Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stefan Popa | 3958 | 100.00% | 6 | 100.00% |
Total | 3958 | 6 |
// SPDX-License-Identifier: GPL-2.0+ /* * ADXL372 3-Axis Digital Accelerometer core driver * * Copyright 2018 Analog Devices Inc. */ #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/events.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include "adxl372.h" /* ADXL372 registers definition */ #define ADXL372_DEVID 0x00 #define ADXL372_DEVID_MST 0x01 #define ADXL372_PARTID 0x02 #define ADXL372_STATUS_1 0x04 #define ADXL372_STATUS_2 0x05 #define ADXL372_FIFO_ENTRIES_2 0x06 #define ADXL372_FIFO_ENTRIES_1 0x07 #define ADXL372_X_DATA_H 0x08 #define ADXL372_X_DATA_L 0x09 #define ADXL372_Y_DATA_H 0x0A #define ADXL372_Y_DATA_L 0x0B #define ADXL372_Z_DATA_H 0x0C #define ADXL372_Z_DATA_L 0x0D #define ADXL372_X_MAXPEAK_H 0x15 #define ADXL372_X_MAXPEAK_L 0x16 #define ADXL372_Y_MAXPEAK_H 0x17 #define ADXL372_Y_MAXPEAK_L 0x18 #define ADXL372_Z_MAXPEAK_H 0x19 #define ADXL372_Z_MAXPEAK_L 0x1A #define ADXL372_OFFSET_X 0x20 #define ADXL372_OFFSET_Y 0x21 #define ADXL372_OFFSET_Z 0x22 #define ADXL372_X_THRESH_ACT_H 0x23 #define ADXL372_X_THRESH_ACT_L 0x24 #define ADXL372_Y_THRESH_ACT_H 0x25 #define ADXL372_Y_THRESH_ACT_L 0x26 #define ADXL372_Z_THRESH_ACT_H 0x27 #define ADXL372_Z_THRESH_ACT_L 0x28 #define ADXL372_TIME_ACT 0x29 #define ADXL372_X_THRESH_INACT_H 0x2A #define ADXL372_X_THRESH_INACT_L 0x2B #define ADXL372_Y_THRESH_INACT_H 0x2C #define ADXL372_Y_THRESH_INACT_L 0x2D #define ADXL372_Z_THRESH_INACT_H 0x2E #define ADXL372_Z_THRESH_INACT_L 0x2F #define ADXL372_TIME_INACT_H 0x30 #define ADXL372_TIME_INACT_L 0x31 #define ADXL372_X_THRESH_ACT2_H 0x32 #define ADXL372_X_THRESH_ACT2_L 0x33 #define ADXL372_Y_THRESH_ACT2_H 0x34 #define ADXL372_Y_THRESH_ACT2_L 0x35 #define ADXL372_Z_THRESH_ACT2_H 0x36 #define ADXL372_Z_THRESH_ACT2_L 0x37 #define ADXL372_HPF 0x38 #define ADXL372_FIFO_SAMPLES 0x39 #define ADXL372_FIFO_CTL 0x3A #define ADXL372_INT1_MAP 0x3B #define ADXL372_INT2_MAP 0x3C #define ADXL372_TIMING 0x3D #define ADXL372_MEASURE 0x3E #define ADXL372_POWER_CTL 0x3F #define ADXL372_SELF_TEST 0x40 #define ADXL372_RESET 0x41 #define ADXL372_FIFO_DATA 0x42 #define ADXL372_DEVID_VAL 0xAD #define ADXL372_PARTID_VAL 0xFA #define ADXL372_RESET_CODE 0x52 /* ADXL372_POWER_CTL */ #define ADXL372_POWER_CTL_MODE_MSK GENMASK_ULL(1, 0) #define ADXL372_POWER_CTL_MODE(x) (((x) & 0x3) << 0) /* ADXL372_MEASURE */ #define ADXL372_MEASURE_LINKLOOP_MSK GENMASK_ULL(5, 4) #define ADXL372_MEASURE_LINKLOOP_MODE(x) (((x) & 0x3) << 4) #define ADXL372_MEASURE_BANDWIDTH_MSK GENMASK_ULL(2, 0) #define ADXL372_MEASURE_BANDWIDTH_MODE(x) (((x) & 0x7) << 0) /* ADXL372_TIMING */ #define ADXL372_TIMING_ODR_MSK GENMASK_ULL(7, 5) #define ADXL372_TIMING_ODR_MODE(x) (((x) & 0x7) << 5) /* ADXL372_FIFO_CTL */ #define ADXL372_FIFO_CTL_FORMAT_MSK GENMASK(5, 3) #define ADXL372_FIFO_CTL_FORMAT_MODE(x) (((x) & 0x7) << 3) #define ADXL372_FIFO_CTL_MODE_MSK GENMASK(2, 1) #define ADXL372_FIFO_CTL_MODE_MODE(x) (((x) & 0x3) << 1) #define ADXL372_FIFO_CTL_SAMPLES_MSK BIT(1) #define ADXL372_FIFO_CTL_SAMPLES_MODE(x) (((x) > 0xFF) ? 