Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 2311 | 85.06% | 2 | 25.00% |
Alexander Koch | 364 | 13.40% | 3 | 37.50% |
Javier Martinez Canillas | 33 | 1.21% | 1 | 12.50% |
Rasmus Villemoes | 8 | 0.29% | 1 | 12.50% |
Arvind Yadav | 1 | 0.04% | 1 | 12.50% |
Total | 2717 | 8 |
/* * Driver for TI ADC128D818 System Monitor with Temperature Sensor * * Copyright (c) 2014 Guenter Roeck * * Derived from lm80.c * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl> * and Philip Edelbrock <phil@netroedge.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/module.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/regulator/consumer.h> #include <linux/mutex.h> #include <linux/bitops.h> #include <linux/of.h> /* Addresses to scan * The chip also supports addresses 0x35..0x37. Don't scan those addresses * since they are also used by some EEPROMs, which may result in false * positives. */ static const unsigned short normal_i2c[] = { 0x1d, 0x1e, 0x1f, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; /* registers */ #define ADC128_REG_IN_MAX(nr) (0x2a + (nr) * 2) #define ADC128_REG_IN_MIN(nr) (0x2b + (nr) * 2) #define ADC128_REG_IN(nr) (0x20 + (nr)) #define ADC128_REG_TEMP 0x27 #define ADC128_REG_TEMP_MAX 0x38 #define ADC128_REG_TEMP_HYST 0x39 #define ADC128_REG_CONFIG 0x00 #define ADC128_REG_ALARM 0x01 #define ADC128_REG_MASK 0x03 #define ADC128_REG_CONV_RATE 0x07 #define ADC128_REG_ONESHOT 0x09 #define ADC128_REG_SHUTDOWN 0x0a #define ADC128_REG_CONFIG_ADV 0x0b #define ADC128_REG_BUSY_STATUS 0x0c #define ADC128_REG_MAN_ID 0x3e #define ADC128_REG_DEV_ID 0x3f /* No. of voltage entries in adc128_attrs */ #define ADC128_ATTR_NUM_VOLT (8 * 4) /* Voltage inputs visible per operation mode */ static const u8 num_inputs[] = { 7, 8, 4, 6 }; struct adc128_data { struct i2c_client *client; struct regulator *regulator; int vref; /* Reference voltage in mV */ struct mutex update_lock; u8 mode; /* Operation mode */ bool valid; /* true if following fields are valid */ unsigned long last_updated; /* In jiffies */ u16 in[3][8]; /* Register value, normalized to 12 bit * 0: input voltage * 1: min limit * 2: max limit */ s16 temp[3]; /* Register value, normalized to 9 bit * 0: sensor 1: limit 2: hyst */ u8 alarms; /* alarm register value */ }; static struct adc128_data *adc128_update_device(struct device *dev) { struct adc128_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; struct adc128_data *ret = data; int i, rv; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { for (i = 0; i < num_inputs[data->mode]; i++) { rv = i2c_smbus_read_word_swapped(client, ADC128_REG_IN(i)); if (rv < 0) goto abort; data->in[0][i] = rv >> 4; rv = i2c_smbus_read_byte_data(client, ADC128_REG_IN_MIN(i)); if (rv < 0) goto abort; data->in[1][i] = rv << 4; rv = i2c_smbus_read_byte_data(client, ADC128_REG_IN_MAX(i)); if (rv < 0) goto abort; data->in[2][i] = rv << 4; } if (data->mode != 1) { rv = i2c_smbus_read_word_swapped(client, ADC128_REG_TEMP); if (rv < 0) goto abort; data->temp[0] = rv >> 7; rv = i2c_smbus_read_byte_data(client, ADC128_REG_TEMP_MAX); if (rv < 0) goto abort; data->temp[1] = rv << 1; rv = i2c_smbus_read_byte_data(client, ADC128_REG_TEMP_HYST); if (rv < 0) goto abort; data->temp[2] = rv << 1; } rv = i2c_smbus_read_byte_data(client, ADC128_REG_ALARM); if (rv < 0) goto abort; data->alarms |= rv; data->last_updated = jiffies; data->valid = true; } goto done; abort: ret = ERR_PTR(rv); data->valid = false; done: mutex_unlock(&data->update_lock); return ret; } static ssize_t adc128_in_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adc128_data *data = adc128_update_device(dev); int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; int val; if (IS_ERR(data)) return PTR_ERR(data); val = DIV_ROUND_CLOSEST(data->in[index][nr] * data->vref, 4095); return sprintf(buf, "%d\n", val); } static ssize_t adc128_in_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adc128_data *data = dev_get_drvdata(dev); int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; u8 reg, regval; long val; int err; err = kstrtol(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); /* 10 mV LSB on limit registers */ regval = clamp_val(DIV_ROUND_CLOSEST(val, 10), 0, 