_mc_reg_table)); if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { vram_info = (union vram_info *) (rdev->mode_info.atom_context->bios + data_offset); switch (frev) { case 1: DRM_ERROR("old table version %d, %d\n", frev, crev); return -EINVAL; case 2: switch (crev) { case 1: if (module_index < vram_info->v2_1.ucNumOfVRAMModule) { ATOM_INIT_REG_BLOCK *reg_block = (ATOM_INIT_REG_BLOCK *) ((u8 *)vram_info + le16_to_cpu(vram_info->v2_1.usMemClkPatchTblOffset)); ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) ((u8 *)reg_block + (2 * sizeof(u16)) + le16_to_cpu(reg_block->usRegIndexTblSize)); ATOM_INIT_REG_INDEX_FORMAT *format = ®_block->asRegIndexBuf[0]; num_entries = (u8)((le16_to_cpu(reg_block->usRegIndexTblSize)) / sizeof(ATOM_INIT_REG_INDEX_FORMAT)) - 1; if (num_entries > VBIOS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; while (i < num_entries) { if (format->ucPreRegDataLength & ACCESS_PLACEHOLDER) break; reg_table->mc_reg_address[i].s1 = (u16)(le16_to_cpu(format->usRegIndex)); reg_table->mc_reg_address[i].pre_reg_data = (u8)(format->ucPreRegDataLength); i++; format = (ATOM_INIT_REG_INDEX_FORMAT *) ((u8 *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT)); } reg_table->last = i; while ((le32_to_cpu(*(u32 *)reg_data) != END_OF_REG_DATA_BLOCK) && (num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES)) { t_mem_id = (u8)((le32_to_cpu(*(u32 *)reg_data) & MEM_ID_MASK) >> MEM_ID_SHIFT); if (module_index == t_mem_id) { reg_table->mc_reg_table_entry[num_ranges].mclk_max = (u32)((le32_to_cpu(*(u32 *)reg_data) & CLOCK_RANGE_MASK) >> CLOCK_RANGE_SHIFT); for (i = 0, j = 1; i < reg_table->last; i++) { if ((reg_table->mc_reg_address[i].pre_reg_data & LOW_NIBBLE_MASK) == DATA_FROM_TABLE) { reg_table->mc_reg_table_entry[num_ranges].mc_data[i] = (u32)le32_to_cpu(*((u32 *)reg_data + j)); j++; } else if ((reg_table->mc_reg_address[i].pre_reg_data & LOW_NIBBLE_MASK) == DATA_EQU_PREV) { reg_table->mc_reg_table_entry[num_ranges].mc_data[i] = reg_table->mc_reg_table_entry[num_ranges].mc_data[i - 1]; } } num_ranges++; } reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) ((u8 *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)); } if (le32_to_cpu(*(u32 *)reg_data) != END_OF_REG_DATA_BLOCK) return -EINVAL; reg_table->num_entries = num_ranges; } else return -EINVAL; break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return -EINVAL; } return 0; } return -EINVAL; } void radeon_atom_initialize_bios_scratch_regs(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; uint32_t bios_2_scratch, bios_6_scratch; if (rdev->family >= CHIP_R600) { bios_2_scratch = RREG32(R600_BIOS_2_SCRATCH); bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH); } else { bios_2_scratch = RREG32(RADEON_BIOS_2_SCRATCH); bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH); } /* let the bios control the backlight */ bios_2_scratch &= ~ATOM_S2_VRI_BRIGHT_ENABLE; /* tell the bios not to handle mode switching */ bios_6_scratch |= ATOM_S6_ACC_BLOCK_DISPLAY_SWITCH; /* clear the vbios dpms state */ if (ASIC_IS_DCE4(rdev)) bios_2_scratch &= ~ATOM_S2_DEVICE_DPMS_STATE; if (rdev->family >= CHIP_R600) { WREG32(R600_BIOS_2_SCRATCH, bios_2_scratch); WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch); } else { WREG32(RADEON_BIOS_2_SCRATCH, bios_2_scratch); WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch); } } void radeon_save_bios_scratch_regs(struct radeon_device *rdev) { uint32_t scratch_reg; int i; if (rdev->family >= CHIP_R600) scratch_reg = R600_BIOS_0_SCRATCH; else scratch_reg = RADEON_BIOS_0_SCRATCH; for (i = 0; i < RADEON_BIOS_NUM_SCRATCH; i++) rdev->bios_scratch[i] = RREG32(scratch_reg + (i * 4)); } void radeon_restore_bios_scratch_regs(struct radeon_device *rdev) { uint32_t scratch_reg; int i; if (rdev->family >= CHIP_R600) scratch_reg = R600_BIOS_0_SCRATCH; else scratch_reg = RADEON_BIOS_0_SCRATCH; for (i = 0; i < RADEON_BIOS_NUM_SCRATCH; i++) WREG32(scratch_reg + (i * 4), rdev->bios_scratch[i]); } void radeon_atom_output_lock(struct drm_encoder *encoder, bool lock) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; uint32_t bios_6_scratch; if (rdev->family >= CHIP_R600) bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH); else bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH); if (lock) { bios_6_scratch |= ATOM_S6_CRITICAL_STATE; bios_6_scratch &= ~ATOM_S6_ACC_MODE; } else { bios_6_scratch &= ~ATOM_S6_CRITICAL_STATE; bios_6_scratch |= ATOM_S6_ACC_MODE; } if (rdev->family >= CHIP_R600) WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch); else WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch); } /* at