1 : 0) /* ADXL372_STATUS_1 */ #define ADXL372_STATUS_1_DATA_RDY(x) (((x) >> 0) & 0x1) #define ADXL372_STATUS_1_FIFO_RDY(x) (((x) >> 1) & 0x1) #define ADXL372_STATUS_1_FIFO_FULL(x) (((x) >> 2) & 0x1) #define ADXL372_STATUS_1_FIFO_OVR(x) (((x) >> 3) & 0x1) #define ADXL372_STATUS_1_USR_NVM_BUSY(x) (((x) >> 5) & 0x1) #define ADXL372_STATUS_1_AWAKE(x) (((x) >> 6) & 0x1) #define ADXL372_STATUS_1_ERR_USR_REGS(x) (((x) >> 7) & 0x1) /* ADXL372_INT1_MAP */ #define ADXL372_INT1_MAP_DATA_RDY_MSK BIT(0) #define ADXL372_INT1_MAP_DATA_RDY_MODE(x) (((x) & 0x1) << 0) #define ADXL372_INT1_MAP_FIFO_RDY_MSK BIT(1) #define ADXL372_INT1_MAP_FIFO_RDY_MODE(x) (((x) & 0x1) << 1) #define ADXL372_INT1_MAP_FIFO_FULL_MSK BIT(2) #define ADXL372_INT1_MAP_FIFO_FULL_MODE(x) (((x) & 0x1) << 2) #define ADXL372_INT1_MAP_FIFO_OVR_MSK BIT(3) #define ADXL372_INT1_MAP_FIFO_OVR_MODE(x) (((x) & 0x1) << 3) #define ADXL372_INT1_MAP_INACT_MSK BIT(4) #define ADXL372_INT1_MAP_INACT_MODE(x) (((x) & 0x1) << 4) #define ADXL372_INT1_MAP_ACT_MSK BIT(5) #define ADXL372_INT1_MAP_ACT_MODE(x) (((x) & 0x1) << 5) #define ADXL372_INT1_MAP_AWAKE_MSK BIT(6) #define ADXL372_INT1_MAP_AWAKE_MODE(x) (((x) & 0x1) << 6) #define ADXL372_INT1_MAP_LOW_MSK BIT(7) #define ADXL372_INT1_MAP_LOW_MODE(x) (((x) & 0x1) << 7) /* The ADXL372 includes a deep, 512 sample FIFO buffer */ #define ADXL372_FIFO_SIZE 512 /* * At +/- 200g with 12-bit resolution, scale is computed as: * (200 + 200) * 9.81 / (2^12 - 1) = 0.958241 */ #define ADXL372_USCALE 958241 enum adxl372_op_mode { ADXL372_STANDBY, ADXL372_WAKE_UP, ADXL372_INSTANT_ON, ADXL372_FULL_BW_MEASUREMENT, }; enum adxl372_act_proc_mode { ADXL372_DEFAULT, ADXL372_LINKED, ADXL372_LOOPED, }; enum adxl372_th_activity { ADXL372_ACTIVITY, ADXL372_ACTIVITY2, ADXL372_INACTIVITY, }; enum adxl372_odr { ADXL372_ODR_400HZ, ADXL372_ODR_800HZ, ADXL372_ODR_1600HZ, ADXL372_ODR_3200HZ, ADXL372_ODR_6400HZ, }; enum adxl372_bandwidth { ADXL372_BW_200HZ, ADXL372_BW_400HZ, ADXL372_BW_800HZ, ADXL372_BW_1600HZ, ADXL372_BW_3200HZ, }; static const unsigned int adxl372_th_reg_high_addr[3] = { [ADXL372_ACTIVITY] = ADXL372_X_THRESH_ACT_H, [ADXL372_ACTIVITY2] = ADXL372_X_THRESH_ACT2_H, [ADXL372_INACTIVITY] = ADXL372_X_THRESH_INACT_H, }; enum adxl372_fifo_format { ADXL372_XYZ_FIFO, ADXL372_X_FIFO, ADXL372_Y_FIFO, ADXL372_XY_FIFO, ADXL372_Z_FIFO, ADXL372_XZ_FIFO, ADXL372_YZ_FIFO, ADXL372_XYZ_PEAK_FIFO, }; enum adxl372_fifo_mode { ADXL372_FIFO_BYPASSED, ADXL372_FIFO_STREAMED, ADXL372_FIFO_TRIGGERED, ADXL372_FIFO_OLD_SAVED }; static const int adxl372_samp_freq_tbl[5] = { 400, 800, 1600, 3200, 6400, }; static const int adxl372_bw_freq_tbl[5] = { 200, 400, 800, 1600, 3200, }; struct adxl372_axis_lookup { unsigned int bits; enum adxl372_fifo_format fifo_format; }; static const struct adxl372_axis_lookup adxl372_axis_lookup_table[] = { { BIT(0), ADXL372_X_FIFO }, { BIT(1), ADXL372_Y_FIFO }, { BIT(2), ADXL372_Z_FIFO }, { BIT(0) | BIT(1), ADXL372_XY_FIFO }, { BIT(0) | BIT(2), ADXL372_XZ_FIFO }, { BIT(1) | BIT(2), ADXL372_YZ_FIFO }, { BIT(0) | BIT(1) | BIT(2), ADXL372_XYZ_FIFO }, }; #define ADXL372_ACCEL_CHANNEL(index, reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ }, \ } static const struct iio_chan_spec