Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Riku Voipio | 3857 | 74.98% | 6 | 16.22% |
Guenter Roeck | 411 | 7.99% | 8 | 21.62% |
Björn Gerhart | 402 | 7.81% | 1 | 2.70% |
Nikolaus Schulz | 343 | 6.67% | 9 | 24.32% |
Jean Delvare | 117 | 2.27% | 6 | 16.22% |
Jingoo Han | 4 | 0.08% | 1 | 2.70% |
Guillem Jover | 3 | 0.06% | 2 | 5.41% |
Tejun Heo | 3 | 0.06% | 1 | 2.70% |
Tony Jones | 2 | 0.04% | 1 | 2.70% |
Mark M. Hoffman | 1 | 0.02% | 1 | 2.70% |
Axel Lin | 1 | 0.02% | 1 | 2.70% |
Total | 5144 | 37 |
/* * f75375s.c - driver for the Fintek F75375/SP, F75373 and * F75387SG/RG hardware monitoring features * Copyright (C) 2006-2007 Riku Voipio * * Datasheets available at: * * f75375: * http://www.fintek.com.tw/files/productfiles/F75375_V026P.pdf * * f75373: * http://www.fintek.com.tw/files/productfiles/F75373_V025P.pdf * * f75387: * http://www.fintek.com.tw/files/productfiles/F75387_V027P.pdf * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include <linux/module.h> #include <linux/jiffies.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/i2c.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/f75375s.h> #include <linux/slab.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2d, 0x2e, I2C_CLIENT_END }; enum chips { f75373, f75375, f75387 }; /* Fintek F75375 registers */ #define F75375_REG_CONFIG0 0x0 #define F75375_REG_CONFIG1 0x1 #define F75375_REG_CONFIG2 0x2 #define F75375_REG_CONFIG3 0x3 #define F75375_REG_ADDR 0x4 #define F75375_REG_INTR 0x31 #define F75375_CHIP_ID 0x5A #define F75375_REG_VERSION 0x5C #define F75375_REG_VENDOR 0x5D #define F75375_REG_FAN_TIMER 0x60 #define F75375_REG_VOLT(nr) (0x10 + (nr)) #define F75375_REG_VOLT_HIGH(nr) (0x20 + (nr) * 2) #define F75375_REG_VOLT_LOW(nr) (0x21 + (nr) * 2) #define F75375_REG_TEMP(nr) (0x14 + (nr)) #define F75387_REG_TEMP11_LSB(nr) (0x1a + (nr)) #define F75375_REG_TEMP_HIGH(nr) (0x28 + (nr) * 2) #define F75375_REG_TEMP_HYST(nr) (0x29 + (nr) * 2) #define F75375_REG_FAN(nr) (0x16 + (nr) * 2) #define F75375_REG_FAN_MIN(nr) (0x2C + (nr) * 2) #define F75375_REG_FAN_FULL(nr) (0x70 + (nr) * 0x10) #define F75375_REG_FAN_PWM_DUTY(nr) (0x76 + (nr) * 0x10) #define F75375_REG_FAN_PWM_CLOCK(nr) (0x7D + (nr) * 0x10) #define F75375_REG_FAN_EXP(nr) (0x74 + (nr) * 0x10) #define F75375_REG_FAN_B_TEMP(nr, step) ((0xA0 + (nr) * 0x10) + (step)) #define F75375_REG_FAN_B_SPEED(nr, step) \ ((0xA5 + (nr) * 0x10) + (step) * 2) #define F75375_REG_PWM1_RAISE_DUTY 0x69 #define F75375_REG_PWM2_RAISE_DUTY 0x6A #define F75375_REG_PWM1_DROP_DUTY 0x6B #define F75375_REG_PWM2_DROP_DUTY 0x6C #define F75375_FAN_CTRL_LINEAR(nr) (4 + nr) #define F75387_FAN_CTRL_LINEAR(nr) (1 + ((nr) * 4)) #define FAN_CTRL_MODE(nr) (4 + ((nr) * 2)) #define F75387_FAN_DUTY_MODE(nr) (2 + ((nr) * 4)) #define F75387_FAN_MANU_MODE(nr) ((nr) * 4) /* * Data structures and manipulation thereof */ struct f75375_data { unsigned short addr; struct device *hwmon_dev; const char *name; int kind; struct mutex update_lock; /* protect register access */ char valid; unsigned long last_updated; /* In jiffies */ unsigned long last_limits; /* In jiffies */ /* Register values */ u8 in[4]; u8 in_max[4]; u8 in_min[4]; u16 fan[2]; u16 fan_min[2]; u16 fan_max[2]; u16 fan_target[2]; u8 fan_timer; u8 pwm[2]; u8 pwm_mode[2]; u8 pwm_enable[2]; /* * f75387: For remote temperature reading, it uses signed 11-bit * values with LSB = 0.125 degree Celsius, left-justified in 16-bit * registers. For