255); data->in[index][nr] = regval << 4; reg = index == 1 ? ADC128_REG_IN_MIN(nr) : ADC128_REG_IN_MAX(nr); i2c_smbus_write_byte_data(data->client, reg, regval); mutex_unlock(&data->update_lock); return count; } static ssize_t adc128_temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adc128_data *data = adc128_update_device(dev); int index = to_sensor_dev_attr(attr)->index; int temp; if (IS_ERR(data)) return PTR_ERR(data); temp = sign_extend32(data->temp[index], 8); return sprintf(buf, "%d\n", temp * 500);/* 0.5 degrees C resolution */ } static ssize_t adc128_temp_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adc128_data *data = dev_get_drvdata(dev); int index = to_sensor_dev_attr(attr)->index; long val; int err; s8 regval; err = kstrtol(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); regval = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127); data->temp[index] = regval << 1; i2c_smbus_write_byte_data(data->client, index == 1 ? ADC128_REG_TEMP_MAX : ADC128_REG_TEMP_HYST, regval); mutex_unlock(&data->update_lock); return count; } static ssize_t adc128_alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adc128_data *data = adc128_update_device(dev); int mask = 1 << to_sensor_dev_attr(attr)->index; u8 alarms; if (IS_ERR(data)) return PTR_ERR(data); /* * Clear an alarm after reporting it to user space. If it is still * active, the next update sequence will set the alarm bit again. */ alarms = data->alarms; data->alarms &= ~mask; return sprintf(buf, "%u\n", !!(alarms & mask)); } static umode_t adc128_is_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = container_of(kobj, struct device, kobj); struct adc128_data *data = dev_get_drvdata(dev); if (index < ADC128_ATTR_NUM_VOLT) { /* Voltage, visible according to num_inputs[] */ if (index >= num_inputs[data->mode] * 4) return 0; } else { /* Temperature, visible if not in mode 1 */ if (data->mode == 1) return 0; } return attr->mode; } static SENSOR_DEVICE_ATTR_2_RO(in0_input, adc128_in, 0, 0); static SENSOR_DEVICE_ATTR_2_RW(in0_min, adc128_in, 0, 1); static SENSOR_DEVICE_ATTR_2_RW(in0_max, adc128_in, 0, 2); static SENSOR_DEVICE_ATTR_2_RO(in1_input, adc128_in, 1, 0); static SENSOR_DEVICE_ATTR_2_RW(in1_min, adc128_in, 1, 1); static SENSOR_DEVICE_ATTR_2_RW(in1_max, adc128_in, 1, 2); static SENSOR_DEVICE_ATTR_2_RO(in2_input, adc128_in, 2, 0); static SENSOR_DEVICE_ATTR_2_RW(in2_min, adc128_in, 2, 1); static SENSOR_DEVICE_ATTR_2_RW(in2_max, adc128_in, 2, 2); static SENSOR_DEVICE_ATTR_2_RO(in3_input, adc128_in, 3, 0); static SENSOR_DEVICE_ATTR_2_RW(in3_min, adc128_in, 3, 1); static SENSOR_DEVICE_ATTR_2_RW(in3_max, adc128_in, 3, 2); static SENSOR_DEVICE_ATTR_2_RO(in4_input, adc128_in, 4, 0); static SENSOR_DEVICE_ATTR_2_RW(in4_min, adc128_in, 4, 1); static SENSOR_DEVICE_ATTR_2_RW(in4_max, adc128_in, 4, 2); static SENSOR_DEVICE_ATTR_2_RO(in5_input, adc128_in, 5, 0); static SENSOR_DEVICE_ATTR_2_RW(in5_min, adc128_in, 5, 1); static SENSOR_DEVICE_ATTR_2_RW(in5_max, adc128_in, 5, 2); static SENSOR_DEVICE_ATTR_2_RO(in6_input, adc128_in, 6, 0); static SENSOR_DEVICE_ATTR_2_RW(in6_min, adc128_in, 6, 1); static SENSOR_DEVICE_ATTR_2_RW(in6_max, adc128_in, 6, 2); static SENSOR_DEVICE_ATTR_2_RO(in7_input, adc128_in, 7, 0); static SENSOR_DEVICE_ATTR_2_RW(in7_min, adc128_in, 7, 1); static SENSOR_DEVICE_ATTR_2_RW(in7_max, adc128_in, 7, 2); static SENSOR_DEVICE_ATTR_RO(temp1_input, adc128_temp, 0); static SENSOR_DEVICE_ATTR_RW(temp1_max, adc128_temp, 1); static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, adc128_temp, 2); static SENSOR_DEVICE_ATTR_RO(in0_alarm, adc128_alarm, 0); static SENSOR_DEVICE_ATTR_RO(in1_alarm, adc128_alarm, 1); static SENSOR_DEVICE_ATTR_RO(in2_alarm, adc128_alarm, 2); static SENSOR_DEVICE_ATTR_RO(in3_alarm, adc128_alarm, 3); static SENSOR_DEVICE_ATTR_RO(in4_alarm, adc128_alarm, 4); static SENSOR_DEVICE_ATTR_RO(in5_alarm, adc128_alarm, 5); static SENSOR_DEVICE_ATTR_RO(in6_alarm, adc128_alarm, 6); static SENSOR_DEVICE_ATTR_RO(in7_alarm, adc128_alarm, 7); static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, adc128_alarm, 7); static struct attribute *adc128_attrs[] = { &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in7_alarm.