Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nickey Yang | 2719 | 57.88% | 1 | 4.00% |
Chris Zhong | 1225 | 26.07% | 6 | 24.00% |
Heiko Stübner | 580 | 12.35% | 1 | 4.00% |
John Keeping | 136 | 2.89% | 12 | 48.00% |
Mark Yao | 19 | 0.40% | 1 | 4.00% |
Jeffy Chen | 8 | 0.17% | 1 | 4.00% |
Haneen Mohammed | 6 | 0.13% | 1 | 4.00% |
Mirza Krak | 4 | 0.09% | 1 | 4.00% |
Andrzej Hajda | 1 | 0.02% | 1 | 4.00% |
Total | 4698 | 25 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd * Author: * Chris Zhong <zyw@rock-chips.com> * Nickey Yang <nickey.yang@rock-chips.com> */ #include <drm/drmP.h> #include <drm/drm_mipi_dsi.h> #include <drm/bridge/dw_mipi_dsi.h> #include <drm/drm_of.h> #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/math64.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <video/mipi_display.h> #include "rockchip_drm_drv.h" #include "rockchip_drm_vop.h" #define DSI_PHY_RSTZ 0xa0 #define PHY_DISFORCEPLL 0 #define PHY_ENFORCEPLL BIT(3) #define PHY_DISABLECLK 0 #define PHY_ENABLECLK BIT(2) #define PHY_RSTZ 0 #define PHY_UNRSTZ BIT(1) #define PHY_SHUTDOWNZ 0 #define PHY_UNSHUTDOWNZ BIT(0) #define DSI_PHY_IF_CFG 0xa4 #define N_LANES(n) ((((n) - 1) & 0x3) << 0) #define PHY_STOP_WAIT_TIME(cycle) (((cycle) & 0xff) << 8) #define DSI_PHY_STATUS 0xb0 #define LOCK BIT(0) #define STOP_STATE_CLK_LANE BIT(2) #define DSI_PHY_TST_CTRL0 0xb4 #define PHY_TESTCLK BIT(1) #define PHY_UNTESTCLK 0 #define PHY_TESTCLR BIT(0) #define PHY_UNTESTCLR 0 #define DSI_PHY_TST_CTRL1 0xb8 #define PHY_TESTEN BIT(16) #define PHY_UNTESTEN 0 #define PHY_TESTDOUT(n) (((n) & 0xff) << 8) #define PHY_TESTDIN(n) (((n) & 0xff) << 0) #define DSI_INT_ST0 0xbc #define DSI_INT_ST1 0xc0 #define DSI_INT_MSK0 0xc4 #define DSI_INT_MSK1 0xc8 #define PHY_STATUS_TIMEOUT_US 10000 #define CMD_PKT_STATUS_TIMEOUT_US 20000 #define BYPASS_VCO_RANGE BIT(7) #define VCO_RANGE_CON_SEL(val) (((val) & 0x7) << 3) #define VCO_IN_CAP_CON_DEFAULT (0x0 << 1) #define VCO_IN_CAP_CON_LOW (0x1 << 1) #define VCO_IN_CAP_CON_HIGH (0x2 << 1) #define REF_BIAS_CUR_SEL BIT(0) #define CP_CURRENT_3UA 0x1 #define CP_CURRENT_4_5UA 0x2 #define CP_CURRENT_7_5UA 0x6 #define CP_CURRENT_6UA 0x9 #define CP_CURRENT_12UA 0xb #define CP_CURRENT_SEL(val) ((val) & 0xf) #define CP_PROGRAM_EN BIT(7) #define LPF_RESISTORS_15_5KOHM 0x1 #define LPF_RESISTORS_13KOHM 0x2 #define LPF_RESISTORS_11_5KOHM 0x4 #define LPF_RESISTORS_10_5KOHM 0x8 #define LPF_RESISTORS_8KOHM 0x10 #define LPF_PROGRAM_EN BIT(6) #define LPF_RESISTORS_SEL(val) ((val) & 0x3f) #define HSFREQRANGE_SEL(val) (((val) & 0x3f) << 1) #define INPUT_DIVIDER(val) (((val) - 1) & 0x7f) #define LOW_PROGRAM_EN 0 #define HIGH_PROGRAM_EN BIT(7) #define LOOP_DIV_LOW_SEL(val) (((val) - 1) & 0x1f) #define LOOP_DIV_HIGH_SEL(val) ((((val) - 1) >> 5) & 0xf) #define PLL_LOOP_DIV_EN BIT(5) #define PLL_INPUT_DIV_EN BIT(4) #define POWER_CONTROL BIT(6) #define INTERNAL_REG_CURRENT BIT(3) #define BIAS_BLOCK_ON BIT(2) #define BANDGAP_ON BIT(0) #define TER_RESISTOR_HIGH BIT(7) #define TER_RESISTOR_LOW 0 #define LEVEL_SHIFTERS_ON BIT(6) #define TER_CAL_DONE BIT(5) #define SETRD_MAX (0x7 << 2) #define POWER_MANAGE BIT(1) #define TER_RESISTORS_ON BIT(0) #define BIASEXTR_SEL(val) ((val) & 0x7) #define BANDGAP_SEL(val) ((val) & 0x7) #define TLP_PROGRAM_EN BIT(7) #define THS_PRE_PROGRAM_EN BIT(7) #define THS_ZERO_PROGRAM_EN BIT(6) #define PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL 0x10 #define PLL_CP_CONTROL_PLL_LOCK_BYPASS 0x11 #define PLL_LPF_AND_CP_CONTROL 0x12 #define PLL_INPUT_DIVIDER_RATIO 0x17 #define PLL_LOOP_DIVIDER_RATIO 0x18 #define PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL 0x19 #define BANDGAP_AND_BIAS_CONTROL 0x20 #define TERMINATION_RESISTER_CONTROL 0x21 #define AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY 0x22 #define HS_RX_CONTROL_OF_LANE_0 0x44 #define HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL 0x60 #define HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL 0x61 #define HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL 0x62 #define HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL 0x63 #define HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL 0x64 #define HS_TX_CLOCK_LANE_POST_TIME_CONTROL 0x65 #define HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL 0x70 #define HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL 0x71 #define HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL 0x72 #define HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL 0x73 #define HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL 0x74 #define DW_MIPI_NEEDS_PHY_CFG_CLK BIT(0) #define DW_MIPI_NEEDS_GRF_CLK BIT(1) #define RK3288_GRF_SOC_CON6 0x025c #define RK3288_DSI0_LCDC_SEL BIT(6) #define RK3288_DSI1_LCDC_SEL BIT(9) #define RK3399_GRF_SOC_CON20 0x6250 #define RK3399_DSI0_LCDC_SEL BIT(0) #define RK3399_DSI1_LCDC_SEL BIT(4) #define RK3399_GRF_SOC_CON22 0x6258 #define RK3399_DSI0_TURNREQUEST (0xf << 12) #define RK3399_DSI0_TURNDISABLE (0xf << 8) #define RK3399_DSI0_FORCETXSTOPMODE (0xf << 4) #define RK3399_DSI0_FORCERXMODE (0xf << 0) #define RK3399_GRF_SOC_CON23 0x625c #define RK3399_DSI1_TURNDISABLE (0xf << 12) #define RK3399_DSI1_FORCETXSTOPMODE (0xf << 8) #define RK3399_DSI1_FORCERXMODE (0xf << 4) #define RK3399_DSI1_ENABLE (0xf << 0) #define RK3399_GRF_SOC_CON24 0x6260 #define RK3399_TXRX_MASTERSLAVEZ BIT(7) #define RK3399_TXRX_ENABLECLK BIT(6) #define RK3399_TXRX_BASEDIR BIT(5) #define HIWORD_UPDATE(val, mask) (val | (mask) << 16) #define to_dsi(nm) container_of(nm, struct dw_mipi_dsi_rockchip, nm) enum { BANDGAP_97_07, BANDGAP_98_05, BANDGAP_99_02, BANDGAP_100_00, BANDGAP_93_17, BANDGAP_94_15, BANDGAP_95_12, BANDGAP_96_10, }; enum { BIASEXTR_87_1, BIASEXTR_91_5, BIASEXTR_95_9, BIASEXTR_100, BIASEXTR_105_94, BIASEXTR_111_88, BIASEXTR_118_8, BIASEXTR_127_7, }; struct rockchip_dw_dsi_chip_data { u32 reg; u32 lcdsel_grf_reg; u32 lcdsel_big; u32 lcdsel_lit; u32 enable_grf_reg; u32 enable; u32 lanecfg1_grf_reg; u32 lanecfg1; u32 lanecfg2_grf_reg; u32 lanecfg2; unsigned int flags; unsigned int max_data_lanes; }; struct dw_mipi_dsi_rockchip { struct device *dev; struct drm_encoder encoder; void __iomem *base; struct regmap *grf_regmap; struct clk *pllref_clk; struct clk *grf_clk; struct clk *phy_cfg_clk; /* dual-channel */ bool is_slave; struct dw_mipi_dsi_rockchip *slave; unsigned int lane_mbps; /* per lane */ u16 input_div; u16 feedback_div; u32 format; struct dw_mipi_dsi *dmd; const struct rockchip_dw_dsi_chip_data *cdata; struct dw_mipi_dsi_plat_data pdata; int devcnt; }; struct dphy_pll_parameter_map { unsigned int max_mbps; u8 hsfreqrange; u8 icpctrl; u8 lpfctrl; }; /* The table is based on 27MHz DPHY pll reference clock. */ static const struct dphy_pll_parameter_map dppa_map[] = { { 89, 0x00, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM }, { 99, 0x10, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM }, { 109, 0x20, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM }, { 129, 0x01, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 139, 0x11, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 149, 0x21, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 169, 