original 8-bit temp readings, the LSB just is 0. */ s16 temp11[2]; s8 temp_high[2]; s8 temp_max_hyst[2]; }; static int f75375_detect(struct i2c_client *client, struct i2c_board_info *info); static int f75375_probe(struct i2c_client *client, const struct i2c_device_id *id); static int f75375_remove(struct i2c_client *client); static const struct i2c_device_id f75375_id[] = { { "f75373", f75373 }, { "f75375", f75375 }, { "f75387", f75387 }, { } }; MODULE_DEVICE_TABLE(i2c, f75375_id); static struct i2c_driver f75375_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "f75375", }, .probe = f75375_probe, .remove = f75375_remove, .id_table = f75375_id, .detect = f75375_detect, .address_list = normal_i2c, }; static inline int f75375_read8(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } /* in most cases, should be called while holding update_lock */ static inline u16 f75375_read16(struct i2c_client *client, u8 reg) { return (i2c_smbus_read_byte_data(client, reg) << 8) | i2c_smbus_read_byte_data(client, reg + 1); } static inline void f75375_write8(struct i2c_client *client, u8 reg, u8 value) { i2c_smbus_write_byte_data(client, reg, value); } static inline void f75375_write16(struct i2c_client *client, u8 reg, u16 value) { int err = i2c_smbus_write_byte_data(client, reg, (value >> 8)); if (err) return; i2c_smbus_write_byte_data(client, reg + 1, (value & 0xFF)); } static void f75375_write_pwm(struct i2c_client *client, int nr) { struct f75375_data *data = i2c_get_clientdata(client); if (data->kind == f75387) f75375_write16(client, F75375_REG_FAN_EXP(nr), data->pwm[nr]); else f75375_write8(client, F75375_REG_FAN_PWM_DUTY(nr), data->pwm[nr]); } static struct f75375_data *f75375_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); int nr; mutex_lock(&data->update_lock); /* Limit registers cache is refreshed after 60 seconds */ if (time_after(jiffies, data->last_limits + 60 * HZ) || !data->valid) { for (nr = 0; nr < 2; nr++) { data->temp_high[nr] = f75375_read8(client, F75375_REG_TEMP_HIGH(nr)); data->temp_max_hyst[nr] = f75375_read8(client, F75375_REG_TEMP_HYST(nr)); data->fan_max[nr] = f75375_read16(client, F75375_REG_FAN_FULL(nr)); data->fan_min[nr] = f75375_read16(client, F75375_REG_FAN_MIN(nr)); data->fan_target[nr] = f75375_read16(client, F75375_REG_FAN_EXP(nr)); } for (nr = 0; nr < 4; nr++) { data->in_max[nr] = f75375_read8(client, F75375_REG_VOLT_HIGH(nr)); data->in_min[nr] = f75375_read8(client, F75375_REG_VOLT_LOW(nr)); } data->fan_timer = f75375_read8(client, F75375_REG_FAN_TIMER); data->last_limits = jiffies; } /* Measurement registers cache is refreshed after 2 second */ if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { for (nr = 0; nr < 2; nr++) { data->pwm[nr] = f75375_read8(client, F75375_REG_FAN_PWM_DUTY(nr)); /* assign MSB, therefore shift it by 8 bits */ data->temp11[nr] = f75375_read8(client, F75375_REG_TEMP(nr)) << 8; if (data->kind == f75387) /* merge F75387's temperature LSB (11-bit) */ data->temp11[nr] |= f75375_read8(client, F75387_REG_TEMP11_LSB(nr)); data->fan[nr] = f75375_read16(client, F75375_REG_FAN(nr)); } for (nr = 0; nr < 4; nr++) data->in[nr] = f75375_read8(client, F75375_REG_VOLT(nr)); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static inline u16 rpm_from_reg(u16 reg) { if (reg == 0 || reg == 0xffff) return 0; return 1500000 / reg; } static inline u16 rpm_to_reg(int rpm) { if (rpm < 367 || rpm > 0xffff) return 0xffff; return 1500000 / rpm; } static bool duty_mode_enabled(u8 pwm_enable) { switch (pwm_enable) { case 0: /* Manual, duty mode (full speed) */ case 1: /* Manual, duty mode */ case 4: /* Auto, duty mode */ return true; case 2: /* Auto, speed mode */ case 3: /* Manual, speed mode */ return false; default: WARN(1, "Unexpected pwm_enable value %d\n", pwm_enable); return true; } } static bool auto_mode_enabled(u8 pwm_enable) { switch (pwm_enable) { case 0: /* Manual, duty mode (full speed) */ case 1: /* Manual, duty mode */ case 3: /* Manual, speed mode */ return false; case 2: /* Auto, speed mode */ case 4: /* Auto, duty mode */ return true; default: WARN(1, "Unexpected pwm_enable value %d\n", pwm_enable); return false; } } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = rpm_to_reg(val); f75375_write16(client, F75375_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_fan_target(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; if (auto_mode_enabled(data->pwm_enable[nr])) return -EINVAL; if (data->kind == f75387 && duty_mode_enabled(data->pwm_enable[nr])) return -EINVAL; mutex_lock(&data->update_lock); data->fan_target[nr] = rpm_to_reg(val); f75375_write16(client, F75375_REG_FAN_EXP(nr), data->fan_target[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_pwm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; if (auto_mode_enabled(data->pwm_enable[nr]) || !duty_mode_enabled(data->pwm_enable[nr])) return -EINVAL; mutex_lock(&data->update_lock); data->pwm[nr] = clamp_val(val, 0, 255); f75375_write_pwm(client, nr); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct f75375_data *data = f75375_update_device(dev); return sprintf(buf, "%d\n", data->pwm_enable[nr]); } static int set_pwm_enable_direct(struct i2c_client *client, int nr, int val) { struct f75375_data *data = i2c_get_clientdata(client); u8 fanmode; if (val < 0 || val > 4) return -EINVAL; fanmode = f75375_read8(client, F75375_REG_FAN_TIMER); if (data->kind == f75387) { /* For now, deny dangerous toggling of duty mode */ if (duty_mode_enabled(data->pwm_enable[nr]) != duty_mode_enabled(val)) return -EOPNOTSUPP; /* clear each fanX_mode bit before setting them properly */ fanmode &= ~(1 << F75387_FAN_DUTY_MODE(nr)); fanmode &= ~(1 << F75387_FAN_MANU_MODE(nr)); switch (val) { case 0: /* full speed */ fanmode |= (1 << F75387_FAN_MANU_MODE(nr)); fanmode |= (1 << F75387_FAN_DUTY_MODE(nr)); data->pwm[nr] = 255; break; case 1: /* PWM */ fanmode |= (1 << F75387_FAN_MANU_MODE(nr)); fanmode |= (1 << F75387_FAN_DUTY_MODE(nr)); break; case 2: /* Automatic, speed mode */ break; case 3: /* fan speed */ fanmode |= (1 << F75387_FAN_MANU_MODE(nr)); break; case 4: /* Automatic, pwm */ fanmode |= (1 << F75387_FAN_DUTY_MODE(nr)); break; } } else { /* clear each fanX_mode bit before setting them properly */ fanmode &= ~(3 << FAN_CTRL_MODE(nr)); switch (val) { case 0: /* full speed */ fanmode |= (3 << FAN_CTRL_MODE(nr)); data->pwm[nr] = 255; break; case 1: /* PWM */ fanmode |= (3 << FAN_CTRL_MODE(nr)); break; case 2: /* AUTOMATIC*/ fanmode |= (1 << FAN_CTRL_MODE(nr)); break; case 3: /* fan speed */ break; case 4: /* Automatic pwm */ return -EINVAL; } } f75375_write8(client, F75375_REG_FAN_TIMER, fanmode); data->pwm_enable[nr] = val; if (val == 0) f75375_write_pwm(client, nr); return 0; } static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); err = set_pwm_enable_direct(client, nr, val); mutex_unlock(&data->update_lock); return err ? err : count; } static ssize_t set_pwm_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); unsigned long val; int err; u8 conf; char reg, ctrl; err = kstrtoul(buf, 10, &val); if (err < 0) return err; if (!