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, NULL }; static const struct attribute_group adc128_group = { .attrs = adc128_attrs, .is_visible = adc128_is_visible, }; __ATTRIBUTE_GROUPS(adc128); static int adc128_detect(struct i2c_client *client, struct i2c_board_info *info) { int man_id, dev_id; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA)) return -ENODEV; man_id = i2c_smbus_read_byte_data(client, ADC128_REG_MAN_ID); dev_id = i2c_smbus_read_byte_data(client, ADC128_REG_DEV_ID); if (man_id != 0x01 || dev_id != 0x09) return -ENODEV; /* Check unused bits for confirmation */ if (i2c_smbus_read_byte_data(client, ADC128_REG_CONFIG) & 0xf4) return -ENODEV; if (i2c_smbus_read_byte_data(client, ADC128_REG_CONV_RATE) & 0xfe) return -ENODEV; if (i2c_smbus_read_byte_data(client, ADC128_REG_ONESHOT) & 0xfe) return -ENODEV; if (i2c_smbus_read_byte_data(client, ADC128_REG_SHUTDOWN) & 0xfe) return -ENODEV; if (i2c_smbus_read_byte_data(client, ADC128_REG_CONFIG_ADV) & 0xf8) return -ENODEV; if (i2c_smbus_read_byte_data(client, ADC128_REG_BUSY_STATUS) & 0xfc) return -ENODEV; strlcpy(info->type, "adc128d818", I2C_NAME_SIZE); return 0; } static int adc128_init_client(struct adc128_data *data) { struct i2c_client *client = data->client; int err; /* * Reset chip to defaults. * This makes most other initializations unnecessary. */ err = i2c_smbus_write_byte_data(client, ADC128_REG_CONFIG, 0x80); if (err) return err; /* Set operation mode, if non-default */ if (data->mode != 0) { err = i2c_smbus_write_byte_data(client, ADC128_REG_CONFIG_ADV, data->mode << 1); if (err) return err; } /* Start monitoring */ err = i2c_smbus_write_byte_data(client, ADC128_REG_CONFIG, 0x01); if (err) return err; /* If external vref is selected, configure the chip to use it */ if (data->regulator) { err = i2c_smbus_write_byte_data(client, ADC128_REG_CONFIG_ADV, 0x01); if (err) return err; } return 0; } static int adc128_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct regulator *regulator; struct device *hwmon_dev; struct adc128_data *data; int err, vref; data = devm_kzalloc(dev, sizeof(struct adc128_data), GFP_KERNEL); if (!data) return -ENOMEM; /* vref is optional. If specified, is used as chip reference voltage */ regulator = devm_regulator_get_optional(dev, "vref"); if (!IS_ERR(regulator)) { data->regulator = regulator; err = regulator_enable(regulator); if (err < 0) return err; vref = regulator_get_voltage(regulator); if (vref < 0) { err = vref; goto error; } data->vref = DIV_ROUND_CLOSEST(vref, 1000); } else { data->vref = 2560; /* 2.56V, in mV */ } /* Operation mode is optional. If unspecified, keep current mode */ if (of_property_read_u8(dev->of_node, "ti,mode", &data->mode) == 0) { if (data->mode > 3) { dev_err(dev, "invalid operation mode %d\n", data->mode); err = -EINVAL; goto error; } } else { err = i2c_smbus_read_byte_data(client, ADC128_REG_CONFIG_ADV); if (err < 0) goto error; data->mode = (err >> 1) & ADC128_REG_MASK; } data->client = client; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); /* Initialize the chip */ err = adc128_init_client(data); if (err < 0) goto error; hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, adc128_groups); if (IS_ERR(hwmon_dev)) { err = PTR_ERR(hwmon_dev); goto error; } return 0; error: if (data->regulator) regulator_disable(data->regulator); return err; } static int adc128_remove(struct i2c_client *client) { struct adc128_data *data = i2c_get_clientdata(client); if (data->regulator) regulator_disable(data->regulator); return 0; } static const struct i2c_device_id adc128_id[] = { { "adc128d818", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, adc128_id); static const struct of_device_id adc128_of_match[] = { { .compatible = "ti,adc128d818" }, { }, }; MODULE_DEVICE_TABLE(of, adc128_of_match); static struct i2c_driver adc128_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adc128d818", .of_match_table = of_match_ptr(adc128_of_match), }, .probe = adc128_probe, .remove = adc128_remove, .id_table = adc128_id, .detect = adc128_detect, .address_list = normal_i2c, }; module_i2c_driver(adc128_driver); MODULE_AUTHOR("Guenter Roeck"); MODULE_DESCRIPTION("Driver for ADC128D818"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1