adxl372_channels[] = { ADXL372_ACCEL_CHANNEL(0, ADXL372_X_DATA_H, X), ADXL372_ACCEL_CHANNEL(1, ADXL372_Y_DATA_H, Y), ADXL372_ACCEL_CHANNEL(2, ADXL372_Z_DATA_H, Z), }; struct adxl372_state { int irq; struct device *dev; struct regmap *regmap; struct iio_trigger *dready_trig; enum adxl372_fifo_mode fifo_mode; enum adxl372_fifo_format fifo_format; enum adxl372_op_mode op_mode; enum adxl372_act_proc_mode act_proc_mode; enum adxl372_odr odr; enum adxl372_bandwidth bw; u32 act_time_ms; u32 inact_time_ms; u8 fifo_set_size; u8 int1_bitmask; u8 int2_bitmask; u16 watermark; __be16 fifo_buf[ADXL372_FIFO_SIZE]; }; static const unsigned long adxl372_channel_masks[] = { BIT(0), BIT(1), BIT(2), BIT(0) | BIT(1), BIT(0) | BIT(2), BIT(1) | BIT(2), BIT(0) | BIT(1) | BIT(2), 0 }; static int adxl372_read_axis(struct adxl372_state *st, u8 addr) { __be16 regval; int ret; ret = regmap_bulk_read(st->regmap, addr, ®val, sizeof(regval)); if (ret < 0) return ret; return be16_to_cpu(regval); } static int adxl372_set_op_mode(struct adxl372_state *st, enum adxl372_op_mode op_mode) { int ret; ret = regmap_update_bits(st->regmap, ADXL372_POWER_CTL, ADXL372_POWER_CTL_MODE_MSK, ADXL372_POWER_CTL_MODE(op_mode)); if (ret < 0) return ret; st->op_mode = op_mode; return ret; } static int adxl372_set_odr(struct adxl372_state *st, enum adxl372_odr odr) { int ret; ret = regmap_update_bits(st->regmap, ADXL372_TIMING, ADXL372_TIMING_ODR_MSK, ADXL372_TIMING_ODR_MODE(odr)); if (ret < 0) return ret; st->odr = odr; return ret; } static int adxl372_find_closest_match(const int *array, unsigned int size, int val) { int i; for (i = 0; i < size; i++) { if (val <= array[i]) return i; } return size - 1; } static int adxl372_set_bandwidth(struct adxl372_state *st, enum adxl372_bandwidth bw) { int ret; ret = regmap_update_bits(st->regmap, ADXL372_MEASURE, ADXL372_MEASURE_BANDWIDTH_MSK, ADXL372_MEASURE_BANDWIDTH_MODE(bw)); if (ret < 0) return ret; st->bw = bw; return ret; } static int adxl372_set_act_proc_mode(struct adxl372_state *st, enum adxl372_act_proc_mode mode) { int ret; ret = regmap_update_bits(st->regmap, ADXL372_MEASURE, ADXL372_MEASURE_LINKLOOP_MSK, ADXL372_MEASURE_LINKLOOP_MODE(mode)); if (ret < 0) return ret; st->act_proc_mode = mode; return ret; } static int adxl372_set_activity_threshold(struct adxl372_state *st, enum adxl372_th_activity act, bool ref_en, bool enable, unsigned int threshold) { unsigned char buf[6]; unsigned char th_reg_high_val, th_reg_low_val, th_reg_high_addr; /* scale factor is 100 mg/code */ th_reg_high_val = (threshold / 100) >> 3; th_reg_low_val = ((threshold / 100) << 5) | (ref_en << 1) | enable; th_reg_high_addr = adxl372_th_reg_high_addr[act]; buf[0] = th_reg_high_val; buf[1] = th_reg_low_val; buf[2] = th_reg_high_val; buf[3] = th_reg_low_val; buf[4] = th_reg_high_val; buf[5] = th_reg_low_val; return regmap_bulk_write(st->regmap, th_reg_high_addr, buf, ARRAY_SIZE(buf)); } static int adxl372_set_activity_time_ms(struct adxl372_state *st, unsigned int act_time_ms) { unsigned int reg_val, scale_factor; int ret; /* * 3.3 ms per code is the scale factor of the TIME_ACT register for * ODR = 6400 Hz. It is 6.6 ms per code for ODR = 3200 Hz and below. */ if (st->odr == ADXL372_ODR_6400HZ) scale_factor = 3300; else scale_factor = 6600; reg_val = DIV_ROUND_CLOSEST(act_time_ms * 1000, scale_factor); /* TIME_ACT register is 8 bits wide */ if (reg_val > 0xFF) reg_val = 0xFF; ret = regmap_write(st->regmap, ADXL372_TIME_ACT, reg_val); if (ret < 0) return ret; st->act_time_ms = act_time_ms; return ret; } static int adxl372_set_inactivity_time_ms(struct adxl372_state *st, unsigned int inact_time_ms) { unsigned int reg_val_h, reg_val_l, res, scale_factor; int ret; /* * 13 ms per code is the scale factor of the TIME_INACT register for * ODR = 6400 Hz. It is 26 ms per code for ODR = 3200 Hz and below. */ if (st->odr == ADXL372_ODR_6400HZ) scale_factor = 13; else scale_factor = 26; res = DIV_ROUND_CLOSEST(inact_time_ms, scale_factor); reg_val_h = (res >> 8) & 0xFF; reg_val_l = res & 0xFF; ret = regmap_write(st->regmap, ADXL372_TIME_INACT_H, reg_val_h); if (ret < 0) return ret; ret = regmap_write(st->regmap, ADXL372_TIME_INACT_L, reg_val_l); if (ret < 0) return ret; st->inact_time_ms = inact_time_ms; return ret; } static int adxl372_set_interrupts(struct adxl372_state *st, unsigned char int1_bitmask, unsigned char int2_bitmask) { int ret; ret = regmap_write(st->regmap, ADXL372_INT1_MAP, int1_bitmask); if (ret < 0) return ret; return regmap_write(st->regmap, ADXL372_INT2_MAP, int2_bitmask); } static int adxl372_configure_fifo(struct adxl372_state *st) { unsigned int fifo_samples, fifo_ctl; int ret; /* FIFO must be configured while in standby mode */ ret = adxl372_set_op_mode(st, ADXL372_STANDBY); if (ret < 0) return ret; fifo_samples = st->watermark & 0xFF; fifo_ctl = ADXL372_FIFO_CTL_FORMAT_MODE(st->fifo_format) | ADXL372_FIFO_CTL_MODE_MODE(st->fifo_mode) | ADXL372_FIFO_CTL_SAMPLES_MODE(st->watermark); ret = regmap_write(st->regmap, ADXL372_FIFO_SAMPLES, fifo_samples); if (ret < 0) return ret; ret = regmap_write(st->regmap, ADXL372_FIFO_CTL, fifo_ctl); if (ret < 0) return ret; return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT); } static int adxl372_get_status(struct adxl372_state *st, u8 *status1, u8 *status2, u16 *fifo_entries) { __be32 buf; u32 val; int ret; /* STATUS1, STATUS2, FIFO_ENTRIES2 and FIFO_ENTRIES are adjacent regs */ ret = regmap_bulk_read(st->regmap, ADXL372_STATUS_1, &buf, sizeof(buf)); if (ret < 0) return ret; val = be32_to_cpu(buf); *status1 = (val >> 24) & 0x0F; *status2 = (val >> 16) & 0x0F; /* * FIFO_ENTRIES contains the least significant byte, and FIFO_ENTRIES2 * contains the two most significant bits */ *fifo_entries = val & 0x3FF; return ret; } static irqreturn_t adxl372_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct adxl372_state *st = iio_priv(indio_dev); u8 status1, status2; u16 fifo_entries; int i, ret; ret = adxl372_get_status(st, &status1, &status2, &fifo_entries); if (ret < 0) goto err; if (st->fifo_mode != ADXL372_FIFO_BYPASSED && ADXL372_STATUS_1_FIFO_FULL(status1)) { /* * When reading data from multiple axes from the FIFO, * to ensure that data is not overwritten and stored out * of order at least one sample set must be left in the * FIFO after every read. */ fifo_entries -= st->fifo_set_size; /* Read data from the FIFO */ ret = regmap_noinc_read(st->regmap, ADXL372_FIFO_DATA, st->fifo_buf, fifo_entries * sizeof(u16)); if (ret < 0) goto err; /* Each