(val == 0 || val == 1)) return -EINVAL; /* F75373 does not support DC (linear voltage) fan control mode */ if (data->kind == f75373 && val == 0) return -EINVAL; /* take care for different registers */ if (data->kind == f75387) { reg = F75375_REG_FAN_TIMER; ctrl = F75387_FAN_CTRL_LINEAR(nr); } else { reg = F75375_REG_CONFIG1; ctrl = F75375_FAN_CTRL_LINEAR(nr); } mutex_lock(&data->update_lock); conf = f75375_read8(client, reg); conf &= ~(1 << ctrl); if (val == 0) conf |= (1 << ctrl); f75375_write8(client, reg, conf); data->pwm_mode[nr] = val; mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct f75375_data *data = f75375_update_device(dev); return sprintf(buf, "%d\n", data->pwm[nr]); } static ssize_t show_pwm_mode(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct f75375_data *data = f75375_update_device(dev); return sprintf(buf, "%d\n", data->pwm_mode[nr]); } #define VOLT_FROM_REG(val) ((val) * 8) #define VOLT_TO_REG(val) ((val) / 8) static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct f75375_data *data = f75375_update_device(dev); return sprintf(buf, "%d\n", VOLT_FROM_REG(data->in[nr])); } static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct f75375_data *data = f75375_update_device(dev); return sprintf(buf, "%d\n", VOLT_FROM_REG(data->in_max[nr])); } static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct f75375_data *data = f75375_update_device(dev); return sprintf(buf, "%d\n", VOLT_FROM_REG(data->in_min[nr])); } static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; val = clamp_val(VOLT_TO_REG(val), 0, 0xff); mutex_lock(&data->update_lock); data->in_max[nr] = val; f75375_write8(client, F75375_REG_VOLT_HIGH(nr), data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; val = clamp_val(VOLT_TO_REG(val), 0, 0xff); mutex_lock(&data->update_lock); data->in_min[nr] = val; f75375_write8(client, F75375_REG_VOLT_LOW(nr), data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } #define TEMP_FROM_REG(val) ((val) * 1000) #define TEMP_TO_REG(val) ((val) / 1000) #define TEMP11_FROM_REG(reg) ((reg) / 32 * 125) static ssize_t show_temp11(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct f75375_data *data = f75375_update_device(dev); return sprintf(buf, "%d\n", TEMP11_FROM_REG(data->temp11[nr])); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct f75375_data *data = f75375_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_high[nr])); } static ssize_t show_temp_max_hyst(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct f75375_data *data = f75375_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max_hyst[nr])); } static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; val = clamp_val(TEMP_TO_REG(val), 0, 127); mutex_lock(&data->update_lock); data->temp_high[nr] = val; f75375_write8(client, F75375_REG_TEMP_HIGH(nr), data->temp_high[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_max_hyst(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct f75375_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; val = clamp_val(TEMP_TO_REG(val), 0, 127); mutex_lock(&data->update_lock); data->temp_max_hyst[nr] = val; f75375_write8(client, F75375_REG_TEMP_HYST(nr), data->temp_max_hyst[nr]); mutex_unlock(&data->update_lock); return