Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Masahiro Yamada | 2806 | 100.00% | 14 | 100.00% |
Total | 2806 | 14 |
/* * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/clk.h> #include <linux/i2c.h> #include <linux/iopoll.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #define UNIPHIER_FI2C_CR 0x00 /* control register */ #define UNIPHIER_FI2C_CR_MST BIT(3) /* master mode */ #define UNIPHIER_FI2C_CR_STA BIT(2) /* start condition */ #define UNIPHIER_FI2C_CR_STO BIT(1) /* stop condition */ #define UNIPHIER_FI2C_CR_NACK BIT(0) /* do not return ACK */ #define UNIPHIER_FI2C_DTTX 0x04 /* TX FIFO */ #define UNIPHIER_FI2C_DTTX_CMD BIT(8) /* send command (slave addr) */ #define UNIPHIER_FI2C_DTTX_RD BIT(0) /* read transaction */ #define UNIPHIER_FI2C_DTRX 0x04 /* RX FIFO */ #define UNIPHIER_FI2C_SLAD 0x0c /* slave address */ #define UNIPHIER_FI2C_CYC 0x10 /* clock cycle control */ #define UNIPHIER_FI2C_LCTL 0x14 /* clock low period control */ #define UNIPHIER_FI2C_SSUT 0x18 /* restart/stop setup time control */ #define UNIPHIER_FI2C_DSUT 0x1c /* data setup time control */ #define UNIPHIER_FI2C_INT 0x20 /* interrupt status */ #define UNIPHIER_FI2C_IE 0x24 /* interrupt enable */ #define UNIPHIER_FI2C_IC 0x28 /* interrupt clear */ #define UNIPHIER_FI2C_INT_TE BIT(9) /* TX FIFO empty */ #define UNIPHIER_FI2C_INT_RF BIT(8) /* RX FIFO full */ #define UNIPHIER_FI2C_INT_TC BIT(7) /* send complete (STOP) */ #define UNIPHIER_FI2C_INT_RC BIT(6) /* receive complete (STOP) */ #define UNIPHIER_FI2C_INT_TB BIT(5) /* sent specified bytes */ #define UNIPHIER_FI2C_INT_RB BIT(4) /* received specified bytes */ #define UNIPHIER_FI2C_INT_NA BIT(2) /* no ACK */ #define UNIPHIER_FI2C_INT_AL BIT(1) /* arbitration lost */ #define UNIPHIER_FI2C_SR 0x2c /* status register */ #define UNIPHIER_FI2C_SR_DB BIT(12) /* device busy */ #define UNIPHIER_FI2C_SR_STS BIT(11) /* stop condition detected */ #define UNIPHIER_FI2C_SR_BB BIT(8) /* bus busy */ #define UNIPHIER_FI2C_SR_RFF BIT(3) /* RX FIFO full */ #define UNIPHIER_FI2C_SR_RNE BIT(2) /* RX FIFO not empty */ #define UNIPHIER_FI2C_SR_TNF BIT(1) /* TX FIFO not full */ #define UNIPHIER_FI2C_SR_TFE BIT(0) /* TX FIFO empty */ #define UNIPHIER_FI2C_RST 0x34 /* reset control */ #define UNIPHIER_FI2C_RST_TBRST BIT(2) /* clear TX FIFO */ #define UNIPHIER_FI2C_RST_RBRST BIT(1) /* clear RX FIFO */ #define UNIPHIER_FI2C_RST_RST BIT(0) /* forcible bus reset */ #define UNIPHIER_FI2C_BM 0x38 /* bus monitor */ #define UNIPHIER_FI2C_BM_SDAO BIT(3) /* output for SDA line */ #define UNIPHIER_FI2C_BM_SDAS BIT(2) /* readback of SDA line */ #define UNIPHIER_FI2C_BM_SCLO BIT(1) /* output for SCL line */ #define UNIPHIER_FI2C_BM_SCLS BIT(0) /* readback of SCL line */ #define UNIPHIER_FI2C_NOISE 0x3c /* noise filter control */ #define UNIPHIER_FI2C_TBC 0x40 /* TX byte count setting */ #define UNIPHIER_FI2C_RBC 0x44 /* RX byte count setting */ #define UNIPHIER_FI2C_TBCM 0x48 /* TX byte count monitor */ #define UNIPHIER_FI2C_RBCM 0x4c /* RX byte count monitor */ #define UNIPHIER_FI2C_BRST 0x50 /* bus reset */ #define UNIPHIER_FI2C_BRST_FOEN BIT(1) /* normal operation */ #define UNIPHIER_FI2C_BRST_RSCL BIT(0) /* release SCL */ #define UNIPHIER_FI2C_INT_FAULTS \ (UNIPHIER_FI2C_INT_NA | UNIPHIER_FI2C_INT_AL) #define UNIPHIER_FI2C_INT_STOP \ (UNIPHIER_FI2C_INT_TC | UNIPHIER_FI2C_INT_RC) #define UNIPHIER_FI2C_RD BIT(0) #define UNIPHIER_FI2C_STOP BIT(1) #define UNIPHIER_FI2C_MANUAL_NACK BIT(2) #define UNIPHIER_FI2C_BYTE_WISE BIT(3) #define UNIPHIER_FI2C_DEFER_STOP_COMP BIT(4) #define UNIPHIER_FI2C_DEFAULT_SPEED 100000 #define UNIPHIER_FI2C_MAX_SPEED 400000 #define UNIPHIER_FI2C_FIFO_SIZE 8 struct uniphier_fi2c_priv { struct completion comp; struct i2c_adapter adap; void __iomem *membase; struct clk *clk; unsigned int len; u8 *buf; u32 enabled_irqs; int error; unsigned int flags; unsigned int busy_cnt; unsigned int clk_cycle; spinlock_t lock; /* IRQ synchronization */ }; static void uniphier_fi2c_fill_txfifo(struct uniphier_fi2c_priv *priv, bool first) { int fifo_space = UNIPHIER_FI2C_FIFO_SIZE; /* * TX-FIFO stores slave address in it for the first access. * Decrement the counter. */ if (first) fifo_space--; while (priv->len) { if (fifo_space-- <= 0) break; dev_dbg(&priv->adap.dev, "write data: %02x\n", *priv->buf); writel(*priv->buf++, priv->membase + UNIPHIER_FI2C_DTTX); priv->len--; } } static void uniphier_fi2c_drain_rxfifo(struct uniphier_fi2c_priv *priv) { int fifo_left = priv->flags & UNIPHIER_FI2C_BYTE_WISE ? 1 : UNIPHIER_FI2C_FIFO_SIZE; while (priv->len) { if (fifo_left-- <= 0) break; *priv->buf++ = readl(priv->membase + UNIPHIER_FI2C_DTRX); dev_dbg(&priv->adap.dev, "read data: %02x\n", priv->buf[-1]); priv->len--; } } static void uniphier_fi2c_set_irqs(struct uniphier_fi2c_priv *priv) { writel(priv->enabled_irqs, priv->membase + UNIPHIER_FI2C_IE); } static void uniphier_fi2c_clear_irqs(struct uniphier_fi2c_priv *priv, u32 mask) { writel(mask, priv->membase + UNIPHIER_FI2C_IC); } static void uniphier_fi2c_stop(struct uniphier_fi2c_priv *priv) { dev_dbg(&priv->adap.dev, "stop condition\n"); priv->enabled_irqs |= UNIPHIER_FI2C_INT_STOP; uniphier_fi2c_set_irqs(priv); writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STO, priv->membase + UNIPHIER_FI2C_CR); } static irqreturn_t uniphier_fi2c_interrupt(int irq, void *dev_id) { struct uniphier_fi2c_priv *priv = dev_id; u32 irq_status; spin_lock(&priv->lock); irq_status = readl(priv->membase + UNIPHIER_FI2C_INT); irq_status &= priv->enabled_irqs; dev_dbg(&priv->adap.dev, "interrupt: enabled_irqs=%04x, irq_status=%04x\n", priv->enabled_irqs, irq_status); if (irq_status & UNIPHIER_FI2C_INT_STOP) goto complete; if (unlikely(irq_status & UNIPHIER_FI2C_INT_AL)) { dev_dbg(&priv->adap.dev, "arbitration lost\n"); priv->error = -EAGAIN; goto complete; } if (unlikely(irq_status & UNIPHIER_FI2C_INT_NA)) { dev_dbg(&priv->adap.dev, "could not get ACK\n"); priv->error = -ENXIO; if (priv->flags & UNIPHIER_FI2C_RD) { /* * work