0x02, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM }, { 179, 0x12, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM }, { 199, 0x22, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM }, { 219, 0x03, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM }, { 239, 0x13, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM }, { 249, 0x23, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM }, { 269, 0x04, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM }, { 299, 0x14, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM }, { 329, 0x05, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 359, 0x15, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 399, 0x25, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 449, 0x06, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 499, 0x16, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 549, 0x07, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM }, { 599, 0x17, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM }, { 649, 0x08, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 699, 0x18, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 749, 0x09, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 799, 0x19, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 849, 0x29, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 899, 0x39, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 949, 0x0a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, { 999, 0x1a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, {1049, 0x2a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, {1099, 0x3a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, {1149, 0x0b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1199, 0x1b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1249, 0x2b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1299, 0x3b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1349, 0x0c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1399, 0x1c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1449, 0x2c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1500, 0x3c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM } }; static int max_mbps_to_parameter(unsigned int max_mbps) { int i; for (i = 0; i < ARRAY_SIZE(dppa_map); i++) if (dppa_map[i].max_mbps >= max_mbps) return i; return -EINVAL; } static inline void dsi_write(struct dw_mipi_dsi_rockchip *dsi, u32 reg, u32 val) { writel(val, dsi->base + reg); } static inline u32 dsi_read(struct dw_mipi_dsi_rockchip *dsi, u32 reg) { return readl(dsi->base + reg); } static inline void dsi_set(struct dw_mipi_dsi_rockchip *dsi, u32 reg, u32 mask) { dsi_write(dsi, reg, dsi_read(dsi, reg) | mask); } static inline void dsi_update_bits(struct dw_mipi_dsi_rockchip *dsi, u32 reg, u32 mask, u32 val) { dsi_write(dsi, reg, (dsi_read(dsi, reg) & ~mask) | val); } static void dw_mipi_dsi_phy_write(struct dw_mipi_dsi_rockchip *dsi, u8 test_code, u8 test_data) { /* * With the falling edge on TESTCLK, the TESTDIN[7:0] signal content * is latched internally as the current test code. Test data is * programmed internally by rising edge on TESTCLK. */ dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_TESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_code)); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLK | PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_UNTESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_data)); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR); } /** * ns2bc - Nanoseconds to byte clock cycles */ static inline unsigned int ns2bc(struct dw_mipi_dsi_rockchip *dsi, int ns) { return DIV_ROUND_UP(ns * dsi->lane_mbps / 8, 1000); } /** * ns2ui - Nanoseconds to UI time periods */ static inline unsigned int ns2ui(struct dw_mipi_dsi_rockchip *dsi, int ns) { return DIV_ROUND_UP(ns * dsi->lane_mbps, 1000); } static int dw_mipi_dsi_phy_init(void *priv_data) { struct dw_mipi_dsi_rockchip *dsi = priv_data; int ret, i, vco; /* * Get vco from frequency(lane_mbps) * vco frequency table * 000 - between 80 and 200 MHz * 001 - between 200 and 300 MHz * 010 - between 300 and 500 MHz * 011 - between 500 and 700 MHz * 100 - between 700 and 900 MHz * 101 - between 900 and 1100 MHz * 110 - between 1100 and 1300 MHz * 111 - between 1300 and 1500 MHz */ vco = (dsi->lane_mbps < 200) ? 0 : (dsi->lane_mbps + 100) / 200; i = max_mbps_to_parameter(dsi->lane_mbps); if (i < 0) { DRM_DEV_ERROR(dsi->dev, "failed to get parameter for %dmbps clock\n", dsi->lane_mbps); return i; } ret = clk_prepare_enable(dsi->phy_cfg_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable phy_cfg_clk\n"); return ret; } dw_mipi_dsi_phy_write(dsi, PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL, BYPASS_VCO_RANGE | VCO_RANGE_CON_SEL(vco) | VCO_IN_CAP_CON_LOW | REF_BIAS_CUR_SEL); dw_mipi_dsi_phy_write(dsi, PLL_CP_CONTROL_PLL_LOCK_BYPASS, CP_CURRENT_SEL(dppa_map[i].icpctrl)); dw_mipi_dsi_phy_write(dsi, PLL_LPF_AND_CP_CONTROL, CP_PROGRAM_EN | LPF_PROGRAM_EN | LPF_RESISTORS_SEL(dppa_map[i].lpfctrl)); dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_0, HSFREQRANGE_SEL(dppa_map[i].hsfreqrange)); dw_mipi_dsi_phy_write(dsi, PLL_INPUT_DIVIDER_RATIO, INPUT_DIVIDER(dsi->input_div)); dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO, LOOP_DIV_LOW_SEL(dsi->feedback_div) | LOW_PROGRAM_EN); /* * We need set PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL immediately * to make the configured LSB effective according to IP simulation * and lab test results. * Only in this way can we get correct mipi phy pll frequency. */ dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL, PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN); dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO, LOOP_DIV_HIGH_SEL(dsi->feedback_div) | HIGH_PROGRAM_EN); dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL, PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN); dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY, LOW_PROGRAM_EN | BIASEXTR_SEL(BIASEXTR_127_7)); dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY, HIGH_PROGRAM_EN | BANDGAP_SEL(BANDGAP_96_10)); dw_mipi_dsi_phy_write(dsi, BANDGAP_AND_BIAS_CONTROL, POWER_CONTROL | INTERNAL_REG_CURRENT | BIAS_BLOCK_ON | BANDGAP_ON); dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL, TER_RESISTOR_LOW | TER_CAL_DONE | SETRD_MAX | TER_RESISTORS_ON); dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL, TER_RESISTOR_HIGH | LEVEL_SHIFTERS_ON | SETRD_MAX | POWER_MANAGE | TER_RESISTORS_ON); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL, TLP_PROGRAM_EN | ns2bc(dsi, 500)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | ns2ui(dsi, 40)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL, THS_ZERO_PROGRAM_EN | ns2bc(dsi, 300)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | ns2ui(dsi, 100)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL, BIT(5) | ns2bc(dsi, 100)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_POST_TIME_CONTROL, BIT(5) | (ns2bc(dsi, 60) + 7)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL, TLP_PROGRAM_EN | ns2bc(dsi, 500)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | (ns2ui(dsi, 50) + 