Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 11591 | 99.49% | 26 | 81.25% |
Kees Cook | 45 | 0.39% | 3 | 9.38% |
Daniel Vetter | 11 | 0.09% | 1 | 3.12% |
Michal Hocko | 2 | 0.02% | 1 | 3.12% |
Colin Ian King | 1 | 0.01% | 1 | 3.12% |
Total | 11650 | 32 |
/* * Test cases for the drm_mm range manager */ #define pr_fmt(fmt) "drm_mm: " fmt #include <linux/module.h> #include <linux/prime_numbers.h> #include <linux/slab.h> #include <linux/random.h> #include <linux/vmalloc.h> #include <drm/drm_mm.h> #include "../lib/drm_random.h" #define TESTS "drm_mm_selftests.h" #include "drm_selftest.h" static unsigned int random_seed; static unsigned int max_iterations = 8192; static unsigned int max_prime = 128; enum { BEST, BOTTOMUP, TOPDOWN, EVICT, }; static const struct insert_mode { const char *name; enum drm_mm_insert_mode mode; } insert_modes[] = { [BEST] = { "best", DRM_MM_INSERT_BEST }, [BOTTOMUP] = { "bottom-up", DRM_MM_INSERT_LOW }, [TOPDOWN] = { "top-down", DRM_MM_INSERT_HIGH }, [EVICT] = { "evict", DRM_MM_INSERT_EVICT }, {} }, evict_modes[] = { { "bottom-up", DRM_MM_INSERT_LOW }, { "top-down", DRM_MM_INSERT_HIGH }, {} }; static int igt_sanitycheck(void *ignored) { pr_info("%s - ok!\n", __func__); return 0; } static bool assert_no_holes(const struct drm_mm *mm) { struct drm_mm_node *hole; u64 hole_start, hole_end; unsigned long count; count = 0; drm_mm_for_each_hole(hole, mm, hole_start, hole_end) count++; if (count) { pr_err("Expected to find no holes (after reserve), found %lu instead\n", count); return false; } drm_mm_for_each_node(hole, mm) { if (drm_mm_hole_follows(hole)) { pr_err("Hole follows node, expected none!\n"); return false; } } return true; } static bool assert_one_hole(const struct drm_mm *mm, u64 start, u64 end) { struct drm_mm_node *hole; u64 hole_start, hole_end; unsigned long count; bool ok = true; if (end <= start) return true; count = 0; drm_mm_for_each_hole(hole, mm, hole_start, hole_end) { if (start != hole_start || end != hole_end) { if (ok) pr_err("empty mm has incorrect hole, found (%llx, %llx), expect (%llx, %llx)\n", hole_start, hole_end, start, end); ok = false; } count++; } if (count != 1) { pr_err("Expected to find one hole, found %lu instead\n", count); ok = false; } return ok; } static bool assert_continuous(const struct drm_mm *mm, u64 size) { struct drm_mm_node *node, *check, *found; unsigned long n; u64 addr; if (!assert_no_holes(mm)) return false; n = 0; addr = 0; drm_mm_for_each_node(node, mm) { if (node->start != addr) { pr_err("node[%ld] list out of order, expected %llx found %llx\n", n, addr, node->start); return false; } if (node->size != size) { pr_err("node[%ld].size incorrect, expected %llx, found %llx\n", n, size, node->size); return false; } if (drm_mm_hole_follows(node)) { pr_err("node[%ld] is followed by a hole!\n", n); return false; } found = NULL; drm_mm_for_each_node_in_range(check, mm, addr, addr + size) { if (node != check) { pr_err("lookup return wrong node, expected start %llx, found %llx\n", node->start, check->start); return false; } found = check; } if (!found) { pr_err("lookup failed for node %llx + %llx\n", addr, size); return false; } addr += size; n++; } return true; } static u64 misalignment(struct drm_mm_node *node, u64 alignment) { u64 rem; if (!alignment) return 0; div64_u64_rem(node->start, alignment, &rem); return rem; } static bool assert_node(struct drm_mm_node *node, struct drm_mm *mm, u64 size, u64 alignment, unsigned long color) { bool ok = true; if (!drm_mm_node_allocated(node) || node->mm != mm) { pr_err("node not allocated\n"); ok = false; } if (node->size != size) { pr_err("node has wrong size, found %llu, expected %llu\n", node->size, size); ok = false; } if (misalignment(node, alignment)) { pr_err("node is misaligned, start %llx rem %llu, expected alignment %llu\n", node->start, misalignment(node, alignment), alignment); ok = false; } if (node->color != color) { pr_err("node has wrong color, found %lu, expected %lu\n", node->color, color); ok = false; } return ok; } #define show_mm(mm) do { \ struct drm_printer __p = drm_debug_printer(__func__); \ drm_mm_print((mm), &__p); } while (0) static int igt_init(void *ignored) { const unsigned int size = 4096; struct drm_mm mm; struct drm_mm_node tmp; int ret = -EINVAL; /* Start with some simple checks on initialising the struct drm_mm */ memset(&mm, 0, sizeof(mm)); if (drm_mm_initialized(&mm)) { pr_err("zeroed mm claims to be initialized\n"); return ret; } memset(&mm, 0xff, sizeof(mm)); drm_mm_init(&mm, 0, size); if (!drm_mm_initialized(&mm)) { pr_err("mm claims not to be initialized\n"); goto out; } if (!drm_mm_clean(&mm)) { pr_err("mm not empty on creation\n"); goto out; } /* After creation, it should all be one massive hole */ if (!assert_one_hole(&mm, 0, size)) { ret = -EINVAL; goto out; } memset(&tmp, 0, sizeof(tmp)); tmp.start = 0; tmp.size = size; ret = drm_mm_reserve_node(&mm, &tmp); if (ret) { pr_err("failed to reserve whole drm_mm\n"); goto out; } /* After filling the range entirely, there should be no holes */ if (!assert_no_holes(&mm)) { ret = -EINVAL; goto out; } /* And then after emptying it again, the massive hole should be back */ drm_mm_remove_node(&tmp); if (!assert_one_hole(&mm, 0, size)) { ret = -EINVAL; goto out; } out: if (ret) show_mm(&mm); drm_mm_takedown(&mm); return ret; } static int igt_debug(void *ignored) { struct drm_mm mm; struct drm_mm_node nodes[2]; int ret; /* Create a small drm_mm with a couple of nodes and a few holes, and * check that the debug iterator doesn't explode over a trivial drm_mm. */ drm_mm_init(&mm, 0, 4096); memset(nodes, 0, sizeof(nodes)); nodes[0].start = 512; nodes[0].size = 1024; ret = drm_mm_reserve_node(&mm, &nodes[0]); if (ret) { pr_err("failed to reserve node[0] {start=%lld, size=%lld)\n", nodes[0].start, nodes[0].size); return ret; } nodes[1].size = 1024; nodes[1].start = 4096 - 512 - nodes[1].size; ret = drm_mm_reserve_node(&mm, &nodes[1]); if (ret) { pr_err("failed to reserve node[1] {start=%lld, size=%lld)\n", nodes[1].start, nodes[1].size); return ret; } show_mm(&mm); return 0; } static struct drm_mm_node *set_node(struct