Contributors: 8
Author Tokens Token Proportion Commits Commit Proportion
Shilpasri G Bhat 1277 40.60% 5 20.83%
Neelesh Gupta 945 30.05% 2 8.33%
Cédric Le Goater 900 28.62% 11 45.83%
Kees Cook 10 0.32% 1 4.17%
Axel Lin 7 0.22% 2 8.33%
Guenter Roeck 3 0.10% 1 4.17%
Michael Neuling 2 0.06% 1 4.17%
Rob Herring 1 0.03% 1 4.17%
Total 3145 24


/*
 * IBM PowerNV platform sensors for temperature/fan/voltage/power
 * Copyright (C) 2014 IBM
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.
 */

#define DRVNAME		"ibmpowernv"
#define pr_fmt(fmt)	DRVNAME ": " fmt

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/of.h>
#include <linux/slab.h>

#include <linux/platform_device.h>
#include <asm/opal.h>
#include <linux/err.h>
#include <asm/cputhreads.h>
#include <asm/smp.h>

#define MAX_ATTR_LEN	32
#define MAX_LABEL_LEN	64

/* Sensor suffix name from DT */
#define DT_FAULT_ATTR_SUFFIX		"faulted"
#define DT_DATA_ATTR_SUFFIX		"data"
#define DT_THRESHOLD_ATTR_SUFFIX	"thrs"

/*
 * Enumerates all the types of sensors in the POWERNV platform and does index
 * into 'struct sensor_group'
 */
enum sensors {
	FAN,
	TEMP,
	POWER_SUPPLY,
	POWER_INPUT,
	CURRENT,
	ENERGY,
	MAX_SENSOR_TYPE,
};

#define INVALID_INDEX (-1U)

/*
 * 'compatible' string properties for sensor types as defined in old
 * PowerNV firmware (skiboot). These are ordered as 'enum sensors'.
 */
static const char * const legacy_compatibles[] = {
	"ibm,opal-sensor-cooling-fan",
	"ibm,opal-sensor-amb-temp",
	"ibm,opal-sensor-power-supply",
	"ibm,opal-sensor-power"
};

static struct sensor_group {
	const char *name; /* matches property 'sensor-type' */
	struct attribute_group group;
	u32 attr_count;
	u32 hwmon_index;
} sensor_groups[] = {
	{ "fan"   },
	{ "temp"  },
	{ "in"    },
	{ "power" },
	{ "curr"  },
	{ "energy" },
};

struct sensor_data {
	u32 id; /* An opaque id of the firmware for each sensor */
	u32 hwmon_index;
	u32 opal_index;
	enum sensors type;
	char label[MAX_LABEL_LEN];
	char name[MAX_ATTR_LEN];
	struct device_attribute dev_attr;
	struct sensor_group_data *sgrp_data;
};

struct sensor_group_data {
	struct mutex mutex;
	u32 gid;
	bool enable;
};

struct platform_data {
	const struct attribute_group *attr_groups[MAX_SENSOR_TYPE + 1];
	struct sensor_group_data *sgrp_data;
	u32 sensors_count; /* Total count of sensors from each group */
	u32 nr_sensor_groups; /* Total number of sensor groups */
};

static ssize_t show_sensor(struct device *dev, struct device_attribute *devattr,
			   char *buf)
{
	struct sensor_data *sdata = container_of(devattr, struct sensor_data,
						 dev_attr);
	ssize_t ret;
	u64 x;

	if (sdata->sgrp_data && !sdata->sgrp_data->enable)
		return -ENODATA;

	ret =  opal_get_sensor_data_u64(sdata->id, &x);

	if (ret)
		return ret;

	/* Convert temperature to milli-degrees */
	if (sdata->type == TEMP)
		x *= 1000;
	/* Convert power to micro-watts */
	else if (sdata->type == POWER_INPUT)
		x *= 1000000;

	return sprintf(buf, "%llu\n", x);
}

static ssize_t show_enable(struct device *dev,
			   struct device_attribute *devattr, char *buf)
{
	struct sensor_data *sdata = container_of(devattr, struct sensor_data,
						 dev_attr);

	return sprintf(buf, "%u\n", sdata->sgrp_data->enable);
}

static ssize_t store_enable(struct device *dev,
			    struct device_attribute *devattr,
			    const char *buf, size_t count)
{
	struct sensor_data *sdata = container_of(devattr, struct sensor_data,
						 dev_attr);
	struct sensor_group_data *sgrp_data = sdata->sgrp_data;
	int ret;
	bool data;