sample is 2 bytes */ for (i = 0; i < fifo_entries * sizeof(u16); i += st->fifo_set_size * sizeof(u16)) iio_push_to_buffers(indio_dev, &st->fifo_buf[i]); } err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int adxl372_setup(struct adxl372_state *st) { unsigned int regval; int ret; ret = regmap_read(st->regmap, ADXL372_DEVID, ®val); if (ret < 0) return ret; if (regval != ADXL372_DEVID_VAL) { dev_err(st->dev, "Invalid chip id %x\n", regval); return -ENODEV; } ret = adxl372_set_op_mode(st, ADXL372_STANDBY); if (ret < 0) return ret; /* Set threshold for activity detection to 1g */ ret = adxl372_set_activity_threshold(st, ADXL372_ACTIVITY, true, true, 1000); if (ret < 0) return ret; /* Set threshold for inactivity detection to 100mg */ ret = adxl372_set_activity_threshold(st, ADXL372_INACTIVITY, true, true, 100); if (ret < 0) return ret; /* Set activity processing in Looped mode */ ret = adxl372_set_act_proc_mode(st, ADXL372_LOOPED); if (ret < 0) return ret; ret = adxl372_set_odr(st, ADXL372_ODR_6400HZ); if (ret < 0) return ret; ret = adxl372_set_bandwidth(st, ADXL372_BW_3200HZ); if (ret < 0) return ret; /* Set activity timer to 1ms */ ret = adxl372_set_activity_time_ms(st, 1); if (ret < 0) return ret; /* Set inactivity timer to 10s */ ret = adxl372_set_inactivity_time_ms(st, 10000); if (ret < 0) return ret; /* Set the mode of operation to full bandwidth measurement mode */ return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT); } static int adxl372_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct adxl372_state *st = iio_priv(indio_dev); if (readval) return regmap_read(st->regmap, reg, readval); else return regmap_write(st->regmap, reg, writeval); } static int adxl372_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct adxl372_state *st = iio_priv(indio_dev); int ret; switch (info) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = adxl372_read_axis(st, chan->address); iio_device_release_direct_mode(indio_dev); if (ret < 0) return ret; *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = ADXL372_USCALE; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: *val = adxl372_samp_freq_tbl[st->odr]; return IIO_VAL_INT; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *val = adxl372_bw_freq_tbl[st->bw]; return IIO_VAL_INT; } return -EINVAL; } static int adxl372_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long info) { struct adxl372_state *st = iio_priv(indio_dev); int odr_index, bw_index, ret; switch (info) { case IIO_CHAN_INFO_SAMP_FREQ: odr_index = adxl372_find_closest_match(adxl372_samp_freq_tbl, ARRAY_SIZE(adxl372_samp_freq_tbl), val); ret = adxl372_set_odr(st, odr_index); if (ret < 0) return ret; /* * The timer period depends on the ODR selected. * At 3200 Hz and below, it is 6.6 ms; at 6400 Hz, it is 3.3 ms */ ret = adxl372_set_activity_time_ms(st, st->act_time_ms); if (ret < 0) return ret; /* * The timer period depends on the ODR selected. * At 3200 Hz and below, it is 26 ms; at 6400 Hz, it is 13 ms */ ret = adxl372_set_inactivity_time_ms(st, st->inact_time_ms); if (ret < 0) return ret; /* * The maximum bandwidth is constrained to at most half of * the ODR to ensure that the Nyquist criteria is not violated */ if (st->bw > odr_index) ret = adxl372_set_bandwidth(st, odr_index); return ret; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: bw_index = adxl372_find_closest_match(adxl372_bw_freq_tbl, ARRAY_SIZE(adxl372_bw_freq_tbl), val); return adxl372_set_bandwidth(st, bw_index); default: return -EINVAL; } } static ssize_t adxl372_show_filter_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct adxl372_state *st = iio_priv(indio_dev); int i; size_t len = 0; for (i = 0; i <= st->odr; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", adxl372_bw_freq_tbl[i]); buf[len - 1] = '\n'; return len; } static ssize_t adxl372_get_fifo_enabled(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct adxl372_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", st->fifo_mode); } static ssize_t adxl372_get_fifo_watermark(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct adxl372_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", st->watermark); } static IIO_CONST_ATTR(hwfifo_watermark_min, "1"); static IIO_CONST_ATTR(hwfifo_watermark_max, __stringify(ADXL372_FIFO_SIZE)); static IIO_DEVICE_ATTR(hwfifo_watermark, 0444, adxl372_get_fifo_watermark, NULL, 0); static IIO_DEVICE_ATTR(hwfifo_enabled, 0444, adxl372_get_fifo_enabled, NULL, 0); static const struct attribute *adxl372_fifo_attributes[] = { &iio_const_attr_hwfifo_watermark_min.dev_attr.attr, &iio_const_attr_hwfifo_watermark_max.dev_attr.attr, &iio_dev_attr_hwfifo_watermark.dev_attr.attr, &iio_dev_attr_hwfifo_enabled.dev_attr.attr, NULL, }; static int adxl372_set_watermark(struct iio_dev *indio_dev, unsigned int val) { struct adxl372_state *st = iio_priv(indio_dev); if (val > ADXL372_FIFO_SIZE) val = ADXL372_FIFO_SIZE; st->watermark = val; return 0; } static int adxl372_buffer_postenable(struct iio_dev *indio_dev) { struct adxl372_state *st = iio_priv(indio_dev); unsigned int mask; int i, ret; ret = adxl372_set_interrupts(st, ADXL372_INT1_MAP_FIFO_FULL_MSK, 0); if (ret < 0) return ret; mask = *indio_dev->active_scan_mask; for (i = 0; i < ARRAY_SIZE(adxl372_axis_lookup_table); i++) { if (mask == adxl372_axis_lookup_table[i].bits) break; } if (i == ARRAY_SIZE(adxl372_axis_lookup_table)) return -EINVAL; st->fifo_format = adxl372_axis_lookup_table[i].fifo_format; st->fifo_set_size = bitmap_weight(indio_dev->active_scan_mask, indio_dev->masklength); /* * The 512 FIFO samples can be allotted in several ways, such as: * 170 sample sets of concurrent 3-axis data * 256 sample sets of concurrent 2-axis data (user selectable) * 512 sample sets of single-axis data */ if ((st->watermark * st->fifo_set_size) > ADXL372_FIFO_SIZE) st->watermark = (ADXL372_FIFO_SIZE / st->fifo_set_size); st->fifo_mode = ADXL372_FIFO_STREAMED; ret = adxl372_configure_fifo(st); if (ret < 0) { st->fifo_mode = ADXL372_FIFO_BYPASSED; adxl372_set_interrupts(st, 0, 0); return ret; } return iio_triggered_buffer_postenable(indio_dev); } static int adxl372_buffer_predisable(struct iio_dev *indio_dev) { struct adxl372_state *st = iio_priv(indio_dev); int ret; ret = iio_triggered_buffer_predisable(indio_dev); if (ret < 0) return ret; adxl372_set_interrupts(st, 0, 0); st->fifo_mode = ADXL372_FIFO_BYPASSED; adxl372_configure_fifo(st); return 