count; } #define show_fan(thing) \ static ssize_t show_##thing(struct device *dev, struct device_attribute *attr, \ char *buf)\ {\ int nr = to_sensor_dev_attr(attr)->index;\ struct f75375_data *data = f75375_update_device(dev); \ return sprintf(buf, "%d\n", rpm_from_reg(data->thing[nr])); \ } show_fan(fan); show_fan(fan_min); show_fan(fan_max); show_fan(fan_target); static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_in, NULL, 0); static SENSOR_DEVICE_ATTR(in0_max, S_IRUGO|S_IWUSR, show_in_max, set_in_max, 0); static SENSOR_DEVICE_ATTR(in0_min, S_IRUGO|S_IWUSR, show_in_min, set_in_min, 0); static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in, NULL, 1); static SENSOR_DEVICE_ATTR(in1_max, S_IRUGO|S_IWUSR, show_in_max, set_in_max, 1); static SENSOR_DEVICE_ATTR(in1_min, S_IRUGO|S_IWUSR, show_in_min, set_in_min, 1); static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in, NULL, 2); static SENSOR_DEVICE_ATTR(in2_max, S_IRUGO|S_IWUSR, show_in_max, set_in_max, 2); static SENSOR_DEVICE_ATTR(in2_min, S_IRUGO|S_IWUSR, show_in_min, set_in_min, 2); static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in, NULL, 3); static SENSOR_DEVICE_ATTR(in3_max, S_IRUGO|S_IWUSR, show_in_max, set_in_max, 3); static SENSOR_DEVICE_ATTR(in3_min, S_IRUGO|S_IWUSR, show_in_min, set_in_min, 3); static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp11, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IRUGO|S_IWUSR, show_temp_max_hyst, set_temp_max_hyst, 0); static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO|S_IWUSR, show_temp_max, set_temp_max, 0); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp11, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_max_hyst, S_IRUGO|S_IWUSR, show_temp_max_hyst, set_temp_max_hyst, 1); static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO|S_IWUSR, show_temp_max, set_temp_max, 1); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO, show_fan_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO|S_IWUSR, show_fan_min, set_fan_min, 0); static SENSOR_DEVICE_ATTR(fan1_target, S_IRUGO|S_IWUSR, show_fan_target, set_fan_target, 0); static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1); static SENSOR_DEVICE_ATTR(fan2_max, S_IRUGO, show_fan_max, NULL, 1); static SENSOR_DEVICE_ATTR(fan2_min, S_IRUGO|S_IWUSR, show_fan_min, set_fan_min, 1); static SENSOR_DEVICE_ATTR(fan2_target, S_IRUGO|S_IWUSR, show_fan_target, set_fan_target, 1); static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO|S_IWUSR, show_pwm, set_pwm, 0); static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO|S_IWUSR, show_pwm_enable, set_pwm_enable, 0); static SENSOR_DEVICE_ATTR(pwm1_mode, S_IRUGO, show_pwm_mode, set_pwm_mode, 0); static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1); static SENSOR_DEVICE_ATTR(pwm2_enable, S_IRUGO|S_IWUSR, show_pwm_enable, set_pwm_enable, 1); static SENSOR_DEVICE_ATTR(pwm2_mode, S_IRUGO, show_pwm_mode, set_pwm_mode, 1); static struct attribute *f75375_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_max.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_target.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_max.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_target.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_mode.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm2_mode.