drm_mm_node *node, u64 start, u64 size) { node->start = start; node->size = size; return node; } static bool expect_reserve_fail(struct drm_mm *mm, struct drm_mm_node *node) { int err; err = drm_mm_reserve_node(mm, node); if (likely(err == -ENOSPC)) return true; if (!err) { pr_err("impossible reserve succeeded, node %llu + %llu\n", node->start, node->size); drm_mm_remove_node(node); } else { pr_err("impossible reserve failed with wrong error %d [expected %d], node %llu + %llu\n", err, -ENOSPC, node->start, node->size); } return false; } static bool check_reserve_boundaries(struct drm_mm *mm, unsigned int count, u64 size) { const struct boundary { u64 start, size; const char *name; } boundaries[] = { #define B(st, sz) { (st), (sz), "{ " #st ", " #sz "}" } B(0, 0), B(-size, 0), B(size, 0), B(size * count, 0), B(-size, size), B(-size, -size), B(-size, 2*size), B(0, -size), B(size, -size), B(count*size, size), B(count*size, -size), B(count*size, count*size), B(count*size, -count*size), B(count*size, -(count+1)*size), B((count+1)*size, size), B((count+1)*size, -size), B((count+1)*size, -2*size), #undef B }; struct drm_mm_node tmp = {}; int n; for (n = 0; n < ARRAY_SIZE(boundaries); n++) { if (!expect_reserve_fail(mm, set_node(&tmp, boundaries[n].start, boundaries[n].size))) { pr_err("boundary[%d:%s] failed, count=%u, size=%lld\n", n, boundaries[n].name, count, size); return false; } } return true; } static int __igt_reserve(unsigned int count, u64 size) { DRM_RND_STATE(prng, random_seed); struct drm_mm mm; struct drm_mm_node tmp, *nodes, *node, *next; unsigned int *order, n, m, o = 0; int ret, err; /* For exercising drm_mm_reserve_node(), we want to check that * reservations outside of the drm_mm range are rejected, and to * overlapping and otherwise already occupied ranges. Afterwards, * the tree and nodes should be intact. */ DRM_MM_BUG_ON(!count); DRM_MM_BUG_ON(!size); ret = -ENOMEM; order = drm_random_order(count, &prng); if (!order) goto err; nodes = vzalloc(array_size(count, sizeof(*nodes))); if (!nodes) goto err_order; ret = -EINVAL; drm_mm_init(&mm, 0, count * size); if (!check_reserve_boundaries(&mm, count, size)) goto out; for (n = 0; n < count; n++) { nodes[n].start = order[n] * size; nodes[n].size = size; err = drm_mm_reserve_node(&mm, &nodes[n]); if (err) { pr_err("reserve failed, step %d, start %llu\n", n, nodes[n].start); ret = err; goto out; } if (!drm_mm_node_allocated(&nodes[n])) { pr_err("reserved node not allocated! step %d, start %llu\n", n, nodes[n].start); goto out; } if (!expect_reserve_fail(&mm, &nodes[n])) goto out; } /* After random insertion the nodes should be in order */ if (!assert_continuous(&mm, size)) goto out; /* Repeated use should then fail */ drm_random_reorder(order, count, &prng); for (n = 0; n < count; n++) { if (!expect_reserve_fail(&mm, set_node(&tmp, order[n] * size, 1))) goto out; /* Remove and reinsert should work */ drm_mm_remove_node(&nodes[order[n]]); err = drm_mm_reserve_node(&mm, &nodes[order[n]]); if (err) { pr_err("reserve failed, step %d, start %llu\n", n, nodes[n].start); ret = err; goto out; } } if (!assert_continuous(&mm, size)) goto out; /* Overlapping use should then fail */ for (n = 0; n < count; n++) { if (!expect_reserve_fail(&mm, set_node(&tmp, 0, size*count))) goto out; } for (n = 0; n < count; n++) { if (!expect_reserve_fail(&mm, set_node(&tmp, size * n, size * (count - n)))) goto out; } /* Remove several, reinsert, check full */ for_each_prime_number(n, min(max_prime, count)) { for (m = 0; m < n; m++) { node = &nodes[order[(o + m) % count]]; drm_mm_remove_node(node); } for (m = 0; m < n; m++) { node = &nodes[order[(o + m) % count]]; err = drm_mm_reserve_node(&mm, node); if (err) { pr_err("reserve failed, step %d/%d, start %llu\n", m, n, node->start); ret = err; goto out; } } o += n; if (!assert_continuous(&mm, size)) goto out; } ret = 0; out: drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); vfree(nodes); err_order: kfree(order); err: return ret; } static int igt_reserve(void *ignored) { const unsigned int count = min_t(unsigned int, BIT(10), max_iterations); int n, ret; for_each_prime_number_from(n, 1, 54) { u64 size = BIT_ULL(n); ret = __igt_reserve(count, size - 1); if (ret) return ret; ret = __igt_reserve(count, size); if (ret) return ret; ret = __igt_reserve(count, size + 1); if (ret) return ret; cond_resched(); } return 0; } static bool expect_insert(struct drm_mm *mm, struct drm_mm_node *node, u64 size, u64 alignment, unsigned long color, const struct insert_mode *mode) { int err; err = drm_mm_insert_node_generic(mm, node, size, alignment, color, mode->mode); if (err) { pr_err("insert (size=%llu, alignment=%llu, color=%lu, mode=%s) failed with err=%d\n", size, alignment, color, mode->name, err); return false; } if (!assert_node(node, mm, size, alignment, color)) { drm_mm_remove_node(node); return false; } return true; } static bool expect_insert_fail(struct drm_mm *mm, u64 size) { struct drm_mm_node tmp = {}; int err; err = drm_mm_insert_node(mm, &tmp, size); if (likely(err == -ENOSPC)) return true; if (!err) { pr_err("impossible insert succeeded, node %llu + %llu\n", tmp.start, tmp.size); drm_mm_remove_node(&tmp); } else { pr_err("impossible insert failed with wrong error %d [expected %d], size %llu\n", err, -ENOSPC, size); } return false; } static int __igt_insert(unsigned int count, u64 size, bool replace) { DRM_RND_STATE(prng, random_seed); const struct insert_mode *mode; struct drm_mm mm; struct drm_mm_node *nodes, *node, *next; unsigned int *order, n, m, o = 0; int ret; /* Fill a range with lots of nodes, check it doesn't fail too early */ DRM_MM_BUG_ON(!count); DRM_MM_BUG_ON(!size); ret = -ENOMEM; nodes = vmalloc(array_size(count, sizeof(*nodes))); if (!nodes) goto err; order = drm_random_order(count, &prng); if (!order) goto err_nodes; ret = -EINVAL; drm_mm_init(&mm, 0, count * size); for (mode = insert_modes; mode->name; mode++) { for (n = 0; n < count; n++) { struct drm_mm_node tmp; node = replace ? &tmp : &nodes[n]; memset(node, 0, sizeof(*node)); if (!expect_insert(&mm, node, size, 0, n, mode)) { pr_err("%s insert failed, size %llu step %d\n", mode->name, size, n); goto out; } if (replace) { drm_mm_replace_node(&tmp, &nodes[n]); if (drm_mm_node_allocated(&tmp)) { pr_err("replaced old-node still allocated! step %d\n", n); goto out; } if (!assert_node(&nodes[n], &mm, size, 0, n)) { pr_err("replaced node did not inherit parameters, size %llu step %d\n", size, n); goto out; } if (tmp.start != nodes[n].start) { pr_err("replaced node mismatch location expected [%llx + %llx], found [%llx + %llx]\n", tmp.start, size, nodes[n].start, nodes[n].size); goto out; } } } /* After random insertion the nodes should be in order */ if (!assert_continuous(&mm, size)) goto out; /* Repeated use should then fail */ if (!expect_insert_fail(&mm, size)) goto out; /* Remove one and reinsert, as the only hole it should refill itself */ for (n = 0; n < count; n++) { u64 addr = nodes[n].start; drm_mm_remove_node(&nodes[n]); if (!expect_insert(&mm, &nodes[n], size, 0, n, mode)) { pr_err("%s reinsert failed, size %llu step %d\n", mode->name, size, n); goto out; } if (nodes[n].start != addr) { pr_err("%s reinsert node moved, step %d, expected %llx, found %llx\n", mode->name, n, addr, nodes[n].start); goto out; } if (!assert_continuous(&mm, size)) goto out; } /* Remove several, reinsert, check full */ for_each_prime_number(n, min(max_prime, count)) { for (m = 0; m < n; m++) { node = &nodes[order[(o + m) % count]]; drm_mm_remove_node(node); } for (m = 0; m < n; m++) { node = &nodes[order[(o + m) % count]]; if (!expect_insert(&mm, node, size, 0, n, mode)) { pr_err("%s multiple reinsert failed, size %llu step %d\n", mode->name, size, n); goto out; } } o += n; if (!assert_continuous(&mm, size)) goto out; if (!expect_insert_fail(&mm, size)) goto out; } drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); DRM_MM_BUG_ON(!drm_mm_clean(&mm)); cond_resched(); } ret = 0; out: drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); kfree(order); err_nodes: vfree(nodes); err: return ret; } static int igt_insert(void *ignored) { const unsigned int count = min_t(unsigned int, BIT(10), max_iterations); unsigned int n; int ret; for_each_prime_number_from(n, 1, 54) { u64 size = BIT_ULL(n); ret = __igt_insert(count, size - 1, false); if (ret) return ret; ret = __igt_insert(count, size, false); if (ret) return ret; ret = __igt_insert(count, size + 1, false); if (ret) return ret; cond_resched(); } return 0; } static int igt_replace(void *ignored) { const unsigned int count = min_t(unsigned int, BIT(10), max_iterations); unsigned int n; int ret; /* Reuse igt_insert to exercise replacement by inserting a dummy node, * then replacing it with the intended node. We want to check that * the tree is intact and all the information we need is carried * across to the target node. */ for_each_prime_number_from(n, 1, 54) { u64 size = BIT_ULL(n); ret = __igt_insert(count, size - 1, true); if (ret) return ret; ret = __igt_insert(count, size, true); if (ret) return ret; ret = __igt_insert(count, size + 1, true); if (ret) return ret; cond_resched(); } return 0; } static bool expect_insert_in_range(struct drm_mm *mm, struct drm_mm_node *node, u64 size, u64 alignment, unsigned long color, u64 range_start, u64 range_end, const struct insert_mode *mode) { int err; err = drm_mm_insert_node_in_range(mm, node, size, alignment, color, range_start, range_end, mode->mode); if (err) { pr_err("insert (size=%llu, alignment=%llu, color=%lu, mode=%s) nto range [%llx, %llx] failed with err=%d\n", size, alignment, color, mode->name, range_start, range_end, err); return false; } if (!assert_node(node, mm, size, alignment, color)) { drm_mm_remove_node(node); return false; } return true; } static bool expect_insert_in_range_fail(struct drm_mm *mm, u64 size, u64 range_start, u64 range_end) { struct drm_mm_node tmp = {}; int err; err = drm_mm_insert_node_in_range(mm, &tmp, size, 0, 0, range_start, range_end, 0); if (likely(err == -ENOSPC)) return true; if (!err) { pr_err("impossible insert succeeded, node %llx + %llu, range [%llx, %llx]\n", tmp.start, tmp.size, range_start, range_end); drm_mm_remove_node(&tmp); } else { pr_err("impossible insert failed with wrong error %d [expected %d], size %llu, range [%llx, %llx]\n", err, -ENOSPC, size, range_start, range_end); } return false; } static bool assert_contiguous_in_range(struct drm_mm *mm, u64 size, u64 start, u64 end) { struct drm_mm_node *node; unsigned int n; if (!expect_insert_in_range_fail(mm, size, start, end)) return false; n = div64_u64(start + size - 1, size); drm_mm_for_each_node(node, mm) { if (node->start < start || node->start + node->size > end) { pr_err("node %d out of range, address [%llx + %llu], range [%llx, %llx]\n", n, node->start, node->start + node->size, start, end); return false; } if (node->start != n * size) { pr_err("node %d out of order, expected start %llx, found %llx\n", n, n * size, node->start); return false; } if (node->size != size) { pr_err("node %d has wrong size, expected size %llx, found %llx\n", n, size, node->size); return false; } if (drm_mm_hole_follows(node) && drm_mm_hole_node_end(node) < end) { pr_err("node %d is followed by a hole!\n", n); return false; } n++; } if (start > 0) { node = __drm_mm_interval_first(mm, 0, start - 1); if (node->allocated) { pr_err("node before start: node=%llx+%llu, start=%llx\n", node->start, node->size, start); return false; } } if (end < U64_MAX) { node = __drm_mm_interval_first(mm, end, U64_MAX); if (node->allocated) { pr_err("node after end: node=%llx+%llu, end=%llx\n", node->start, node->size, end); return false; } } return true; } static int __igt_insert_range(unsigned int count, u64 size, u64 start, u64 end) { const struct insert_mode *mode; struct drm_mm mm; struct drm_mm_node *nodes, *node, *next; unsigned int n, start_n, end_n; int ret; DRM_MM_BUG_ON(!count); DRM_MM_BUG_ON(!size); DRM_MM_BUG_ON(end <= start); /* Very similar to __igt_insert(), but now instead of populating the * full range of the drm_mm, we try to fill a small portion of it. */ ret = -ENOMEM; nodes = vzalloc(array_size(count, sizeof(*nodes))); if (!nodes) goto err; ret = -EINVAL; drm_mm_init(&mm, 0, count * size); start_n = div64_u64(start + size - 1, size); end_n = div64_u64(end - size, size); for (mode = insert_modes; mode->name; mode++) { for (n = start_n; n <= end_n; n++) { if (!expect_insert_in_range(&mm, &nodes[n], size, size, n, start, end, mode)) { pr_err("%s insert failed, size %llu, step %d [%d, %d], range [%llx, %llx]\n", mode->name, size, n, start_n, end_n, start, end); goto out; } } if (!assert_contiguous_in_range(&mm, size, start, end)) { pr_err("%s: range [%llx, %llx] not full after initialisation, size=%llu\n", mode->name, start, end, size); goto out; } /* Remove one and reinsert, it should refill itself */ for (n = start_n; n <= end_n; n++) { u64 addr = nodes[n].start; drm_mm_remove_node(&nodes[n]); if (!expect_insert_in_range(&mm, &nodes[n], size, size, n, start, end, mode)) { pr_err("%s reinsert failed, step %d\n", mode->name, n); goto out; } if (nodes[n].start != addr) { pr_err("%s reinsert node moved, step %d, expected %llx, found %llx\n", mode->name, n, addr, nodes[n].start); goto out; } } if (!assert_contiguous_in_range(&mm, size, start, end)) { pr_err("%s: range [%llx, %llx] not full after reinsertion, size=%llu\n", mode->name, start, end, size); goto out; } drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); DRM_MM_BUG_ON(!drm_mm_clean(&mm)); cond_resched(); } ret = 0; out: drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); vfree(nodes); err: return ret; } static int insert_outside_range(void) { struct drm_mm mm; const unsigned int start = 1024; const unsigned int end = 2048; const unsigned int size = end - start; drm_mm_init(&mm, start, size); if (!expect_insert_in_range_fail(&mm, 1, 0, start)) return -EINVAL; if (!expect_insert_in_range_fail(&mm, size, start - size/2, start + (size+1)/2)) return -EINVAL; if (!expect_insert_in_range_fail(&mm, size, end - (size+1)/2, end + size/2)) return -EINVAL; if (!expect_insert_in_range_fail(&mm, 1, end, end + size)) return -EINVAL; drm_mm_takedown(&mm); return 0; } static int igt_insert_range(void *ignored) { const unsigned int count = min_t(unsigned int, BIT(13), max_iterations); unsigned int n; int ret; /* Check that requests outside the bounds of drm_mm are rejected. */ ret = insert_outside_range(); if (ret) return ret; for_each_prime_number_from(n, 1, 50) { const u64 size = BIT_ULL(n); const u64 max = count * size; ret = __igt_insert_range(count, size, 0, max); if (ret) return ret; ret = __igt_insert_range(count, size, 1, max); if (ret) return ret; ret = __igt_insert_range(count, size, 0, max - 1); if (ret) return ret; ret = __igt_insert_range(count, size, 0, max/2); if (ret) return ret; ret = __igt_insert_range(count, size, max/2, max); if (ret) return ret; ret = __igt_insert_range(count, size, max/4+1, 3*max/4-1); if (ret) return ret; cond_resched(); } return 0; } static int igt_align(void *ignored) { const struct insert_mode *mode; const unsigned int max_count = min(8192u, max_prime); struct drm_mm mm; struct drm_mm_node *nodes, *node, *next; unsigned int prime; int ret = -EINVAL; /* For each of the possible insertion modes, we pick a few * arbitrary alignments and check that the inserted node * meets our requirements. */ nodes = vzalloc(array_size(max_count, sizeof(*nodes))); if (!nodes) goto err; drm_mm_init(&mm, 1, U64_MAX - 2); for (mode = insert_modes; mode->name; mode++) { unsigned int i = 0; for_each_prime_number_from(prime, 1, max_count) { u64 size = next_prime_number(prime); if (!expect_insert(&mm, &nodes[i], size, prime, i, mode)) { pr_err("%s insert failed with alignment=%d", mode->name, prime); goto out; } i++; } drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); DRM_MM_BUG_ON(!drm_mm_clean(&mm)); cond_resched(); } ret = 0; out: drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); vfree(nodes); err: return ret; } static int igt_align_pot(int max) { struct drm_mm mm; struct drm_mm_node *node, *next; int bit; int ret = -EINVAL; /* Check that we can align to the full u64 address space */ drm_mm_init(&mm, 1, U64_MAX - 2); for (bit = max - 1; bit; bit--) { u64 align, size; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) { ret = -ENOMEM; goto out; } align = BIT_ULL(bit); size = BIT_ULL(bit-1) + 1; if (!expect_insert(&mm, node, size, align, bit, &insert_modes[0])) { pr_err("insert failed with alignment=%llx [%d]", align, bit); goto out; } cond_resched(); } ret = 0; out: drm_mm_for_each_node_safe(node, next, &mm) { drm_mm_remove_node(node); kfree(node); } drm_mm_takedown(&mm); return ret; } static int igt_align32(void *ignored) { return igt_align_pot(32); } static int igt_align64(void *ignored) { return igt_align_pot(64); } static void show_scan(const struct drm_mm_scan *scan) { pr_info("scan: hit [%llx, %llx], size=%lld, align=%lld, color=%ld\n", scan->hit_start, scan->hit_end, scan->size, scan->alignment, scan->color); } static void show_holes(const struct drm_mm *mm, int count) { u64 hole_start, hole_end; struct drm_mm_node *hole; drm_mm_for_each_hole(hole, mm, hole_start, hole_end) { struct drm_mm_node *next = list_next_entry(hole, node_list); const char *node1 = NULL, *node2 = NULL; if (hole->allocated) node1 = kasprintf(GFP_KERNEL, "[%llx + %lld, color=%ld], ", hole->start, hole->size, hole->color); if (next->allocated) node2 = kasprintf(GFP_KERNEL, ", [%llx + %lld, color=%ld]", next->start, next->size, next->color); pr_info("%sHole [%llx - %llx, size %lld]%s\n", node1, hole_start, hole_end, hole_end - hole_start, node2); kfree(node2); kfree(node1); if (!--count) break; } } struct evict_node { struct drm_mm_node node; struct list_head link; }; static bool evict_nodes(struct drm_mm_scan *scan, struct evict_node *nodes, unsigned int *order, unsigned int count, bool use_color, struct list_head *evict_list) { struct evict_node *e, *en; unsigned int i; for (i = 0; i < count; i++) { e = &nodes[order ? order[i] : i]; list_add(&e->link, evict_list); if (drm_mm_scan_add_block(scan, &e->node)) break; } list_for_each_entry_safe(e, en, evict_list, link) { if (!drm_mm_scan_remove_block(scan, &e->node)) list_del(&e->link); } if (list_empty(evict_list)) { pr_err("Failed to find eviction: size=%lld [avail=%d], align=%lld (color=%lu)\n", scan->size, count, scan->alignment, scan->color); return false; } list_for_each_entry(e, evict_list, link) drm_mm_remove_node(&e->node); if (use_color) { struct drm_mm_node *node; while ((node = drm_mm_scan_color_evict(scan))) { e = container_of(node, typeof(*e), node); drm_mm_remove_node(&e->node); list_add(&e->link, evict_list); } } else { if (drm_mm_scan_color_evict(scan)) { pr_err("drm_mm_scan_color_evict unexpectedly reported overlapping nodes!