0; } static const struct iio_buffer_setup_ops adxl372_buffer_ops = { .postenable = adxl372_buffer_postenable, .predisable = adxl372_buffer_predisable, }; static int adxl372_dready_trig_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct adxl372_state *st = iio_priv(indio_dev); unsigned long int mask = 0; if (state) mask = ADXL372_INT1_MAP_FIFO_FULL_MSK; return adxl372_set_interrupts(st, mask, 0); } static int adxl372_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct adxl372_state *st = iio_priv(indio_dev); if (st->dready_trig != trig) return -EINVAL; return 0; } static const struct iio_trigger_ops adxl372_trigger_ops = { .validate_device = &iio_trigger_validate_own_device, .set_trigger_state = adxl372_dready_trig_set_state, }; static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("400 800 1600 3200 6400"); static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available, 0444, adxl372_show_filter_freq_avail, NULL, 0); static struct attribute *adxl372_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group adxl372_attrs_group = { .attrs = adxl372_attributes, }; static const struct iio_info adxl372_info = { .validate_trigger = &adxl372_validate_trigger, .attrs = &adxl372_attrs_group, .read_raw = adxl372_read_raw, .write_raw = adxl372_write_raw, .debugfs_reg_access = &adxl372_reg_access, .hwfifo_set_watermark = adxl372_set_watermark, }; bool adxl372_readable_noinc_reg(struct device *dev, unsigned int reg) { return (reg == ADXL372_FIFO_DATA); } EXPORT_SYMBOL_GPL(adxl372_readable_noinc_reg); int adxl372_probe(struct device *dev, struct regmap *regmap, int irq, const char *name) { struct iio_dev *indio_dev; struct adxl372_state *st; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); st->dev = dev; st->regmap = regmap; st->irq = irq; indio_dev->channels = adxl372_channels; indio_dev->num_channels = ARRAY_SIZE(adxl372_channels); indio_dev->available_scan_masks = adxl372_channel_masks; indio_dev->dev.parent = dev; indio_dev->name = name; indio_dev->info = &adxl372_info; indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; ret = adxl372_setup(st); if (ret < 0) { dev_err(dev, "ADXL372 setup failed\n"); return ret; } ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, adxl372_trigger_handler, &adxl372_buffer_ops); if (ret < 0) return ret; iio_buffer_set_attrs(indio_dev->buffer, adxl372_fifo_attributes); if (st->irq) { st->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, indio_dev->id); if (st->dready_trig == NULL) return -ENOMEM; st->dready_trig->ops = &adxl372_trigger_ops; st->dready_trig->dev.parent = dev; iio_trigger_set_drvdata(st->dready_trig, indio_dev); ret = devm_iio_trigger_register(dev, st->dready_trig); if (ret < 0) return ret; indio_dev->trig = iio_trigger_get(st->dready_trig); ret = devm_request_threaded_irq(dev, st->irq, iio_trigger_generic_data_rdy_poll, NULL, IRQF_TRIGGER_RISING | IRQF_ONESHOT, indio_dev->name, st->dready_trig); if (ret < 0) return ret; } return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_GPL(adxl372_probe); MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>"); MODULE_DESCRIPTION("Analog Devices ADXL372 3-axis accelerometer driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1