	ret = kstrtobool(buf, &data);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&sgrp_data->mutex);
	if (ret)
		return ret;

	if (data != sgrp_data->enable) {
		ret =  sensor_group_enable(sgrp_data->gid, data);
		if (!ret)
			sgrp_data->enable = data;
	}

	if (!ret)
		ret = count;

	mutex_unlock(&sgrp_data->mutex);
	return ret;
}

static ssize_t show_label(struct device *dev, struct device_attribute *devattr,
			  char *buf)
{
	struct sensor_data *sdata = container_of(devattr, struct sensor_data,
						 dev_attr);

	return sprintf(buf, "%s\n", sdata->label);
}

static int get_logical_cpu(int hwcpu)
{
	int cpu;

	for_each_possible_cpu(cpu)
		if (get_hard_smp_processor_id(cpu) == hwcpu)
			return cpu;

	return -ENOENT;
}

static void make_sensor_label(struct device_node *np,
			      struct sensor_data *sdata, const char *label)
{
	u32 id;
	size_t n;

	n = snprintf(sdata->label, sizeof(sdata->label), "%s", label);

	/*
	 * Core temp pretty print
	 */
	if (!of_property_read_u32(np, "ibm,pir", &id)) {
		int cpuid = get_logical_cpu(id);

		if (cpuid >= 0)
			/*
			 * The digital thermal sensors are associated
			 * with a core.
			 */
			n += snprintf(sdata->label + n,
				      sizeof(sdata->label) - n, " %d",
				      cpuid);
		else
			n += snprintf(sdata->label + n,
				      sizeof(sdata->label) - n, " phy%d", id);
	}

	/*
	 * Membuffer pretty print
	 */
	if (!of_property_read_u32(np, "ibm,chip-id", &id))
		n += snprintf(sdata->label + n, sizeof(sdata->label) - n,
			      " %d", id & 0xffff);
}

static int get_sensor_index_attr(const char *name, u32 *index, char *attr)
{
	char *hash_pos = strchr(name, '#');
	char buf[8] = { 0 };
	char *dash_pos;
	u32 copy_len;
	int err;

	if (!hash_pos)
		return -EINVAL;

	dash_pos = strchr(hash_pos, '-');
	if (!dash_pos)
		return -EINVAL;

	copy_len = dash_pos - hash_pos - 1;
	if (copy_len >= sizeof(buf))
		return -EINVAL;

	strncpy(buf, hash_pos + 1, copy_len);

	err = kstrtou32(buf, 10, index);
	if (err)
		return err;

	strncpy(attr, dash_pos + 1, MAX_ATTR_LEN);

	return 0;
}

static const char *convert_opal_attr_name(enum sensors type,
					  const char *opal_attr)
{
	const char *attr_name = NULL;

	if (!strcmp(opal_attr, DT_FAULT_ATTR_SUFFIX)) {
		attr_name = "fault";
	} else if (!strcmp(opal_attr, DT_DATA_ATTR_SUFFIX)) {
		attr_name = "input";
	} else if (!strcmp(opal_attr, DT_THRESHOLD_ATTR_SUFFIX)) {
		if (type == TEMP)
			attr_name = "max";
		else if (type == FAN)
			attr_name = "min";
	}

	return attr_name;
}

/*
 * This function translates the DT node name into the 'hwmon' attribute name.
 * IBMPOWERNV device node appear like cooling-fan#2-data, amb-temp#1-thrs etc.
 * which need to be mapped as fan2_input, temp1_max respectively before
 * populating them inside hwmon device class.
 */
static const char *parse_opal_node_name(const char *node_name,
					enum sensors type, u32 *index)
{
	char attr_suffix[MAX_ATTR_LEN];
	const char *attr_name;
	int err;

	err = get_sensor_index_attr(node_name, index, attr_suffix);
	if (err)
		return ERR_PTR(err);

	attr_name = convert_opal_attr_name(type, attr_suffix);
	if (!attr_name)
		return ERR_PTR(-ENOENT);

	return attr_name;
}

static int get_sensor_type(struct device_node *np)
{
	enum sensors type;
	const char *str;

	for (type = 0; type < ARRAY_SIZE(legacy_compatibles); type++) {
		if (of_device_is_compatible(np, legacy_compatibles[type]))
			return type;
	}