some point we may want to break this out into individual functions */ void radeon_atombios_connected_scratch_regs(struct drm_connector *connector, struct drm_encoder *encoder, bool connected) { struct drm_device *dev = connector->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); uint32_t bios_0_scratch, bios_3_scratch, bios_6_scratch; if (rdev->family >= CHIP_R600) { bios_0_scratch = RREG32(R600_BIOS_0_SCRATCH); bios_3_scratch = RREG32(R600_BIOS_3_SCRATCH); bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH); } else { bios_0_scratch = RREG32(RADEON_BIOS_0_SCRATCH); bios_3_scratch = RREG32(RADEON_BIOS_3_SCRATCH); bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH); } if ((radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_TV1_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("TV1 connected\n"); bios_3_scratch |= ATOM_S3_TV1_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_TV1; } else { DRM_DEBUG_KMS("TV1 disconnected\n"); bios_0_scratch &= ~ATOM_S0_TV1_MASK; bios_3_scratch &= ~ATOM_S3_TV1_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_TV1; } } if ((radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_CV_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("CV connected\n"); bios_3_scratch |= ATOM_S3_CV_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_CV; } else { DRM_DEBUG_KMS("CV disconnected\n"); bios_0_scratch &= ~ATOM_S0_CV_MASK; bios_3_scratch &= ~ATOM_S3_CV_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_CV; } } if ((radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_LCD1_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("LCD1 connected\n"); bios_0_scratch |= ATOM_S0_LCD1; bios_3_scratch |= ATOM_S3_LCD1_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_LCD1; } else { DRM_DEBUG_KMS("LCD1 disconnected\n"); bios_0_scratch &= ~ATOM_S0_LCD1; bios_3_scratch &= ~ATOM_S3_LCD1_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_LCD1; } } if ((radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_CRT1_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("CRT1 connected\n"); bios_0_scratch |= ATOM_S0_CRT1_COLOR; bios_3_scratch |= ATOM_S3_CRT1_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_CRT1; } else { DRM_DEBUG_KMS("CRT1 disconnected\n"); bios_0_scratch &= ~ATOM_S0_CRT1_MASK; bios_3_scratch &= ~ATOM_S3_CRT1_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_CRT1; } } if ((radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_CRT2_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("CRT2 connected\n"); bios_0_scratch |= ATOM_S0_CRT2_COLOR; bios_3_scratch |= ATOM_S3_CRT2_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_CRT2; } else { DRM_DEBUG_KMS("CRT2 disconnected\n"); bios_0_scratch &= ~ATOM_S0_CRT2_MASK; bios_3_scratch &= ~ATOM_S3_CRT2_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_CRT2; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP1_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP1 connected\n"); bios_0_scratch |= ATOM_S0_DFP1; bios_3_scratch |= ATOM_S3_DFP1_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP1; } else { DRM_DEBUG_KMS("DFP1 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP1; bios_3_scratch &= ~ATOM_S3_DFP1_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP1; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP2_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP2 connected\n"); bios_0_scratch |= ATOM_S0_DFP2; bios_3_scratch |= ATOM_S3_DFP2_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP2; } else { DRM_DEBUG_KMS("DFP2 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP2; bios_3_scratch &= ~ATOM_S3_DFP2_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP2; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP3_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP3 connected\n"); bios_0_scratch |= ATOM_S0_DFP3; bios_3_scratch |= ATOM_S3_DFP3_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP3; } else { DRM_DEBUG_KMS("DFP3 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP3; bios_3_scratch &= ~ATOM_S3_DFP3_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP3; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP4_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP4_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP4 connected\n"); bios_0_scratch |= ATOM_S0_DFP4; bios_3_scratch |= ATOM_S3_DFP4_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP4; } else { DRM_DEBUG_KMS("DFP4 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP4; bios_3_scratch &= ~ATOM_S3_DFP4_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP4; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP5_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP5_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP5 connected\n"); bios_0_scratch |= ATOM_S0_DFP5; bios_3_scratch |= ATOM_S3_DFP5_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP5; } else { DRM_DEBUG_KMS("DFP5 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP5; bios_3_scratch &= ~ATOM_S3_DFP5_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP5; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP6_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP6_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP6 connected\n"); bios_0_scratch |= ATOM_S0_DFP6; bios_3_scratch |= ATOM_S3_DFP6_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP6; } else { DRM_DEBUG_KMS("DFP6 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP6; bios_3_scratch &= ~ATOM_S3_DFP6_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP6; } } if (rdev->family >= CHIP_R600) { WREG32(R600_BIOS_0_SCRATCH, bios_0_scratch); WREG32(R600_BIOS_3_SCRATCH, bios_3_scratch); WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch); } else { WREG32(RADEON_BIOS_0_SCRATCH, bios_0_scratch); WREG32(RADEON_BIOS_3_SCRATCH, bios_3_scratch); WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch); } } void radeon_atombios_encoder_crtc_scratch_regs(struct drm_encoder *encoder, int crtc) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); uint32_t bios_3_scratch; if (ASIC_IS_DCE4(rdev)) return; if (rdev->family >= CHIP_R600) bios_3_scratch = RREG32(R600_BIOS_3_SCRATCH); else bios_3_scratch = RREG32(RADEON_BIOS_3_SCRATCH); if (radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) { bios_3_scratch &= ~ATOM_S3_TV1_CRTC_ACTIVE; bios_3_scratch |= (crtc << 18); } if (radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) { bios_3_scratch &= ~ATOM_S3_CV_CRTC_ACTIVE; bios_3_scratch |= (crtc << 24); } if (radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) { bios_3_scratch &= ~ATOM_S3_CRT1_CRTC_ACTIVE; bios_3_scratch |= (crtc << 16); } if (radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) { bios_3_scratch &= ~ATOM_S3_CRT2_CRTC_ACTIVE; bios_3_scratch |= (crtc << 20); } if (radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) { bios_3_scratch &= ~ATOM_S3_LCD1_CRTC_ACTIVE; bios_3_scratch |= (crtc << 17); } if (radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) { bios_3_scratch &= ~ATOM_S3_DFP1_CRTC_ACTIVE; bios_3_scratch |= (crtc << 19); } if (radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) { bios_3_scratch &= ~ATOM_S3_DFP2_CRTC_ACTIVE; bios_3_scratch |= (crtc << 23); } if (radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) { bios_3_scratch &= ~ATOM_S3_DFP3_CRTC_ACTIVE; bios_3_scratch |= (crtc << 25); } if (rdev->family >= CHIP_R600) WREG32(R600_BIOS_3_SCRATCH, bios_3_scratch); else WREG32(RADEON_BIOS_3_SCRATCH, bios_3_scratch); } void radeon_atombios_encoder_dpms_scratch_regs(struct drm_encoder *encoder, bool on) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); uint32_t bios_2_scratch; if (ASIC_IS_DCE4(rdev)) return; if (rdev->family >= CHIP_R600) bios_2_scratch = RREG32(R600_BIOS_2_SCRATCH); else bios_2_scratch = RREG32(RADEON_BIOS_2_SCRATCH); if (radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_TV1_DPMS_STATE; else bios_2_scratch |= ATOM_S2_TV1_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_CV_DPMS_STATE; else bios_2_scratch |= ATOM_S2_CV_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_CRT1_DPMS_STATE; else bios_2_scratch |= ATOM_S2_CRT1_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_CRT2_DPMS_STATE; else bios_2_scratch |= ATOM_S2_CRT2_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_LCD1_DPMS_STATE; else bios_2_scratch |= ATOM_S2_LCD1_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP1_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP1_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP2_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP2_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP3_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP3_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP4_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP4_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP4_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP5_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP5_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP5_DPMS_STATE; } if (rdev->family >= CHIP_R600) WREG32(R600_BIOS_2_SCRATCH, bios_2_scratch); else WREG32(RADEON_BIOS_2_SCRATCH, bios_2_scratch); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1