around a hardware bug: * The receive-completed interrupt is never set even if * STOP condition is detected after the address phase * of read transaction fails to get ACK. * To avoid time-out error, we issue STOP here, * but do not wait for its completion. * It should be checked after exiting this handler. */ uniphier_fi2c_stop(priv); priv->flags |= UNIPHIER_FI2C_DEFER_STOP_COMP; goto complete; } goto stop; } if (irq_status & UNIPHIER_FI2C_INT_TE) { if (!priv->len) goto data_done; uniphier_fi2c_fill_txfifo(priv, false); goto handled; } if (irq_status & (UNIPHIER_FI2C_INT_RF | UNIPHIER_FI2C_INT_RB)) { uniphier_fi2c_drain_rxfifo(priv); /* * If the number of bytes to read is multiple of the FIFO size * (msg->len == 8, 16, 24, ...), the INT_RF bit is set a little * earlier than INT_RB. We wait for INT_RB to confirm the * completion of the current message. */ if (!priv->len && (irq_status & UNIPHIER_FI2C_INT_RB)) goto data_done; if (unlikely(priv->flags & UNIPHIER_FI2C_MANUAL_NACK)) { if (priv->len <= UNIPHIER_FI2C_FIFO_SIZE && !(priv->flags & UNIPHIER_FI2C_BYTE_WISE)) { dev_dbg(&priv->adap.dev, "enable read byte count IRQ\n"); priv->enabled_irqs |= UNIPHIER_FI2C_INT_RB; uniphier_fi2c_set_irqs(priv); priv->flags |= UNIPHIER_FI2C_BYTE_WISE; } if (priv->len <= 1) { dev_dbg(&priv->adap.dev, "set NACK\n"); writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_NACK, priv->membase + UNIPHIER_FI2C_CR); } } goto handled; } spin_unlock(&priv->lock); return IRQ_NONE; data_done: if (priv->flags & UNIPHIER_FI2C_STOP) { stop: uniphier_fi2c_stop(priv); } else { complete: priv->enabled_irqs = 0; uniphier_fi2c_set_irqs(priv); complete(&priv->comp); } handled: /* * This controller makes a pause while any bit of the IRQ status is * asserted. Clear the asserted bit to kick the controller just before * exiting the handler. */ uniphier_fi2c_clear_irqs(priv, irq_status); spin_unlock(&priv->lock); return IRQ_HANDLED; } static void uniphier_fi2c_tx_init(struct uniphier_fi2c_priv *priv, u16 addr, bool repeat) { priv->enabled_irqs |= UNIPHIER_FI2C_INT_TE; uniphier_fi2c_set_irqs(priv); /* do not use TX byte counter */ writel(0, priv->membase + UNIPHIER_FI2C_TBC); /* set slave address */ writel(UNIPHIER_FI2C_DTTX_CMD | addr << 1, priv->membase + UNIPHIER_FI2C_DTTX); /* * First chunk of data. For a repeated START condition, do not write * data to the TX fifo here to avoid the timing issue. */ if (!repeat) uniphier_fi2c_fill_txfifo(priv, true); } static void uniphier_fi2c_rx_init(struct uniphier_fi2c_priv *priv, u16 addr) { priv->flags |= UNIPHIER_FI2C_RD; if (likely(priv->len < 256)) { /* * If possible, use RX byte counter. * It can automatically handle NACK for the last byte. */ writel(priv->len, priv->membase + UNIPHIER_FI2C_RBC); priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF | UNIPHIER_FI2C_INT_RB; } else { /* * The byte counter can not count over 256. In this case, * do not use it at all. Drain data when FIFO gets full, * but treat the last portion