Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Huang Rui | 1096 | 54.12% | 13 | 39.39% |
Andreas Herrmann | 670 | 33.09% | 4 | 12.12% |
Andre Przywara | 115 | 5.68% | 2 | 6.06% |
Aravind Gopalakrishnan | 40 | 1.98% | 3 | 9.09% |
Guenter Roeck | 34 | 1.68% | 4 | 12.12% |
Axel Lin | 25 | 1.23% | 2 | 6.06% |
Gioh Kim | 15 | 0.74% | 1 | 3.03% |
Julia Lawall | 9 | 0.44% | 1 | 3.03% |
Boris Ostrovsky | 9 | 0.44% | 1 | 3.03% |
Borislav Petkov | 6 | 0.30% | 1 | 3.03% |
Jingoo Han | 6 | 0.30% | 1 | 3.03% |
Total | 2025 | 33 |
/* * fam15h_power.c - AMD Family 15h processor power monitoring * * Copyright (c) 2011-2016 Advanced Micro Devices, Inc. * Author: Andreas Herrmann <herrmann.der.user@googlemail.com> * * * This driver is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License; either * version 2 of the License, or (at your option) any later version. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this driver; if not, see <http://www.gnu.org/licenses/>. */ #include <linux/err.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/init.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/bitops.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/time.h> #include <linux/sched.h> #include <asm/processor.h> #include <asm/msr.h> MODULE_DESCRIPTION("AMD Family 15h CPU processor power monitor"); MODULE_AUTHOR("Andreas Herrmann <herrmann.der.user@googlemail.com>"); MODULE_LICENSE("GPL"); /* D18F3 */ #define REG_NORTHBRIDGE_CAP 0xe8 /* D18F4 */ #define REG_PROCESSOR_TDP 0x1b8 /* D18F5 */ #define REG_TDP_RUNNING_AVERAGE 0xe0 #define REG_TDP_LIMIT3 0xe8 #define FAM15H_MIN_NUM_ATTRS 2 #define FAM15H_NUM_GROUPS 2 #define MAX_CUS 8 /* set maximum interval as 1 second */ #define MAX_INTERVAL 1000 #define MSR_F15H_CU_PWR_ACCUMULATOR 0xc001007a #define MSR_F15H_CU_MAX_PWR_ACCUMULATOR 0xc001007b #define MSR_F15H_PTSC 0xc0010280 #define PCI_DEVICE_ID_AMD_15H_M70H_NB_F4 0x15b4 struct fam15h_power_data { struct pci_dev *pdev; unsigned int tdp_to_watts; unsigned int base_tdp; unsigned int processor_pwr_watts; unsigned int cpu_pwr_sample_ratio; const struct attribute_group *groups[FAM15H_NUM_GROUPS]; struct attribute_group group; /* maximum accumulated power of a compute unit */ u64 max_cu_acc_power; /* accumulated power of the compute units */ u64 cu_acc_power[MAX_CUS]; /* performance timestamp counter */ u64 cpu_sw_pwr_ptsc[MAX_CUS]; /* online/offline status of current compute unit */ int cu_on[MAX_CUS]; unsigned long power_period; }; static bool is_carrizo_or_later(void) { return boot_cpu_data.x86 == 0x15 && boot_cpu_data.x86_model >= 0x60; } static ssize_t power1_input_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 val, tdp_limit, running_avg_range; s32 running_avg_capture; u64 curr_pwr_watts; struct fam15h_power_data *data = dev_get_drvdata(dev); struct pci_dev *f4 = data->pdev; pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5), REG_TDP_RUNNING_AVERAGE, &val); /* * On Carrizo and later platforms, TdpRunAvgAccCap bit field * is extended to 4:31 from 4:25. */ if (is_carrizo_or_later()) { running_avg_capture = val >> 4; running_avg_capture = sign_extend32(running_avg_capture, 27); } else { running_avg_capture = (val >> 4) & 0x3fffff; running_avg_capture = sign_extend32(running_avg_capture, 21); } running_avg_range = (val & 0xf) + 1; pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5), REG_TDP_LIMIT3, &val); /* * On Carrizo and later platforms, ApmTdpLimit bit field * is extended to 16:31 from 16:28. */ if (is_carrizo_or_later()) tdp_limit = val >> 16; else tdp_limit = (val >> 16) & 0x1fff; curr_pwr_watts = ((u64)(tdp_limit + data->base_tdp)) << running_avg_range; curr_pwr_watts -= running_avg_capture; curr_pwr_watts *= data->tdp_to_watts; /* * Convert to microWatt * * power is in Watt provided as fixed point integer with * scaling factor 1/(2^16). For conversion we use * (10^6)/(2^16) = 15625/(2^10) */ curr_pwr_watts = (curr_pwr_watts * 15625) >> (10 + running_avg_range); return sprintf(buf, "%u\n", (unsigned int) curr_pwr_watts); } static DEVICE_ATTR_RO(power1_input); static ssize_t power1_crit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fam15h_power_data *data = dev_get_drvdata(dev); return sprintf(buf, "%u\n", data->processor_pwr_watts); } static