	/*
	 * Let's check if we have a newer device tree
	 */
	if (!of_device_is_compatible(np, "ibm,opal-sensor"))
		return MAX_SENSOR_TYPE;

	if (of_property_read_string(np, "sensor-type", &str))
		return MAX_SENSOR_TYPE;

	for (type = 0; type < MAX_SENSOR_TYPE; type++)
		if (!strcmp(str, sensor_groups[type].name))
			return type;

	return MAX_SENSOR_TYPE;
}

static u32 get_sensor_hwmon_index(struct sensor_data *sdata,
				  struct sensor_data *sdata_table, int count)
{
	int i;

	/*
	 * We don't use the OPAL index on newer device trees
	 */
	if (sdata->opal_index != INVALID_INDEX) {
		for (i = 0; i < count; i++)
			if (sdata_table[i].opal_index == sdata->opal_index &&
			    sdata_table[i].type == sdata->type)
				return sdata_table[i].hwmon_index;
	}
	return ++sensor_groups[sdata->type].hwmon_index;
}

static int init_sensor_group_data(struct platform_device *pdev,
				  struct platform_data *pdata)
{
	struct sensor_group_data *sgrp_data;
	struct device_node *groups, *sgrp;
	int count = 0, ret = 0;
	enum sensors type;

	groups = of_find_compatible_node(NULL, NULL, "ibm,opal-sensor-group");
	if (!groups)
		return ret;

	for_each_child_of_node(groups, sgrp) {
		type = get_sensor_type(sgrp);
		if (type != MAX_SENSOR_TYPE)
			pdata->nr_sensor_groups++;
	}

	if (!pdata->nr_sensor_groups)
		goto out;

	sgrp_data = devm_kcalloc(&pdev->dev, pdata->nr_sensor_groups,
				 sizeof(*sgrp_data), GFP_KERNEL);
	if (!sgrp_data) {
		ret = -ENOMEM;
		goto out;
	}

	for_each_child_of_node(groups, sgrp) {
		u32 gid;

		type = get_sensor_type(sgrp);
		if (type == MAX_SENSOR_TYPE)
			continue;

		if (of_property_read_u32(sgrp, "sensor-group-id", &gid))
			continue;

		if (of_count_phandle_with_args(sgrp, "sensors", NULL) <= 0)
			continue;

		sensor_groups[type].attr_count++;
		sgrp_data[count].gid = gid;
		mutex_init(&sgrp_data[count].mutex);
		sgrp_data[count++].enable = false;
	}

	pdata->sgrp_data = sgrp_data;
out:
	of_node_put(groups);
	return ret;
}

static struct sensor_group_data *get_sensor_group(struct platform_data *pdata,
						  struct device_node *node,
						  enum sensors gtype)
{
	struct sensor_group_data *sgrp_data = pdata->sgrp_data;
	struct device_node *groups, *sgrp;

	groups = of_find_compatible_node(NULL, NULL, "ibm,opal-sensor-group");
	if (!groups)
		return NULL;

	for_each_child_of_node(groups, sgrp) {
		struct of_phandle_iterator it;
		u32 gid;
		int rc, i;
		enum sensors type;

		type = get_sensor_type(sgrp);
		if (type != gtype)
			continue;

		if (of_property_read_u32(sgrp, "sensor-group-id", &gid))
			continue;

		of_for_each_phandle(&it, rc, sgrp, "sensors", NULL, 0)
			if (it.phandle == node->phandle) {
				of_node_put(it.node);
				break;
			}

		if (rc)
			continue;

		for (i = 0; i < pdata->nr_sensor_groups; i++)
			if (gid == sgrp_data[i].gid) {
				of_node_put(sgrp);
				of_node_put(groups);
				return &sgrp_data[i];
			}
	}

	of_node_put(groups);
	return NULL;
}

static int populate_attr_groups(struct platform_device *pdev)
{
	struct platform_data *pdata = platform_get_drvdata(pdev);
	const struct attribute_group **pgroups = pdata->attr_groups;
	struct device_node *opal, *np;
	enum sensors type;
	int ret;

	ret = init_sensor_group_data(pdev, pdata);
	if (ret)
		return ret;

	opal = of_find_node_by_path("/ibm,opal/sensors");
	for_each_child_of_node(opal, np) {
		const char *label;

		type = get_sensor_type(np);
		if (type == MAX_SENSOR_TYPE)
			continue;

		sensor_groups[type].attr_count++;