as a special case. */ writel(0, priv->membase + UNIPHIER_FI2C_RBC); priv->flags |= UNIPHIER_FI2C_MANUAL_NACK; priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF; } uniphier_fi2c_set_irqs(priv); /* set slave address with RD bit */ writel(UNIPHIER_FI2C_DTTX_CMD | UNIPHIER_FI2C_DTTX_RD | addr << 1, priv->membase + UNIPHIER_FI2C_DTTX); } static void uniphier_fi2c_reset(struct uniphier_fi2c_priv *priv) { writel(UNIPHIER_FI2C_RST_RST, priv->membase + UNIPHIER_FI2C_RST); } static void uniphier_fi2c_prepare_operation(struct uniphier_fi2c_priv *priv) { writel(UNIPHIER_FI2C_BRST_FOEN | UNIPHIER_FI2C_BRST_RSCL, priv->membase + UNIPHIER_FI2C_BRST); } static void uniphier_fi2c_recover(struct uniphier_fi2c_priv *priv) { uniphier_fi2c_reset(priv); i2c_recover_bus(&priv->adap); } static int uniphier_fi2c_master_xfer_one(struct i2c_adapter *adap, struct i2c_msg *msg, bool repeat, bool stop) { struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); bool is_read = msg->flags & I2C_M_RD; unsigned long time_left, flags; dev_dbg(&adap->dev, "%s: addr=0x%02x, len=%d, repeat=%d, stop=%d\n", is_read ? "receive" : "transmit", msg->addr, msg->len, repeat, stop); priv->len = msg->len; priv->buf = msg->buf; priv->enabled_irqs = UNIPHIER_FI2C_INT_FAULTS; priv->error = 0; priv->flags = 0; if (stop) priv->flags |= UNIPHIER_FI2C_STOP; reinit_completion(&priv->comp); uniphier_fi2c_clear_irqs(priv, U32_MAX); writel(UNIPHIER_FI2C_RST_TBRST | UNIPHIER_FI2C_RST_RBRST, priv->membase + UNIPHIER_FI2C_RST); /* reset TX/RX FIFO */ spin_lock_irqsave(&priv->lock, flags); if (is_read) uniphier_fi2c_rx_init(priv, msg->addr); else uniphier_fi2c_tx_init(priv, msg->addr, repeat); dev_dbg(&adap->dev, "start condition\n"); /* * For a repeated START condition, writing a slave address to the FIFO * kicks the controller. So, the UNIPHIER_FI2C_CR register should be * written only for a non-repeated START condition. */ if (!repeat) writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STA, priv->membase + UNIPHIER_FI2C_CR); spin_unlock_irqrestore(&priv->lock, flags); time_left = wait_for_completion_timeout(&priv->comp, adap->timeout); spin_lock_irqsave(&priv->lock, flags); priv->enabled_irqs = 0; uniphier_fi2c_set_irqs(priv); spin_unlock_irqrestore(&priv->lock, flags); if (!time_left) { dev_err(&adap->dev, "transaction timeout.\n"); uniphier_fi2c_recover(priv); return -ETIMEDOUT; } dev_dbg(&adap->dev, "complete\n"); if (unlikely(priv->flags & UNIPHIER_FI2C_DEFER_STOP_COMP)) { u32 status; int ret; ret = readl_poll_timeout(priv->membase + UNIPHIER_FI2C_SR, status, (status & UNIPHIER_FI2C_SR_STS) && !(status & UNIPHIER_FI2C_SR_BB), 1, 20); if (ret) { dev_err(&adap->dev, "stop condition was not completed.