20)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL, THS_ZERO_PROGRAM_EN | (ns2bc(dsi, 140) + 2)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | (ns2ui(dsi, 60) + 8)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL, BIT(5) | ns2bc(dsi, 100)); clk_disable_unprepare(dsi->phy_cfg_clk); return ret; } static int dw_mipi_dsi_get_lane_mbps(void *priv_data, struct drm_display_mode *mode, unsigned long mode_flags, u32 lanes, u32 format, unsigned int *lane_mbps) { struct dw_mipi_dsi_rockchip *dsi = priv_data; int bpp; unsigned long mpclk, tmp; unsigned int target_mbps = 1000; unsigned int max_mbps = dppa_map[ARRAY_SIZE(dppa_map) - 1].max_mbps; unsigned long best_freq = 0; unsigned long fvco_min, fvco_max, fin, fout; unsigned int min_prediv, max_prediv; unsigned int _prediv, uninitialized_var(best_prediv); unsigned long _fbdiv, uninitialized_var(best_fbdiv); unsigned long min_delta = ULONG_MAX; dsi->format = format; bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); if (bpp < 0) { DRM_DEV_ERROR(dsi->dev, "failed to get bpp for pixel format %d\n", dsi->format); return bpp; } mpclk = DIV_ROUND_UP(mode->clock, MSEC_PER_SEC); if (mpclk) { /* take 1 / 0.8, since mbps must big than bandwidth of RGB */ tmp = mpclk * (bpp / lanes) * 10 / 8; if (tmp < max_mbps) target_mbps = tmp; else DRM_DEV_ERROR(dsi->dev, "DPHY clock frequency is out of range\n"); } fin = clk_get_rate(dsi->pllref_clk); fout = target_mbps * USEC_PER_SEC; /* constraint: 5Mhz <= Fref / N <= 40MHz */ min_prediv = DIV_ROUND_UP(fin, 40 * USEC_PER_SEC); max_prediv = fin / (5 * USEC_PER_SEC); /* constraint: 80MHz <= Fvco <= 1500Mhz */ fvco_min = 80 * USEC_PER_SEC; fvco_max = 1500 * USEC_PER_SEC; for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) { u64 tmp; u32 delta; /* Fvco = Fref * M / N */ tmp = (u64)fout * _prediv; do_div(tmp, fin); _fbdiv = tmp; /* * Due to the use of a "by 2 pre-scaler," the range of the * feedback multiplication value M is limited to even division * numbers, and m must be greater than 6, not bigger than 512. */ if (_fbdiv < 6 || _fbdiv > 512) continue; _fbdiv += _fbdiv % 2; tmp = (u64)_fbdiv * fin; do_div(tmp, _prediv); if (tmp < fvco_min || tmp > fvco_max) continue; delta = abs(fout - tmp); if (delta < min_delta) { best_prediv = _prediv; best_fbdiv = _fbdiv; min_delta = delta; best_freq = tmp; } } if (best_freq) { dsi->lane_mbps = DIV_ROUND_UP(best_freq, USEC_PER_SEC); *lane_mbps = dsi->lane_mbps; dsi->input_div = best_prediv; dsi->feedback_div = best_fbdiv; } else { DRM_DEV_ERROR(dsi->dev, "Can not find best_freq for DPHY\n"); return -EINVAL; } return 0; } static const struct dw_mipi_dsi_phy_ops dw_mipi_dsi_rockchip_phy_ops = { .init = dw_mipi_dsi_phy_init, .get_lane_mbps = dw_mipi_dsi_get_lane_mbps, }; static void dw_mipi_dsi_rockchip_config(struct dw_mipi_dsi_rockchip *dsi, int mux) { if (dsi->cdata->lcdsel_grf_reg) regmap_write(dsi->grf_regmap, dsi->cdata->lcdsel_grf_reg, mux ? dsi->cdata->lcdsel_lit : dsi->cdata->lcdsel_big); if (dsi->cdata->lanecfg1_grf_reg) regmap_write(dsi->grf_regmap, dsi->cdata->lanecfg1_grf_reg, dsi->cdata->lanecfg1); if (dsi->cdata->lanecfg2_grf_reg) regmap_write(dsi->grf_regmap, dsi->cdata->lanecfg2_grf_reg, dsi->cdata->lanecfg2); if (dsi->cdata->enable_grf_reg) regmap_write(dsi->grf_regmap, dsi->cdata->enable_grf_reg, dsi->cdata->enable); } static int dw_mipi_dsi_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc_state); struct dw_mipi_dsi_rockchip *dsi = to_dsi(encoder); switch (dsi->format) { case MIPI_DSI_FMT_RGB888: s->output_mode = ROCKCHIP_OUT_MODE_P888; break; case MIPI_DSI_FMT_RGB666: s->output_mode = ROCKCHIP_OUT_MODE_P666; break; case MIPI_DSI_FMT_RGB565: s->output_mode = ROCKCHIP_OUT_MODE_P565; break; default: WARN_ON(1); return -EINVAL; } s->output_type = DRM_MODE_CONNECTOR_DSI; if (dsi->slave) s->output_flags = ROCKCHIP_OUTPUT_DSI_DUAL; return 0; } static void dw_mipi_dsi_encoder_enable(struct drm_encoder *encoder) { struct dw_mipi_dsi_rockchip *dsi = to_dsi(encoder); int ret, mux; mux = drm_of_encoder_active_endpoint_id(dsi->dev->of_node, &dsi->encoder); if (mux < 0) return; pm_runtime_get_sync(dsi->dev); if (dsi->slave) pm_runtime_get_sync(dsi->slave->dev); /* * For the RK3399, the clk of grf must be enabled before writing grf * register. And for RK3288 or other soc, this grf_clk must be NULL, * the clk_prepare_enable return true directly. */ ret = clk_prepare_enable(dsi->grf_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret); return; } dw_mipi_dsi_rockchip_config(dsi, mux); if (dsi->slave) dw_mipi_dsi_rockchip_config(dsi->slave, mux); clk_disable_unprepare(dsi->grf_clk); } static void dw_mipi_dsi_encoder_disable(struct drm_encoder *encoder) { struct dw_mipi_dsi_rockchip *dsi = to_dsi(encoder); if (dsi->slave) pm_runtime_put(dsi->slave->dev); pm_runtime_put(dsi->dev); } static const struct drm_encoder_helper_funcs dw_mipi_dsi_encoder_helper_funcs = { .atomic_check = dw_mipi_dsi_encoder_atomic_check, .enable = dw_mipi_dsi_encoder_enable, .disable = dw_mipi_dsi_encoder_disable, }; static const struct drm_encoder_funcs dw_mipi_dsi_encoder_funcs = { .destroy = drm_encoder_cleanup, }; static int rockchip_dsi_drm_create_encoder(struct dw_mipi_dsi_rockchip *dsi, struct drm_device *drm_dev) { struct drm_encoder *encoder = &dsi->encoder; int ret; encoder->possible_crtcs = drm_of_find_possible_crtcs(drm_dev, dsi->dev->of_node); ret = drm_encoder_init(drm_dev, encoder, &dw_mipi_dsi_encoder_funcs, DRM_MODE_ENCODER_DSI, NULL); if (ret) { DRM_ERROR("Failed to initialize encoder with drm\n"); return ret; } drm_encoder_helper_add(encoder, &dw_mipi_dsi_encoder_helper_funcs); return 0; } static struct device *dw_mipi_dsi_rockchip_find_second(struct dw_mipi_dsi_rockchip *dsi) { const struct of_device_id *match; struct device_node *node = NULL, *local; match = of_match_device(dsi->dev->driver->of_match_table, dsi->dev); local = of_graph_get_remote_node(dsi->dev->of_node, 1, 0); if (!local) return NULL; while ((node = of_find_compatible_node(node, NULL, match->compatible))) { struct device_node *remote; /* found ourself */ if (node == dsi->dev->of_node) continue; remote = of_graph_get_remote_node(node, 1, 0); if (!remote) continue; /* same display device in port1-ep0 for both */ if (remote == local) { struct dw_mipi_dsi_rockchip *dsi2; struct platform_device *pdev; pdev = of_find_device_by_node(node); /* * we have found the second, so will either return it * or return with an error. In any case won't need the * nodes anymore nor continue the loop. */ of_node_put(remote); of_node_put(node); of_node_put(local); if (!pdev) return ERR_PTR(-EPROBE_DEFER); dsi2 = platform_get_drvdata(pdev); if (!dsi2) { platform_device_put(pdev); return ERR_PTR(-EPROBE_DEFER); } return &pdev->dev; } of_node_put(remote); } of_node_put(local); return NULL; } static int dw_mipi_dsi_rockchip_bind(struct device *dev, struct device *master, void *data) { struct dw_mipi_dsi_rockchip *dsi = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct device *second; bool master1, master2; int ret; second = dw_mipi_dsi_rockchip_find_second(dsi); if (IS_ERR(second)) return PTR_ERR(second); if (second) { master1 = of_property_read_bool(dsi->dev->of_node, "clock-master"); master2 = of_property_read_bool(second->of_node, "clock-master"); if (master1 && master2) { DRM_DEV_ERROR(dsi->dev, "only one clock-master allowed\n"); return -EINVAL; } if (!master1 && !master2) { DRM_DEV_ERROR(dsi->dev, "no clock-master defined\n"); return -EINVAL; } /* we are the slave in dual-DSI */ if (!master1) { dsi->is_slave = true; return 0; } dsi->slave = dev_get_drvdata(second); if (!dsi->slave) { DRM_DEV_ERROR(dev, "could not get slaves data\n"); return -ENODEV; } dsi->slave->is_slave = true; dw_mipi_dsi_set_slave(dsi->dmd, dsi->slave->dmd); put_device(second); } ret = clk_prepare_enable(dsi->pllref_clk); if (ret) { DRM_DEV_ERROR(dev, "Failed to enable pllref_clk: %d\n", ret); return ret; } ret = rockchip_dsi_drm_create_encoder(dsi, drm_dev); if (ret) { DRM_DEV_ERROR(dev, "Failed to create drm encoder\n"); return ret; } ret = dw_mipi_dsi_bind(dsi->dmd, &dsi->encoder); if (ret) { DRM_DEV_ERROR(dev, "Failed to bind: %d\n", ret); return ret; } return 0; } static void dw_mipi_dsi_rockchip_unbind(struct device *dev, struct device *master, void *data) { struct dw_mipi_dsi_rockchip *dsi = dev_get_drvdata(dev); if (dsi->is_slave) return; dw_mipi_dsi_unbind(dsi->dmd); clk_disable_unprepare(dsi->pllref_clk); } static const struct component_ops dw_mipi_dsi_rockchip_ops = { .bind = dw_mipi_dsi_rockchip_bind, .unbind = dw_mipi_dsi_rockchip_unbind, }; static int dw_mipi_dsi_rockchip_host_attach(void *priv_data, struct mipi_dsi_device *device) { struct dw_mipi_dsi_rockchip *dsi = priv_data; struct device *second; int ret; ret = component_add(dsi->dev, &dw_mipi_dsi_rockchip_ops); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to register component: %d\n", ret); return ret; } second = dw_mipi_dsi_rockchip_find_second(dsi); if (IS_ERR(second)) return PTR_ERR(second); if (second) { ret = component_add(second, &dw_mipi_dsi_rockchip_ops); if (ret) { DRM_DEV_ERROR(second, "Failed to register component: %d\n", ret); return ret; } } return 0; } static int dw_mipi_dsi_rockchip_host_detach(void *priv_data, struct mipi_dsi_device *device) { struct dw_mipi_dsi_rockchip *dsi = priv_data; struct device *second; second = dw_mipi_dsi_rockchip_find_second(dsi); if (second && !IS_ERR(second)) component_del(second, &dw_mipi_dsi_rockchip_ops); component_del(dsi->dev, &dw_mipi_dsi_rockchip_ops); return 0; } static const struct dw_mipi_dsi_host_ops dw_mipi_dsi_rockchip_host_ops = { .attach = dw_mipi_dsi_rockchip_host_attach, .detach = dw_mipi_dsi_rockchip_host_detach, }; static int dw_mipi_dsi_rockchip_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct dw_mipi_dsi_rockchip *dsi; struct resource *res; const struct rockchip_dw_dsi_chip_data *cdata = of_device_get_match_data(dev); int ret, i; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dsi->base = devm_ioremap_resource(dev, res); if (IS_ERR(dsi->base)) { DRM_DEV_ERROR(dev, "Unable to get dsi registers\n"); return PTR_ERR(dsi->base); } i = 0; while (cdata[i].reg) { if (cdata[i].reg == res->start) { dsi->cdata = &cdata[i]; break; } i++; } if (!dsi->cdata) { dev_err(dev, "no dsi-config for %s node\n", np->name); return -EINVAL; } dsi->pllref_clk = devm_clk_get(dev, "ref"); if (IS_ERR(dsi->pllref_clk)) { ret = PTR_ERR(dsi->pllref_clk); DRM_DEV_ERROR(dev, "Unable to get pll reference clock: %d\n", ret); return ret; } if (dsi->cdata->flags & DW_MIPI_NEEDS_PHY_CFG_CLK) { dsi->phy_cfg_clk = devm_clk_get(dev, "phy_cfg"); if (IS_ERR(dsi->phy_cfg_clk)) { ret = PTR_ERR(dsi->phy_cfg_clk); DRM_DEV_ERROR(dev, "Unable to get phy_cfg_clk: %d\n", ret); return ret; } } if (dsi->cdata->flags & DW_MIPI_NEEDS_GRF_CLK) { dsi->grf_clk = devm_clk_get(dev, "grf"); if (IS_ERR(dsi->grf_clk)) { ret = PTR_ERR(dsi->grf_clk); DRM_DEV_ERROR(dev, "Unable to get grf_clk: %d\n", ret); return ret; } } dsi->grf_regmap = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); if (IS_ERR(dsi->grf_regmap)) { DRM_DEV_ERROR(dsi->dev, "Unable to get rockchip,grf\n"); return PTR_ERR(dsi->grf_regmap); } dsi->dev = dev; dsi->pdata.base = dsi->base; dsi->pdata.max_data_lanes = dsi->cdata->max_data_lanes; dsi->pdata.phy_ops = &dw_mipi_dsi_rockchip_phy_ops; dsi->pdata.host_ops = &dw_mipi_dsi_rockchip_host_ops; dsi->pdata.priv_data = dsi; platform_set_drvdata(pdev, dsi); dsi->dmd = dw_mipi_dsi_probe(pdev, &dsi->pdata); if (IS_ERR(dsi->dmd)) { ret = PTR_ERR(dsi->dmd); if (ret != -EPROBE_DEFER) DRM_DEV_ERROR(dev, "Failed to probe dw_mipi_dsi: %d\n", ret); goto err_clkdisable; } return 0; err_clkdisable: clk_disable_unprepare(dsi->pllref_clk); return ret; } static int dw_mipi_dsi_rockchip_remove(struct platform_device *pdev) { struct dw_mipi_dsi_rockchip *dsi = platform_get_drvdata(pdev); if (dsi->devcnt == 0) component_del(dsi->dev, &dw_mipi_dsi_rockchip_ops); dw_mipi_dsi_remove(dsi->dmd); return 0; } static const struct rockchip_dw_dsi_chip_data rk3288_chip_data[] = { { .reg = 0xff960000, .lcdsel_grf_reg = RK3288_GRF_SOC_CON6, .lcdsel_big = HIWORD_UPDATE(0, RK3288_DSI0_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3288_DSI0_LCDC_SEL, RK3288_DSI0_LCDC_SEL), .max_data_lanes = 4, }, { .reg = 0xff964000, .lcdsel_grf_reg = RK3288_GRF_SOC_CON6, .lcdsel_big = HIWORD_UPDATE(0, RK3288_DSI1_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3288_DSI1_LCDC_SEL, RK3288_DSI1_LCDC_SEL), .max_data_lanes = 4, }, { /* sentinel */ } }; static const struct rockchip_dw_dsi_chip_data rk3399_chip_data[] = { { .reg = 0xff960000, .lcdsel_grf_reg = RK3399_GRF_SOC_CON20, .lcdsel_big = HIWORD_UPDATE(0, RK3399_DSI0_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3399_DSI0_LCDC_SEL, RK3399_DSI0_LCDC_SEL), .lanecfg1_grf_reg = RK3399_GRF_SOC_CON22, .lanecfg1 = HIWORD_UPDATE(0, RK3399_DSI0_TURNREQUEST | RK3399_DSI0_TURNDISABLE | RK3399_DSI0_FORCETXSTOPMODE | RK3399_DSI0_FORCERXMODE), .flags = DW_MIPI_NEEDS_PHY_CFG_CLK | DW_MIPI_NEEDS_GRF_CLK, .max_data_lanes = 4, }, { .reg = 0xff968000, .lcdsel_grf_reg = RK3399_GRF_SOC_CON20, .lcdsel_big = HIWORD_UPDATE(0, RK3399_DSI1_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3399_DSI1_LCDC_SEL, RK3399_DSI1_LCDC_SEL), .lanecfg1_grf_reg = RK3399_GRF_SOC_CON23, .lanecfg1 = HIWORD_UPDATE(0, RK3399_DSI1_TURNDISABLE | RK3399_DSI1_FORCETXSTOPMODE | RK3399_DSI1_FORCERXMODE | RK3399_DSI1_ENABLE), .lanecfg2_grf_reg = RK3399_GRF_SOC_CON24, .lanecfg2 = HIWORD_UPDATE(RK3399_TXRX_MASTERSLAVEZ | RK3399_TXRX_ENABLECLK, RK3399_TXRX_MASTERSLAVEZ | RK3399_TXRX_ENABLECLK | RK3399_TXRX_BASEDIR), .enable_grf_reg = RK3399_GRF_SOC_CON23, .enable = HIWORD_UPDATE(RK3399_DSI1_ENABLE, RK3399_DSI1_ENABLE), .flags = DW_MIPI_NEEDS_PHY_CFG_CLK | DW_MIPI_NEEDS_GRF_CLK, .max_data_lanes = 4, }, { /* sentinel */ } }; static const struct of_device_id dw_mipi_dsi_rockchip_dt_ids[] = { { .compatible = "rockchip,rk3288-mipi-dsi", .data = &rk3288_chip_data, }, { .compatible = "rockchip,rk3399-mipi-dsi", .data = &rk3399_chip_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, dw_mipi_dsi_rockchip_dt_ids); struct platform_driver dw_mipi_dsi_rockchip_driver = { .probe = dw_mipi_dsi_rockchip_probe, .remove = dw_mipi_dsi_rockchip_remove, .driver = { .of_match_table = dw_mipi_dsi_rockchip_dt_ids, .name = "dw-mipi-dsi-rockchip", }, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1