		/*
		 * add attributes for labels, min and max
		 */
		if (!of_property_read_string(np, "label", &label))
			sensor_groups[type].attr_count++;
		if (of_find_property(np, "sensor-data-min", NULL))
			sensor_groups[type].attr_count++;
		if (of_find_property(np, "sensor-data-max", NULL))
			sensor_groups[type].attr_count++;
	}

	of_node_put(opal);

	for (type = 0; type < MAX_SENSOR_TYPE; type++) {
		sensor_groups[type].group.attrs = devm_kcalloc(&pdev->dev,
					sensor_groups[type].attr_count + 1,
					sizeof(struct attribute *),
					GFP_KERNEL);
		if (!sensor_groups[type].group.attrs)
			return -ENOMEM;

		pgroups[type] = &sensor_groups[type].group;
		pdata->sensors_count += sensor_groups[type].attr_count;
		sensor_groups[type].attr_count = 0;
	}

	return 0;
}

static void create_hwmon_attr(struct sensor_data *sdata, const char *attr_name,
			      ssize_t (*show)(struct device *dev,
					      struct device_attribute *attr,
					      char *buf),
			    ssize_t (*store)(struct device *dev,
					     struct device_attribute *attr,
					     const char *buf, size_t count))
{
	snprintf(sdata->name, MAX_ATTR_LEN, "%s%d_%s",
		 sensor_groups[sdata->type].name, sdata->hwmon_index,
		 attr_name);

	sysfs_attr_init(&sdata->dev_attr.attr);
	sdata->dev_attr.attr.name = sdata->name;
	sdata->dev_attr.show = show;
	if (store) {
		sdata->dev_attr.store = store;
		sdata->dev_attr.attr.mode = 0664;
	} else {
		sdata->dev_attr.attr.mode = 0444;
	}
}

static void populate_sensor(struct sensor_data *sdata, int od, int hd, int sid,
			    const char *attr_name, enum sensors type,
			    const struct attribute_group *pgroup,
			    struct sensor_group_data *sgrp_data,
			    ssize_t (*show)(struct device *dev,
					    struct device_attribute *attr,
					    char *buf),
			    ssize_t (*store)(struct device *dev,
					     struct device_attribute *attr,
					     const char *buf, size_t count))
{
	sdata->id = sid;
	sdata->type = type;
	sdata->opal_index = od;
	sdata->hwmon_index = hd;
	create_hwmon_attr(sdata, attr_name, show, store);
	pgroup->attrs[sensor_groups[type].attr_count++] = &sdata->dev_attr.attr;
	sdata->sgrp_data = sgrp_data;
}

static char *get_max_attr(enum sensors type)
{
	switch (type) {
	case POWER_INPUT:
		return "input_highest";
	default:
		return "highest";
	}
}

static char *get_min_attr(enum sensors type)
{
	switch (type) {
	case POWER_INPUT:
		return "input_lowest";
	default:
		return "lowest";
	}
}

/*
 * Iterate through the device tree for each child of 'sensors' node, create
 * a sysfs attribute file, the file is named by translating the DT node name
 * to the name required by the higher 'hwmon' driver like fan1_input, temp1_max
 * etc..
 */
static int create_device_attrs(struct platform_device *pdev)
{
	struct platform_data *pdata = platform_get_drvdata(pdev);
	const struct attribute_group **pgroups = pdata->attr_groups;
	struct device_node *opal, *np;
	struct sensor_data *sdata;
	u32 count = 0;
	u32 group_attr_id[MAX_SENSOR_TYPE] = {0};

	sdata = devm_kcalloc(&pdev->dev,
			     pdata->sensors_count, sizeof(*sdata),
			     GFP_KERNEL);
	if (!sdata)
		return -ENOMEM;

	opal = of_find_node_by_path("/ibm,opal/sensors");
	for_each_child_of_node(opal, np) {
		struct sensor_group_data *sgrp_data;
		const char *attr_name;
		u32 opal_index, hw_id;
		u32 sensor_id;
		const char *label;
		enum sensors type;

		type = get_sensor_type(np);
		if (type == MAX_SENSOR_TYPE)
			continue;