\n"); return false; } } return true; } static bool evict_nothing(struct drm_mm *mm, unsigned int total_size, struct evict_node *nodes) { struct drm_mm_scan scan; LIST_HEAD(evict_list); struct evict_node *e; struct drm_mm_node *node; unsigned int n; drm_mm_scan_init(&scan, mm, 1, 0, 0, 0); for (n = 0; n < total_size; n++) { e = &nodes[n]; list_add(&e->link, &evict_list); drm_mm_scan_add_block(&scan, &e->node); } list_for_each_entry(e, &evict_list, link) drm_mm_scan_remove_block(&scan, &e->node); for (n = 0; n < total_size; n++) { e = &nodes[n]; if (!drm_mm_node_allocated(&e->node)) { pr_err("node[%d] no longer allocated!\n", n); return false; } e->link.next = NULL; } drm_mm_for_each_node(node, mm) { e = container_of(node, typeof(*e), node); e->link.next = &e->link; } for (n = 0; n < total_size; n++) { e = &nodes[n]; if (!e->link.next) { pr_err("node[%d] no longer connected!\n", n); return false; } } return assert_continuous(mm, nodes[0].node.size); } static bool evict_everything(struct drm_mm *mm, unsigned int total_size, struct evict_node *nodes) { struct drm_mm_scan scan; LIST_HEAD(evict_list); struct evict_node *e; unsigned int n; int err; drm_mm_scan_init(&scan, mm, total_size, 0, 0, 0); for (n = 0; n < total_size; n++) { e = &nodes[n]; list_add(&e->link, &evict_list); if (drm_mm_scan_add_block(&scan, &e->node)) break; } err = 0; list_for_each_entry(e, &evict_list, link) { if (!drm_mm_scan_remove_block(&scan, &e->node)) { if (!err) { pr_err("Node %lld not marked for eviction!\n", e->node.start); err = -EINVAL; } } } if (err) return false; list_for_each_entry(e, &evict_list, link) drm_mm_remove_node(&e->node); if (!assert_one_hole(mm, 0, total_size)) return false; list_for_each_entry(e, &evict_list, link) { err = drm_mm_reserve_node(mm, &e->node); if (err) { pr_err("Failed to reinsert node after eviction: start=%llx\n", e->node.start); return false; } } return assert_continuous(mm, nodes[0].node.size); } static int evict_something(struct drm_mm *mm, u64 range_start, u64 range_end, struct evict_node *nodes, unsigned int *order, unsigned int count, unsigned int size, unsigned int alignment, const struct insert_mode *mode) { struct drm_mm_scan scan; LIST_HEAD(evict_list); struct evict_node *e; struct drm_mm_node tmp; int err; drm_mm_scan_init_with_range(&scan, mm, size, alignment, 0, range_start, range_end, mode->mode); if (!evict_nodes(&scan, nodes, order, count, false, &evict_list)) return -EINVAL; memset(&tmp, 0, sizeof(tmp)); err = drm_mm_insert_node_generic(mm, &tmp, size, alignment, 0, DRM_MM_INSERT_EVICT); if (err) { pr_err("Failed to insert into eviction hole: size=%d, align=%d\n", size, alignment); show_scan(&scan); show_holes(mm, 3); return err; } if (tmp.start < range_start || tmp.start + tmp.size > range_end) { pr_err("Inserted [address=%llu + %llu] did not fit into the request range [%llu, %llu]\n", tmp.start, tmp.size, range_start, range_end); err = -EINVAL; } if (!assert_node(&tmp, mm, size, alignment, 0) || drm_mm_hole_follows(&tmp)) { pr_err("Inserted did not fill the eviction hole: size=%lld [%d], align=%d [rem=%lld], start=%llx, hole-follows?=%d\n", tmp.size, size, alignment, misalignment(&tmp, alignment), tmp.start, drm_mm_hole_follows(&tmp)); err = -EINVAL; } drm_mm_remove_node(&tmp); if (err) return err; list_for_each_entry(e, &evict_list, link) { err = drm_mm_reserve_node(mm, &e->node); if (err) { pr_err("Failed to reinsert node after eviction: start=%llx\n", e->node.start); return err; } } if (!assert_continuous(mm, nodes[0].node.size)) { pr_err("range is no longer continuous\n"); return -EINVAL; } return 0; } static int igt_evict(void *ignored) { DRM_RND_STATE(prng, random_seed); const unsigned int size = 8192; const struct insert_mode *mode; struct drm_mm mm; struct evict_node *nodes; struct drm_mm_node *node, *next; unsigned int *order, n; int ret, err; /* Here we populate a full drm_mm and then try and insert a new node * by evicting other nodes in a random order. The drm_mm_scan should * pick the first matching hole it finds from the random list. We * repeat that for different allocation strategies, alignments and * sizes to try and stress the hole finder. */ ret = -ENOMEM; nodes = vzalloc(array_size(size, sizeof(*nodes))); if (!nodes) goto err; order = drm_random_order(size, &prng); if (!order) goto err_nodes; ret = -EINVAL; drm_mm_init(&mm, 0, size); for (n = 0; n < size; n++) { err = drm_mm_insert_node(&mm, &nodes[n].node, 1); if (err) { pr_err("insert failed, step %d\n", n); ret = err; goto out; } } /* First check that using the scanner doesn't break the mm */ if (!evict_nothing(&mm, size, nodes)) { pr_err("evict_nothing() failed\n"); goto out; } if (!evict_everything(&mm, size, nodes)) { pr_err("evict_everything() failed\n"); goto out; } for (mode = evict_modes; mode->name; mode++) { for (n = 1; n <= size; n <<= 1) { drm_random_reorder(order, size, &prng); err = evict_something(&mm, 0, U64_MAX, nodes, order, size, n, 1, mode); if (err) { pr_err("%s evict_something(size=%u) failed\n", mode->name, n); ret = err; goto out; } } for (n = 1; n < size; n <<= 1) { drm_random_reorder(order, size, &prng); err = evict_something(&mm, 0, U64_MAX, nodes, order, size, size/2, n, mode); if (err) { pr_err("%s evict_something(size=%u, alignment=%u) failed\n", mode->name, size/2, n); ret = err; goto out; } } for_each_prime_number_from(n, 1, min(size, max_prime)) { unsigned int nsize = (size - n + 1) / 2; DRM_MM_BUG_ON(!nsize); drm_random_reorder(order, size, &prng); err = evict_something(&mm, 0, U64_MAX, nodes, order, size, nsize, n, mode); if (err) { pr_err("%s evict_something(size=%u, alignment=%u) failed\n", mode->name, nsize, n); ret = err; goto out; } } cond_resched(); } ret = 0; out: drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); kfree(order); err_nodes: vfree(nodes); err: return ret; } static int igt_evict_range(void *ignored) { DRM_RND_STATE(prng, random_seed); const unsigned int size = 8192; const unsigned int range_size = size / 2; const unsigned int range_start = size / 4; const unsigned int range_end = range_start + range_size; const struct insert_mode *mode; struct drm_mm mm; struct evict_node *nodes; struct drm_mm_node *node, *next; unsigned int *order, n; int ret, err; /* Like igt_evict() but now we are limiting the search to a * small portion of the full drm_mm. */ ret = -ENOMEM; nodes = vzalloc(array_size(size, sizeof(*nodes))); if (!nodes) goto err; order = drm_random_order(size, &prng); if (!order) goto err_nodes; ret = -EINVAL; drm_mm_init(&mm, 0, size); for (n = 0; n < size; n++) { err = drm_mm_insert_node(&mm, &nodes[n].node, 1); if (err) { pr_err("insert failed, step %d\n", n); ret = err; goto out; } } for (mode = evict_modes; mode->name; mode++) { for (n = 1; n <= range_size; n <<= 1) { drm_random_reorder(order, size, &prng); err = evict_something(&mm, range_start, range_end, nodes, order, size, n, 1, mode); if (err) { pr_err("%s evict_something(size=%u) failed with range [%u, %u]\n", mode->name, n, range_start, range_end); goto out; } } for (n = 1; n <= range_size; n <<= 1) { drm_random_reorder(order, size, &prng); err = evict_something(&mm, range_start, range_end, nodes, order, size, range_size/2, n, mode); if (err) { pr_err("%s evict_something(size=%u, alignment=%u) failed with range [%u, %u]\n", mode->name, range_size/2, n, range_start, range_end); goto out; } } for_each_prime_number_from(n, 1, min(range_size, max_prime)) { unsigned int nsize = (range_size - n + 1) / 2; DRM_MM_BUG_ON(!nsize); drm_random_reorder(order, size, &prng); err = evict_something(&mm, range_start, range_end, nodes, order, size, nsize, n, mode); if (err) { pr_err("%s evict_something(size=%u, alignment=%u) failed with range [%u, %u]\n", mode->name, nsize, n, range_start, range_end); goto out; } } cond_resched(); } ret = 0; out: drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); kfree(order); err_nodes: vfree(nodes); err: return ret; } static unsigned int node_index(const struct drm_mm_node *node) { return div64_u64(node->start, node->size); } static int igt_topdown(void *ignored) { const struct insert_mode *topdown = &insert_modes[TOPDOWN]; DRM_RND_STATE(prng, random_seed); const unsigned int count = 8192; unsigned int size; unsigned long *bitmap = NULL; struct drm_mm mm; struct drm_mm_node *nodes, *node, *next; unsigned int *order, n, m, o = 0; int ret; /* When allocating top-down, we expect to be returned a node * from a suitable hole at the top of the drm_mm. We check that * the returned node does match the highest available slot. */ ret = -ENOMEM; nodes = vzalloc(array_size(count, sizeof(*nodes))); if (!nodes) goto err; bitmap = kcalloc(count / BITS_PER_LONG, sizeof(unsigned long), GFP_KERNEL); if (!bitmap) goto err_nodes; order = drm_random_order(count, &prng); if (!order) goto err_bitmap; ret = -EINVAL; for (size = 1; size <= 64; size <<= 1) { drm_mm_init(&mm, 0, size*count); for (n = 0; n < count; n++) { if (!expect_insert(&mm, &nodes[n], size, 0, n, topdown)) { pr_err("insert failed, size %u step %d\n", size, n); goto out; } if (drm_mm_hole_follows(&nodes[n])) { pr_err("hole after topdown insert %d, start=%llx\n, size=%u", n, nodes[n].start, size); goto out; } if (!assert_one_hole(&mm, 0, size*(count - n - 1))) goto out; } if (!assert_continuous(&mm, size)) goto out; drm_random_reorder(order, count, &prng); for_each_prime_number_from(n, 1, min(count, max_prime)) { for (m = 0; m < n; m++) { node = &nodes[order[(o + m) % count]]; drm_mm_remove_node(node); __set_bit(node_index(node), bitmap); } for (m = 0; m < n; m++) { unsigned int last; node = &nodes[order[(o + m) % count]]; if (!expect_insert(&mm, node, size, 0, 0, topdown)) { pr_err("insert failed, step %d/%d\n", m, n); goto out; } if (drm_mm_hole_follows(node)) { pr_err("hole after topdown insert %d/%d, start=%llx\n", m, n, node->start); goto out; } last = find_last_bit(bitmap, count); if (node_index(node) != last) { pr_err("node %d/%d, size %d, not inserted into upmost hole, expected %d, found %d\n", m, n, size, last, node_index(node)); goto out; } __clear_bit(last, bitmap); } DRM_MM_BUG_ON(find_first_bit(bitmap, count) != count); o += n; } drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); DRM_MM_BUG_ON(!drm_mm_clean(&mm)); cond_resched(); } ret = 0; out: drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); kfree(order); err_bitmap: kfree(bitmap); err_nodes: vfree(nodes); err: return ret; } static int igt_bottomup(void *ignored) { const struct insert_mode *bottomup = &insert_modes[BOTTOMUP]; DRM_RND_STATE(prng, random_seed); const unsigned int count = 8192; unsigned int size; unsigned long *bitmap; struct drm_mm mm; struct drm_mm_node *nodes, *node, *next; unsigned int *order, n, m, o = 0; int ret; /* Like igt_topdown, but instead of searching for the last hole, * we search for the first. */ ret = -ENOMEM; nodes = vzalloc(array_size(count, sizeof(*nodes))); if (!nodes) goto err; bitmap = kcalloc(count / BITS_PER_LONG, sizeof(unsigned long), GFP_KERNEL); if (!bitmap) goto err_nodes; order = drm_random_order(count, &prng); if (!order) goto err_bitmap; ret = -EINVAL; for (size = 1; size <= 64; size <<= 1) { drm_mm_init(&mm, 0, size*count); for (n = 0; n < count; n++) { if (!expect_insert(&mm, &nodes[n], size, 0, n, bottomup)) { pr_err("bottomup insert failed, size %u step %d\n", size, n); goto out; } if (!assert_one_hole(&mm, size*(n + 1), size*count)) goto out; } if (!assert_continuous(&mm, size)) goto out; drm_random_reorder(order, count, &prng); for_each_prime_number_from(n, 1, min(count, max_prime)) { for (m = 0; m < n; m++) { node = &nodes[order[(o + m) % count]]; drm_mm_remove_node(node); __set_bit(node_index(node), bitmap); } for (m = 0; m < n; m++) { unsigned int first; node = &nodes[order[(o + m) % count]]; if (!expect_insert(&mm, node, size, 0, 