DEVICE_ATTR_RO(power1_crit); static void do_read_registers_on_cu(void *_data) { struct fam15h_power_data *data = _data; int cpu, cu; cpu = smp_processor_id(); /* * With the new x86 topology modelling, cpu core id actually * is compute unit id. */ cu = cpu_data(cpu).cpu_core_id; rdmsrl_safe(MSR_F15H_CU_PWR_ACCUMULATOR, &data->cu_acc_power[cu]); rdmsrl_safe(MSR_F15H_PTSC, &data->cpu_sw_pwr_ptsc[cu]); data->cu_on[cu] = 1; } /* * This function is only able to be called when CPUID * Fn8000_0007:EDX[12] is set. */ static int read_registers(struct fam15h_power_data *data) { int core, this_core; cpumask_var_t mask; int ret, cpu; ret = zalloc_cpumask_var(&mask, GFP_KERNEL); if (!ret) return -ENOMEM; memset(data->cu_on, 0, sizeof(int) * MAX_CUS); get_online_cpus(); /* * Choose the first online core of each compute unit, and then * read their MSR value of power and ptsc in a single IPI, * because the MSR value of CPU core represent the compute * unit's. */ core = -1; for_each_online_cpu(cpu) { this_core = topology_core_id(cpu); if (this_core == core) continue; core = this_core; /* get any CPU on this compute unit */ cpumask_set_cpu(cpumask_any(topology_sibling_cpumask(cpu)), mask); } on_each_cpu_mask(mask, do_read_registers_on_cu, data, true); put_online_cpus(); free_cpumask_var(mask); return 0; } static ssize_t power1_average_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fam15h_power_data *data = dev_get_drvdata(dev); u64 prev_cu_acc_power[MAX_CUS], prev_ptsc[MAX_CUS], jdelta[MAX_CUS]; u64 tdelta, avg_acc; int cu, cu_num, ret; signed long leftover; /* * With the new x86 topology modelling, x86_max_cores is the * compute unit number. */ cu_num = boot_cpu_data.x86_max_cores; ret = read_registers(data); if (ret) return 0; for (cu = 0; cu < cu_num; cu++) { prev_cu_acc_power[cu] = data->cu_acc_power[cu]; prev_ptsc[cu] = data->cpu_sw_pwr_ptsc[cu]; } leftover = schedule_timeout_interruptible(msecs_to_jiffies(data->power_period)); if (leftover) return 0; ret = read_registers(data); if (ret) return 0; for (cu = 0, avg_acc = 0; cu < cu_num; cu++) { /* check if current compute unit is online */ if (data->cu_on[cu] == 0) continue; if (data->cu_acc_power[cu] < prev_cu_acc_power[cu]) { jdelta[cu] = data->max_cu_acc_power + data->cu_acc_power[cu]; jdelta[cu] -= prev_cu_acc_power[cu]; } else { jdelta[cu] = data->cu_acc_power[cu] - prev_cu_acc_power[cu]; } tdelta = data->cpu_sw_pwr_ptsc[cu] - prev_ptsc[cu]; jdelta[cu] *= data->cpu_pwr_sample_ratio * 1000; do_div(jdelta[cu], tdelta); /* the unit is microWatt */ avg_acc += jdelta[cu]; } return sprintf(buf, "%llu\n", (unsigned long long)avg_acc); } static DEVICE_ATTR_RO(power1_average); static ssize_t power1_average_interval_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fam15h_power_data *data = dev_get_drvdata(dev); return sprintf(buf, "%lu\n", data->power_period); } static ssize_t power1_average_interval_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fam15h_power_data *data = dev_get_drvdata(dev); unsigned long temp; int ret; ret = kstrtoul(buf, 10, &temp); if (ret) return ret; if (temp > MAX_INTERVAL) return -EINVAL; /* the interval value should be greater than 0 */ if (temp <= 0) return -EINVAL; data->power_period = temp; return count; } static DEVICE_ATTR_RW(power1_average_interval); static int fam15h_power_init_attrs(struct pci_dev *pdev, struct fam15h_power_data *data) { int n = FAM15H_MIN_NUM_ATTRS; struct attribute **fam15h_power_attrs; struct cpuinfo_x86 *c = &boot_cpu_data; if (c->x86 == 0x15 && (c->x86_model <= 0xf || (c->x86_model >= 0x60 && c->x86_model <= 0x7f))) n += 1; /* check if processor supports accumulated power */ if (boot_cpu_has(X86_FEATURE_ACC_POWER)) n += 2; fam15h_power_attrs = devm_kcalloc(&pdev->dev, n, sizeof(*fam15h_power_attrs), GFP_KERNEL); if (!fam15h_power_attrs) return -ENOMEM; n = 0; fam15h_power_attrs[n++] = &dev_attr_power1_crit.attr; if (c->x86 == 0x15 && (c->x86_model <= 0xf || (c->x86_model >= 0x60 && c->x86_model <= 0x7f))) fam15h_power_attrs[n++] = &dev_attr_power1_input.attr; if (boot_cpu_has(X86_FEATURE_ACC_POWER)) { fam15h_power_attrs[n++] = &dev_attr_power1_average.attr; fam15h_power_attrs[n++] = &dev_attr_power1_average_interval.attr; } data->group.attrs = fam15h_power_attrs; return 0; } static bool should_load_on_this_node(struct pci_dev *f4) { u32 val; pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 3), REG_NORTHBRIDGE_CAP, &val); if ((val & BIT(29)) && ((val >> 30) & 3)) return false; return true; } /* * Newer BKDG versions have an updated recommendation on how to properly * initialize the running average range (was: 0xE, now: 0x9). This avoids * counter saturations resulting in bogus power readings. * We correct this value ourselves to cope with older BIOSes. */ static const struct pci_device_id affected_device[] = { { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) }, { 0 } }; static void tweak_runavg_range(struct pci_dev *pdev) { u32 val; /* * let this quirk apply only to the current version of the * northbridge, since future versions may change the behavior */ if (!pci_match_id(affected_device, pdev)) return; pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(PCI_SLOT(pdev->devfn), 5), REG_TDP_RUNNING_AVERAGE, &val); if ((val & 0xf) != 0xe) return; val &= ~0xf; val |= 0x9; pci_bus_write_config_dword(pdev->bus, PCI_DEVFN(PCI_SLOT(pdev->devfn), 5), REG_TDP_RUNNING_AVERAGE, val); } #ifdef CONFIG_PM static int fam15h_power_resume(struct pci_dev *pdev) { tweak_runavg_range(pdev); return 0; } #else #define fam15h_power_resume NULL #endif static int fam15h_power_init_data(struct pci_dev *f4, struct fam15h_power_data *data) { u32 val; u64 tmp; int ret; pci_read_config_dword(f4, REG_PROCESSOR_TDP, &val); data->base_tdp = val >> 16; tmp = val & 0xffff; pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5), REG_TDP_LIMIT3, &val); data->tdp_to_watts = ((val & 0x3ff) << 6) | ((val >> 10) & 0x3f); tmp *= data->tdp_to_watts; /* result not allowed to be >= 256W */ if ((tmp >> 16) >= 256) dev_warn(&f4->dev, "Bogus value for ProcessorPwrWatts (processor_pwr_watts>=%u)\n", (unsigned int) (tmp >> 16)); /* convert to microWatt */ data->processor_pwr_watts = (tmp * 15625) >> 10; ret = fam15h_power_init_attrs(f4, data); if (ret) return ret; /* CPUID Fn8000_0007:EDX[12] indicates to support accumulated power */ if (!boot_cpu_has(X86_FEATURE_ACC_POWER)) return 0; /* * determine the ratio of the compute unit power accumulator * sample period to the PTSC counter period by executing CPUID * Fn8000_0007:ECX */ data->cpu_pwr_sample_ratio = cpuid_ecx(0x80000007); if (rdmsrl_safe(MSR_F15H_CU_MAX_PWR_ACCUMULATOR, &tmp)) { pr_err("Failed to read max compute unit power accumulator MSR\n"); return -ENODEV; } data->max_cu_acc_power = tmp; /* * Milliseconds are a reasonable interval for the measurement. * But it shouldn't set too long here, because several seconds * would cause the read function to hang. So set default * interval as 10 ms. */ data->power_period = 10; return read_registers(data); } static int fam15h_power_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct fam15h_power_data *data; struct device *dev = &pdev->dev; struct device *hwmon_dev; int ret; /* * though we ignore every other northbridge, we still have to * do the tweaking on _each_ node in MCM processors as the counters * are working hand-in-hand */ tweak_runavg_range(pdev); if (!should_load_on_this_node(pdev)) return -ENODEV; data = devm_kzalloc(dev, sizeof(struct fam15h_power_data), GFP_KERNEL); if (!data) return -ENOMEM; ret = fam15h_power_init_data(pdev, data); if (ret) return ret; data->pdev = pdev; data->groups[0] = &data->group; hwmon_dev = devm_hwmon_device_register_with_groups(dev, "fam15h_power", data, &data->groups[0]); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct pci_device_id fam15h_power_id_table[] = { { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F4) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F4) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F4) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F4) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) }, {} }; MODULE_DEVICE_TABLE(pci, fam15h_power_id_table); static struct pci_driver fam15h_power_driver = { .name = "fam15h_power", .id_table = fam15h_power_id_table, .probe = fam15h_power_probe, .resume = fam15h_power_resume, }; module_pci_driver(fam15h_power_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1