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, NULL }; static const struct attribute_group f75375_group = { .attrs = f75375_attributes, }; static void f75375_init(struct i2c_client *client, struct f75375_data *data, struct f75375s_platform_data *f75375s_pdata) { int nr; if (!f75375s_pdata) { u8 conf, mode; int nr; conf = f75375_read8(client, F75375_REG_CONFIG1); mode = f75375_read8(client, F75375_REG_FAN_TIMER); for (nr = 0; nr < 2; nr++) { if (data->kind == f75387) { bool manu, duty; if (!(mode & (1 << F75387_FAN_CTRL_LINEAR(nr)))) data->pwm_mode[nr] = 1; manu = ((mode >> F75387_FAN_MANU_MODE(nr)) & 1); duty = ((mode >> F75387_FAN_DUTY_MODE(nr)) & 1); if (!manu && duty) /* auto, pwm */ data->pwm_enable[nr] = 4; else if (manu && !duty) /* manual, speed */ data->pwm_enable[nr] = 3; else if (!manu && !duty) /* automatic, speed */ data->pwm_enable[nr] = 2; else /* manual, pwm */ data->pwm_enable[nr] = 1; } else { if (!(conf & (1 << F75375_FAN_CTRL_LINEAR(nr)))) data->pwm_mode[nr] = 1; switch ((mode >> FAN_CTRL_MODE(nr)) & 3) { case 0: /* speed */ data->pwm_enable[nr] = 3; break; case 1: /* automatic */ data->pwm_enable[nr] = 2; break; default: /* manual */ data->pwm_enable[nr] = 1; break; } } } return; } set_pwm_enable_direct(client, 0, f75375s_pdata->pwm_enable[0]); set_pwm_enable_direct(client, 1, f75375s_pdata->pwm_enable[1]); for (nr = 0; nr < 2; nr++) { if (auto_mode_enabled(f75375s_pdata->pwm_enable[nr]) || !duty_mode_enabled(f75375s_pdata->pwm_enable[nr])) continue; data->pwm[nr] = clamp_val(f75375s_pdata->pwm[nr], 0, 255); f75375_write_pwm(client, nr); } } static int f75375_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct f75375_data *data; struct f75375s_platform_data *f75375s_pdata = dev_get_platdata(&client->dev); int err; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; data = devm_kzalloc(&client->dev, sizeof(struct f75375_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); data->kind = id->driver_data; err = sysfs_create_group(&client->dev.kobj, &f75375_group); if (err) return err; if (data->kind != f75373) { err = sysfs_chmod_file(&client->dev.kobj, &sensor_dev_attr_pwm1_mode.dev_attr.attr, S_IRUGO | S_IWUSR); if (err) goto exit_remove; err = sysfs_chmod_file(&client->dev.kobj, &sensor_dev_attr_pwm2_mode.dev_attr.attr, S_IRUGO | S_IWUSR); if (err) goto exit_remove; } data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove; } f75375_init(client, data, f75375s_pdata); return 0; exit_remove: sysfs_remove_group(&client->dev.kobj, &f75375_group); return err; } static int f75375_remove(struct i2c_client *client) { struct f75375_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &f75375_group); return 0; } /* Return 0 if detection is successful, -ENODEV otherwise */ static int f75375_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; u16 vendid, chipid; u8 version; const char *name; vendid = f75375_read16(client, F75375_REG_VENDOR); chipid = f75375_read16(client, F75375_CHIP_ID); if (vendid != 0x1934) return -ENODEV; if (chipid == 0x0306) name = "f75375"; else if (chipid == 0x0204) name = "f75373"; else if (chipid == 0x0410) name = "f75387"; else return -ENODEV; version = f75375_read8(client, F75375_REG_VERSION); dev_info(&adapter->dev, "found %s version: %02X\n", name, version); strlcpy(info->type, name, I2C_NAME_SIZE); return 0; } module_i2c_driver(f75375_driver); MODULE_AUTHOR("Riku Voipio"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("F75373/F75375/F75387 hardware monitoring driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1