0, bottomup)) { pr_err("insert failed, step %d/%d\n", m, n); goto out; } first = find_first_bit(bitmap, count); if (node_index(node) != first) { pr_err("node %d/%d not inserted into bottom hole, expected %d, found %d\n", m, n, first, node_index(node)); goto out; } __clear_bit(first, bitmap); } DRM_MM_BUG_ON(find_first_bit(bitmap, count) != count); o += n; } drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); DRM_MM_BUG_ON(!drm_mm_clean(&mm)); cond_resched(); } ret = 0; out: drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); kfree(order); err_bitmap: kfree(bitmap); err_nodes: vfree(nodes); err: return ret; } static int __igt_once(unsigned int mode) { struct drm_mm mm; struct drm_mm_node rsvd_lo, rsvd_hi, node; int err; drm_mm_init(&mm, 0, 7); memset(&rsvd_lo, 0, sizeof(rsvd_lo)); rsvd_lo.start = 1; rsvd_lo.size = 1; err = drm_mm_reserve_node(&mm, &rsvd_lo); if (err) { pr_err("Could not reserve low node\n"); goto err; } memset(&rsvd_hi, 0, sizeof(rsvd_hi)); rsvd_hi.start = 5; rsvd_hi.size = 1; err = drm_mm_reserve_node(&mm, &rsvd_hi); if (err) { pr_err("Could not reserve low node\n"); goto err_lo; } if (!drm_mm_hole_follows(&rsvd_lo) || !drm_mm_hole_follows(&rsvd_hi)) { pr_err("Expected a hole after lo and high nodes!\n"); err = -EINVAL; goto err_hi; } memset(&node, 0, sizeof(node)); err = drm_mm_insert_node_generic(&mm, &node, 2, 0, 0, mode | DRM_MM_INSERT_ONCE); if (!err) { pr_err("Unexpectedly inserted the node into the wrong hole: node.start=%llx\n", node.start); err = -EINVAL; goto err_node; } err = drm_mm_insert_node_generic(&mm, &node, 2, 0, 0, mode); if (err) { pr_err("Could not insert the node into the available hole!\n"); err = -EINVAL; goto err_hi; } err_node: drm_mm_remove_node(&node); err_hi: drm_mm_remove_node(&rsvd_hi); err_lo: drm_mm_remove_node(&rsvd_lo); err: drm_mm_takedown(&mm); return err; } static int igt_lowest(void *ignored) { return __igt_once(DRM_MM_INSERT_LOW); } static int igt_highest(void *ignored) { return __igt_once(DRM_MM_INSERT_HIGH); } static void separate_adjacent_colors(const struct drm_mm_node *node, unsigned long color, u64 *start, u64 *end) { if (node->allocated && node->color != color) ++*start; node = list_next_entry(node, node_list); if (node->allocated && node->color != color) --*end; } static bool colors_abutt(const struct drm_mm_node *node) { if (!drm_mm_hole_follows(node) && list_next_entry(node, node_list)->allocated) { pr_err("colors abutt; %ld [%llx + %llx] is next to %ld [%llx + %llx]!\n", node->color, node->start, node->size, list_next_entry(node, node_list)->color, list_next_entry(node, node_list)->start, list_next_entry(node, node_list)->size); return true; } return false; } static int igt_color(void *ignored) { const unsigned int count = min(4096u, max_iterations); const struct insert_mode *mode; struct drm_mm mm; struct drm_mm_node *node, *nn; unsigned int n; int ret = -EINVAL, err; /* Color adjustment complicates everything. First we just check * that when we insert a node we apply any color_adjustment callback. * The callback we use should ensure that there is a gap between * any two nodes, and so after each insertion we check that those * holes are inserted and that they are preserved. */ drm_mm_init(&mm, 0, U64_MAX); for (n = 1; n <= count; n++) { node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) { ret = -ENOMEM; goto out; } if (!expect_insert(&mm, node, n, 0, n, &insert_modes[0])) { pr_err("insert failed, step %d\n", n); kfree(node); goto out; } } drm_mm_for_each_node_safe(node, nn, &mm) { if (node->color != node->size) { pr_err("invalid color stored: expected %lld, found %ld\n", node->size, node->color); goto out; } drm_mm_remove_node(node); kfree(node); } /* Now, let's start experimenting with applying a color callback */ mm.color_adjust = separate_adjacent_colors; for (mode = insert_modes; mode->name; mode++) { u64 last; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) { ret = -ENOMEM; goto out; } node->size = 1 + 2*count; node->color = node->size; err = drm_mm_reserve_node(&mm, node); if (err) { pr_err("initial reserve failed!\n"); ret = err; goto out; } last = node->start + node->size; for (n = 1; n <= count; n++) { int rem; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) { ret = -ENOMEM; goto out; } node->start = last; node->size = n + count; node->color = node->size; err = drm_mm_reserve_node(&mm, node); if (err != -ENOSPC) { pr_err("reserve %d did not report color overlap! err=%d\n", n, err); goto out; } node->start += n + 1; rem = misalignment(node, n + count); node->start += n + count - rem; err = drm_mm_reserve_node(&mm, node); if (err) { pr_err("reserve %d failed, err=%d\n", n, err); ret = err; goto out; } last = node->start + node->size; } for (n = 1; n <= count; n++) { node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) { ret = -ENOMEM; goto out; } if (!expect_insert(&mm, node, n, n, n, mode)) { pr_err("%s insert failed, step %d\n", mode->name, n); kfree(node); goto out; } } drm_mm_for_each_node_safe(node, nn, &mm) { u64 rem; if (node->color != node->size) { pr_err("%s invalid color stored: expected %lld, found %ld\n", mode->name, node->size, node->color); goto out; } if (colors_abutt(node)) goto out; div64_u64_rem(node->start, node->size, &rem); if (rem) { pr_err("%s colored node misaligned, start=%llx expected alignment=%lld [rem=%lld]\n", mode->name, node->start, node->size, rem); goto out; } drm_mm_remove_node(node); kfree(node); } cond_resched(); } ret = 0; out: drm_mm_for_each_node_safe(node, nn, &mm) { drm_mm_remove_node(node); kfree(node); } drm_mm_takedown(&mm); return ret; } static int evict_color(struct drm_mm *mm, u64 range_start, u64 range_end, struct evict_node *nodes, unsigned int *order, unsigned int count, unsigned int size, unsigned int alignment, unsigned long color, const struct insert_mode *mode) { struct drm_mm_scan scan; LIST_HEAD(evict_list); struct evict_node *e; struct drm_mm_node tmp; int err; drm_mm_scan_init_with_range(&scan, mm, size, alignment, color, range_start, range_end, mode->mode); if (!evict_nodes(&scan, nodes, order, count, true, &evict_list)) return -EINVAL; memset(&tmp, 