\n"); uniphier_fi2c_recover(priv); return ret; } } return priv->error; } static int uniphier_fi2c_check_bus_busy(struct i2c_adapter *adap) { struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); if (readl(priv->membase + UNIPHIER_FI2C_SR) & UNIPHIER_FI2C_SR_DB) { if (priv->busy_cnt++ > 3) { /* * If bus busy continues too long, it is probably * in a wrong state. Try bus recovery. */ uniphier_fi2c_recover(priv); priv->busy_cnt = 0; } return -EAGAIN; } priv->busy_cnt = 0; return 0; } static int uniphier_fi2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct i2c_msg *msg, *emsg = msgs + num; bool repeat = false; int ret; ret = uniphier_fi2c_check_bus_busy(adap); if (ret) return ret; for (msg = msgs; msg < emsg; msg++) { /* Emit STOP if it is the last message or I2C_M_STOP is set. */ bool stop = (msg + 1 == emsg) || (msg->flags & I2C_M_STOP); ret = uniphier_fi2c_master_xfer_one(adap, msg, repeat, stop); if (ret) return ret; repeat = !stop; } return num; } static u32 uniphier_fi2c_functionality(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm uniphier_fi2c_algo = { .master_xfer = uniphier_fi2c_master_xfer, .functionality = uniphier_fi2c_functionality, }; static int uniphier_fi2c_get_scl(struct i2c_adapter *adap) { struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); return !!(readl(priv->membase + UNIPHIER_FI2C_BM) & UNIPHIER_FI2C_BM_SCLS); } static void uniphier_fi2c_set_scl(struct i2c_adapter *adap, int val) { struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); writel(val ? UNIPHIER_FI2C_BRST_RSCL : 0, priv->membase + UNIPHIER_FI2C_BRST); } static int uniphier_fi2c_get_sda(struct i2c_adapter *adap) { struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); return !!(readl(priv->membase + UNIPHIER_FI2C_BM) & UNIPHIER_FI2C_BM_SDAS); } static void uniphier_fi2c_unprepare_recovery(struct i2c_adapter *adap) { uniphier_fi2c_prepare_operation(i2c_get_adapdata(adap)); } static struct i2c_bus_recovery_info uniphier_fi2c_bus_recovery_info = { .recover_bus = i2c_generic_scl_recovery, .get_scl = uniphier_fi2c_get_scl, .set_scl = uniphier_fi2c_set_scl, .get_sda = uniphier_fi2c_get_sda, .unprepare_recovery = uniphier_fi2c_unprepare_recovery, }; static void uniphier_fi2c_hw_init(struct uniphier_fi2c_priv *priv) { unsigned int cyc = priv->clk_cycle; u32 tmp; tmp = readl(priv->membase + UNIPHIER_FI2C_CR); tmp |= UNIPHIER_FI2C_CR_MST; writel(tmp, priv->membase + UNIPHIER_FI2C_CR); uniphier_fi2c_reset(priv); /* * Standard-mode: tLOW + tHIGH = 10 us * Fast-mode: tLOW + tHIGH = 2.5 us */ writel(cyc, priv->membase + UNIPHIER_FI2C_CYC); /* * Standard-mode: tLOW = 4.7 us, tHIGH = 4.0 us, tBUF = 4.7 us * Fast-mode: tLOW = 1.3 us, tHIGH = 0.6 us, tBUF = 1.3 us * "tLow/tHIGH = 5/4" meets both. */ writel(cyc * 5 / 9, priv->membase + UNIPHIER_FI2C_LCTL); /* * Standard-mode: tHD;STA = 4.0 us, tSU;STA = 4.7 us, tSU;STO = 4.0 us * Fast-mode: tHD;STA = 0.6 us, tSU;STA = 0.6 us, tSU;STO = 0.6 us */ writel(cyc / 2, priv->membase + UNIPHIER_FI2C_SSUT); /* * Standard-mode: tSU;DAT = 250 ns * Fast-mode: tSU;DAT = 100 ns */ writel(cyc / 16, priv->membase + UNIPHIER_FI2C_DSUT); uniphier_fi2c_prepare_operation(priv); } static int uniphier_fi2c_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct uniphier_fi2c_priv *priv; struct resource *regs; u32 bus_speed; unsigned long clk_rate; int irq, ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->membase = devm_ioremap_resource(dev, regs); if (IS_ERR(priv->membase)) return PTR_ERR(priv->membase); irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "failed to get IRQ number\n"); return irq; } if (of_property_read_u32(dev->of_node, "clock-frequency", &bus_speed)) bus_speed = UNIPHIER_FI2C_DEFAULT_SPEED; if (!bus_speed || bus_speed > UNIPHIER_FI2C_MAX_SPEED) { dev_err(dev, "invalid clock-frequency %d\n", bus_speed); return -EINVAL; } priv->clk = devm_clk_get(dev, NULL); if (IS_ERR(priv->clk)) { dev_err(dev, "failed to get clock\n"); return PTR_ERR(priv->clk); } ret = clk_prepare_enable(priv->clk); if (ret) return ret; clk_rate = clk_get_rate(priv->clk); if (!clk_rate) { dev_err(dev, "input clock rate should not be zero\n"); ret = -EINVAL; goto disable_clk; } priv->clk_cycle = clk_rate / bus_speed; init_completion(&priv->comp); spin_lock_init(&priv->lock); priv->adap.owner = THIS_MODULE; priv->adap.algo = &uniphier_fi2c_algo; priv->adap.dev.parent = dev; priv->adap.dev.of_node = dev->of_node; strlcpy(priv->adap.name, "UniPhier FI2C", sizeof(priv->adap.name)); priv->adap.bus_recovery_info = &uniphier_fi2c_bus_recovery_info; i2c_set_adapdata(&priv->adap, priv); platform_set_drvdata(pdev, priv); uniphier_fi2c_hw_init(priv); ret = devm_request_irq(dev, irq, uniphier_fi2c_interrupt, 0, pdev->name, priv); if (ret) { dev_err(dev, "failed to request irq %d\n", irq); goto disable_clk; } ret = i2c_add_adapter(&priv->adap); disable_clk: if (ret) clk_disable_unprepare(priv->clk); return ret; } static int uniphier_fi2c_remove(struct platform_device *pdev) { struct uniphier_fi2c_priv *priv = platform_get_drvdata(pdev); i2c_del_adapter(&priv->adap); clk_disable_unprepare(priv->clk); return 0; } static int __maybe_unused uniphier_fi2c_suspend(struct device *dev) { struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev); clk_disable_unprepare(priv->clk); return 0; } static int __maybe_unused uniphier_fi2c_resume(struct device *dev) { struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(priv->clk); if (ret) return ret; uniphier_fi2c_hw_init(priv); return 0; } static const struct dev_pm_ops uniphier_fi2c_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(uniphier_fi2c_suspend, uniphier_fi2c_resume) }; static const struct of_device_id uniphier_fi2c_match[] = { { .compatible = "socionext,uniphier-fi2c" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, uniphier_fi2c_match); static struct platform_driver uniphier_fi2c_drv = { .probe = uniphier_fi2c_probe, .remove = uniphier_fi2c_remove, .driver = { .name = "uniphier-fi2c", .of_match_table = uniphier_fi2c_match, .pm = &uniphier_fi2c_pm_ops, }, }; module_platform_driver(uniphier_fi2c_drv); MODULE_AUTHOR("Masahiro Yamada <yamada.masahiro@socionext.com>"); MODULE_DESCRIPTION("UniPhier FIFO-builtin I2C bus driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1