		/*
		 * Newer device trees use a "sensor-data" property
		 * name for input.
		 */
		if (of_property_read_u32(np, "sensor-id", &sensor_id) &&
		    of_property_read_u32(np, "sensor-data", &sensor_id)) {
			dev_info(&pdev->dev,
				 "'sensor-id' missing in the node '%pOFn'\n",
				 np);
			continue;
		}

		sdata[count].id = sensor_id;
		sdata[count].type = type;

		/*
		 * If we can not parse the node name, it means we are
		 * running on a newer device tree. We can just forget
		 * about the OPAL index and use a defaut value for the
		 * hwmon attribute name
		 */
		attr_name = parse_opal_node_name(np->name, type, &opal_index);
		if (IS_ERR(attr_name)) {
			attr_name = "input";
			opal_index = INVALID_INDEX;
		}

		hw_id = get_sensor_hwmon_index(&sdata[count], sdata, count);
		sgrp_data = get_sensor_group(pdata, np, type);
		populate_sensor(&sdata[count], opal_index, hw_id, sensor_id,
				attr_name, type, pgroups[type], sgrp_data,
				show_sensor, NULL);
		count++;

		if (!of_property_read_string(np, "label", &label)) {
			/*
			 * For the label attribute, we can reuse the
			 * "properties" of the previous "input"
			 * attribute. They are related to the same
			 * sensor.
			 */

			make_sensor_label(np, &sdata[count], label);
			populate_sensor(&sdata[count], opal_index, hw_id,
					sensor_id, "label", type, pgroups[type],
					NULL, show_label, NULL);
			count++;
		}

		if (!of_property_read_u32(np, "sensor-data-max", &sensor_id)) {
			attr_name = get_max_attr(type);
			populate_sensor(&sdata[count], opal_index, hw_id,
					sensor_id, attr_name, type,
					pgroups[type], sgrp_data, show_sensor,
					NULL);
			count++;
		}

		if (!of_property_read_u32(np, "sensor-data-min", &sensor_id)) {
			attr_name = get_min_attr(type);
			populate_sensor(&sdata[count], opal_index, hw_id,
					sensor_id, attr_name, type,
					pgroups[type], sgrp_data, show_sensor,
					NULL);
			count++;
		}

		if (sgrp_data && !sgrp_data->enable) {
			sgrp_data->enable = true;
			hw_id = ++group_attr_id[type];
			populate_sensor(&sdata[count], opal_index, hw_id,
					sgrp_data->gid, "enable", type,
					pgroups[type], sgrp_data, show_enable,
					store_enable);
			count++;
		}
	}

	of_node_put(opal);
	return 0;
}

static int ibmpowernv_probe(struct platform_device *pdev)
{
	struct platform_data *pdata;
	struct device *hwmon_dev;
	int err;

	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

	platform_set_drvdata(pdev, pdata);
	pdata->sensors_count = 0;
	pdata->nr_sensor_groups = 0;
	err = populate_attr_groups(pdev);
	if (err)
		return err;

	/* Create sysfs attribute data for each sensor found in the DT */
	err = create_device_attrs(pdev);
	if (err)
		return err;

	/* Finally, register with hwmon */
	hwmon_dev = devm_hwmon_device_register_with_groups(&pdev->dev, DRVNAME,
							   pdata,
							   pdata->attr_groups);

	return PTR_ERR_OR_ZERO(hwmon_dev);
}

static const struct platform_device_id opal_sensor_driver_ids[] = {
	{
		.name = "opal-sensor",
	},
	{ }
};
MODULE_DEVICE_TABLE(platform, opal_sensor_driver_ids);

static const struct of_device_id opal_sensor_match[] = {
	{ .compatible	= "ibm,opal-sensor" },
	{ },
};
MODULE_DEVICE_TABLE(of, opal_sensor_match);

static struct platform_driver ibmpowernv_driver = {
	.probe		= ibmpowernv_probe,
	.id_table	= opal_sensor_driver_ids,
	.driver		= {
		.name	= DRVNAME,
		.of_match_table	= opal_sensor_match,
	},
};

module_platform_driver(ibmpowernv_driver);

MODULE_AUTHOR("Neelesh Gupta <neelegup@linux.vnet.ibm.com>");
MODULE_DESCRIPTION("IBM POWERNV platform sensors");
MODULE_LICENSE("GPL");