0, sizeof(tmp)); err = drm_mm_insert_node_generic(mm, &tmp, size, alignment, color, DRM_MM_INSERT_EVICT); if (err) { pr_err("Failed to insert into eviction hole: size=%d, align=%d, color=%lu, err=%d\n", size, alignment, color, err); show_scan(&scan); show_holes(mm, 3); return err; } if (tmp.start < range_start || tmp.start + tmp.size > range_end) { pr_err("Inserted [address=%llu + %llu] did not fit into the request range [%llu, %llu]\n", tmp.start, tmp.size, range_start, range_end); err = -EINVAL; } if (colors_abutt(&tmp)) err = -EINVAL; if (!assert_node(&tmp, mm, size, alignment, color)) { pr_err("Inserted did not fit the eviction hole: size=%lld [%d], align=%d [rem=%lld], start=%llx\n", tmp.size, size, alignment, misalignment(&tmp, alignment), tmp.start); err = -EINVAL; } drm_mm_remove_node(&tmp); if (err) return err; list_for_each_entry(e, &evict_list, link) { err = drm_mm_reserve_node(mm, &e->node); if (err) { pr_err("Failed to reinsert node after eviction: start=%llx\n", e->node.start); return err; } } cond_resched(); return 0; } static int igt_color_evict(void *ignored) { DRM_RND_STATE(prng, random_seed); const unsigned int total_size = min(8192u, max_iterations); const struct insert_mode *mode; unsigned long color = 0; struct drm_mm mm; struct evict_node *nodes; struct drm_mm_node *node, *next; unsigned int *order, n; int ret, err; /* Check that the drm_mm_scan also honours color adjustment when * choosing its victims to create a hole. Our color_adjust does not * allow two nodes to be placed together without an intervening hole * enlarging the set of victims that must be evicted. */ ret = -ENOMEM; nodes = vzalloc(array_size(total_size, sizeof(*nodes))); if (!nodes) goto err; order = drm_random_order(total_size, &prng); if (!order) goto err_nodes; ret = -EINVAL; drm_mm_init(&mm, 0, 2*total_size - 1); mm.color_adjust = separate_adjacent_colors; for (n = 0; n < total_size; n++) { if (!expect_insert(&mm, &nodes[n].node, 1, 0, color++, &insert_modes[0])) { pr_err("insert failed, step %d\n", n); goto out; } } for (mode = evict_modes; mode->name; mode++) { for (n = 1; n <= total_size; n <<= 1) { drm_random_reorder(order, total_size, &prng); err = evict_color(&mm, 0, U64_MAX, nodes, order, total_size, n, 1, color++, mode); if (err) { pr_err("%s evict_color(size=%u) failed\n", mode->name, n); goto out; } } for (n = 1; n < total_size; n <<= 1) { drm_random_reorder(order, total_size, &prng); err = evict_color(&mm, 0, U64_MAX, nodes, order, total_size, total_size/2, n, color++, mode); if (err) { pr_err("%s evict_color(size=%u, alignment=%u) failed\n", mode->name, total_size/2, n); goto out; } } for_each_prime_number_from(n, 1, min(total_size, max_prime)) { unsigned int nsize = (total_size - n + 1) / 2; DRM_MM_BUG_ON(!nsize); drm_random_reorder(order, total_size, &prng); err = evict_color(&mm, 0, U64_MAX, nodes, order, total_size, nsize, n, color++, mode); if (err) { pr_err("%s evict_color(size=%u, alignment=%u) failed\n", mode->name, nsize, n); goto out; } } cond_resched(); } ret = 0; out: if (ret) show_mm(&mm); drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); kfree(order); err_nodes: vfree(nodes); err: return ret; } static int igt_color_evict_range(void *ignored) { DRM_RND_STATE(prng, random_seed); const unsigned int total_size = 8192; const unsigned int range_size = total_size / 2; const unsigned int range_start = total_size / 4; const unsigned int range_end = range_start + range_size; const struct insert_mode *mode; unsigned long color = 0; struct drm_mm mm; struct evict_node *nodes; struct drm_mm_node *node, *next; unsigned int *order, n; int ret, err; /* Like igt_color_evict(), but limited to small portion of the full * drm_mm range. */ ret = -ENOMEM; nodes = vzalloc(array_size(total_size, sizeof(*nodes))); if (!nodes) goto err; order = drm_random_order(total_size, &prng); if (!order) goto err_nodes; ret = -EINVAL; drm_mm_init(&mm, 0, 2*total_size - 1); mm.color_adjust = separate_adjacent_colors; for (n = 0; n < total_size; n++) { if (!expect_insert(&mm, &nodes[n].node, 1, 0, color++, &insert_modes[0])) { pr_err("insert failed, step %d\n", n); goto out; } } for (mode = evict_modes; mode->name; mode++) { for (n = 1; n <= range_size; n <<= 1) { drm_random_reorder(order, range_size, &prng); err = evict_color(&mm, range_start, range_end, nodes, order, total_size, n, 1, color++, mode); if (err) { pr_err("%s evict_color(size=%u) failed for range [%x, %x]\n", mode->name, n, range_start, range_end); goto out; } } for (n = 1; n < range_size; n <<= 1) { drm_random_reorder(order, total_size, &prng); err = evict_color(&mm, range_start, range_end, nodes, order, total_size, range_size/2, n, color++, mode); if (err) { pr_err("%s evict_color(size=%u, alignment=%u) failed for range [%x, %x]\n", mode->name, total_size/2, n, range_start, range_end); goto out; } } for_each_prime_number_from(n, 1, min(range_size, max_prime)) { unsigned int nsize = (range_size - n + 1) / 2; DRM_MM_BUG_ON(!nsize); drm_random_reorder(order, total_size, &prng); err = evict_color(&mm, range_start, range_end, nodes, order, total_size, nsize, n, color++, mode); if (err) { pr_err("%s evict_color(size=%u, alignment=%u) failed for range [%x, %x]\n", mode->name, nsize, n, range_start, range_end); goto out; } } cond_resched(); } ret = 0; out: if (ret) show_mm(&mm); drm_mm_for_each_node_safe(node, next, &mm) drm_mm_remove_node(node); drm_mm_takedown(&mm); kfree(order); err_nodes: vfree(nodes); err: return ret; } #include "drm_selftest.c" static int __init test_drm_mm_init(void) { int err; while (!random_seed) random_seed = get_random_int(); pr_info("Testing DRM range manger (struct drm_mm), with random_seed=0x%x max_iterations=%u max_prime=%u\n", random_seed, max_iterations, max_prime); err = run_selftests(selftests, ARRAY_SIZE(selftests), NULL); return err > 0 ? 0 : err; } static void __exit test_drm_mm_exit(void) { } module_init(test_drm_mm_init); module_exit(test_drm_mm_exit); module_param(random_seed, uint, 0400); module_param(max_iterations, uint, 0400); module_param(max_prime, uint, 0400); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1