Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Quentin Schulz | 2956 | 100.00% | 5 | 100.00% |
Total | 2956 | 5 |
/* ADC driver for AXP20X and AXP22X PMICs * * Copyright (c) 2016 Free Electrons NextThing Co. * Quentin Schulz <quentin.schulz@free-electrons.com> * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License version 2 as published by the * Free Software Foundation. */ #include <linux/completion.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/thermal.h> #include <linux/iio/iio.h> #include <linux/iio/driver.h> #include <linux/iio/machine.h> #include <linux/mfd/axp20x.h> #define AXP20X_ADC_EN1_MASK GENMASK(7, 0) #define AXP20X_ADC_EN2_MASK (GENMASK(3, 2) | BIT(7)) #define AXP22X_ADC_EN1_MASK (GENMASK(7, 5) | BIT(0)) #define AXP20X_GPIO10_IN_RANGE_GPIO0 BIT(0) #define AXP20X_GPIO10_IN_RANGE_GPIO1 BIT(1) #define AXP20X_GPIO10_IN_RANGE_GPIO0_VAL(x) ((x) & BIT(0)) #define AXP20X_GPIO10_IN_RANGE_GPIO1_VAL(x) (((x) & BIT(0)) << 1) #define AXP20X_ADC_RATE_MASK GENMASK(7, 6) #define AXP813_V_I_ADC_RATE_MASK GENMASK(5, 4) #define AXP813_ADC_RATE_MASK (AXP20X_ADC_RATE_MASK | AXP813_V_I_ADC_RATE_MASK) #define AXP20X_ADC_RATE_HZ(x) ((ilog2((x) / 25) << 6) & AXP20X_ADC_RATE_MASK) #define AXP22X_ADC_RATE_HZ(x) ((ilog2((x) / 100) << 6) & AXP20X_ADC_RATE_MASK) #define AXP813_TS_GPIO0_ADC_RATE_HZ(x) AXP20X_ADC_RATE_HZ(x) #define AXP813_V_I_ADC_RATE_HZ(x) ((ilog2((x) / 100) << 4) & AXP813_V_I_ADC_RATE_MASK) #define AXP813_ADC_RATE_HZ(x) (AXP20X_ADC_RATE_HZ(x) | AXP813_V_I_ADC_RATE_HZ(x)) #define AXP20X_ADC_CHANNEL(_channel, _name, _type, _reg) \ { \ .type = _type, \ .indexed = 1, \ .channel = _channel, \ .address = _reg, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .datasheet_name = _name, \ } #define AXP20X_ADC_CHANNEL_OFFSET(_channel, _name, _type, _reg) \ { \ .type = _type, \ .indexed = 1, \ .channel = _channel, \ .address = _reg, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) |\ BIT(IIO_CHAN_INFO_OFFSET),\ .datasheet_name = _name, \ } struct axp_data; struct axp20x_adc_iio { struct regmap *regmap; struct axp_data *data; }; enum axp20x_adc_channel_v { AXP20X_ACIN_V = 0, AXP20X_VBUS_V, AXP20X_TS_IN, AXP20X_GPIO0_V, AXP20X_GPIO1_V, AXP20X_IPSOUT_V, AXP20X_BATT_V, }; enum axp20x_adc_channel_i { AXP20X_ACIN_I = 0, AXP20X_VBUS_I, AXP20X_BATT_CHRG_I, AXP20X_BATT_DISCHRG_I, }; enum axp22x_adc_channel_v { AXP22X_TS_IN = 0, AXP22X_BATT_V, }; enum axp22x_adc_channel_i { AXP22X_BATT_CHRG_I = 1, AXP22X_BATT_DISCHRG_I, }; enum axp813_adc_channel_v { AXP813_TS_IN = 0, AXP813_GPIO0_V, AXP813_BATT_V, }; static struct iio_map axp20x_maps[] = { { .consumer_dev_name = "axp20x-usb-power-supply", .consumer_channel = "vbus_v", .adc_channel_label = "vbus_v", }, { .consumer_dev_name = "axp20x-usb-power-supply", .consumer_channel = "vbus_i", .adc_channel_label = "vbus_i", }, { .consumer_dev_name = "axp20x-ac-power-supply", .consumer_channel = "acin_v", .adc_channel_label = "acin_v", }, { .consumer_dev_name = "axp20x-ac-power-supply", .consumer_channel = "acin_i", .adc_channel_label = "acin_i", }, { .consumer_dev_name = "axp20x-battery-power-supply", .consumer_channel = "batt_v", .adc_channel_label = "batt_v", }, { .consumer_dev_name = "axp20x-battery-power-supply", .consumer_channel = "batt_chrg_i", .adc_channel_label = "batt_chrg_i", }, { .consumer_dev_name = "axp20x-battery-power-supply", .consumer_channel = "batt_dischrg_i", .adc_channel_label = "batt_dischrg_i", }, { /* sentinel */ } }; static struct iio_map axp22x_maps[] = { { .consumer_dev_name = "axp20x-battery-power-supply", .consumer_channel = "batt_v", .adc_channel_label = "batt_v", }, { .consumer_dev_name = "axp20x-battery-power-supply", .consumer_channel = "batt_chrg_i", .adc_channel_label = "batt_chrg_i", }, { .consumer_dev_name = "axp20x-battery-power-supply", .consumer_channel = "batt_dischrg_i", .adc_channel_label = "batt_dischrg_i", }, { /* sentinel */ } }; /* * Channels are mapped by physical system. Their channels share the same index. * i.e. acin_i is in_current0_raw and acin_v is in_voltage0_raw. * The only exception is for the battery. batt_v will be in_voltage6_raw and * charge current in_current6_raw and discharge current will be in_current7_raw. */ static const struct iio_chan_spec axp20x_adc_channels[] = { AXP20X_ADC_CHANNEL(AXP20X_ACIN_V, "acin_v", IIO_VOLTAGE, AXP20X_ACIN_V_ADC_H), AXP20X_ADC_CHANNEL(AXP20X_ACIN_I, "acin_i", IIO_CURRENT, AXP20X_ACIN_I_ADC_H), AXP20X_ADC_CHANNEL(AXP20X_VBUS_V, "vbus_v", IIO_VOLTAGE, AXP20X_VBUS_V_ADC_H), AXP20X_ADC_CHANNEL(AXP20X_VBUS_I, "vbus_i", IIO_CURRENT, AXP20X_VBUS_I_ADC_H), { .type = IIO_TEMP, .address = AXP20X_TEMP_ADC_H, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), .datasheet_name = "pmic_temp", }, AXP20X_ADC_CHANNEL_OFFSET(AXP20X_GPIO0_V, "gpio0_v", IIO_VOLTAGE, AXP20X_GPIO0_V_ADC_H), AXP20X_ADC_CHANNEL_OFFSET(AXP20X_GPIO1_V, "gpio1_v", IIO_VOLTAGE, AXP20X_GPIO1_V_ADC_H), AXP20X_ADC_CHANNEL(AXP20X_IPSOUT_V, "ipsout_v", IIO_VOLTAGE, AXP20X_IPSOUT_V_HIGH_H), AXP20X_ADC_CHANNEL(AXP20X_BATT_V, "batt_v", IIO_VOLTAGE, AXP20X_BATT_V_H), AXP20X_ADC_CHANNEL(AXP20X_BATT_CHRG_I, "batt_chrg_i", IIO_CURRENT, AXP20X_BATT_CHRG_I_H), AXP20X_ADC_CHANNEL(AXP20X_BATT_DISCHRG_I, "batt_dischrg_i", IIO_CURRENT, AXP20X_BATT_DISCHRG_I_H), }; static const struct iio_chan_spec axp22x_adc_channels[] = { { .type = IIO_TEMP, .address = AXP22X_PMIC_TEMP_H, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), .datasheet_name = "pmic_temp", }, AXP20X_ADC_CHANNEL(AXP22X_BATT_V, "batt_v", IIO_VOLTAGE, AXP20X_BATT_V_H), AXP20X_ADC_CHANNEL(AXP22X_BATT_CHRG_I, "batt_chrg_i", IIO_CURRENT, AXP20X_BATT_CHRG_I_H), AXP20X_ADC_CHANNEL(AXP22X_BATT_DISCHRG_I, "batt_dischrg_i", IIO_CURRENT, AXP20X_BATT_DISCHRG_I_H), }; static const struct iio_chan_spec axp813_adc_channels[] = { { .type = IIO_TEMP, .address = AXP22X_PMIC_TEMP_H, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), .datasheet_name = "pmic_temp", }, AXP20X_ADC_CHANNEL(AXP813_GPIO0_V, "gpio0_v", IIO_VOLTAGE, AXP288_GP_ADC_H), AXP20X_ADC_CHANNEL(AXP813_BATT_V, "batt_v", IIO_VOLTAGE, AXP20X_BATT_V_H), AXP20X_ADC_CHANNEL(AXP22X_BATT_CHRG_I, "batt_chrg_i", IIO_CURRENT, AXP20X_BATT_CHRG_I_H), AXP20X_ADC_CHANNEL(AXP22X_BATT_DISCHRG_I, "batt_dischrg_i", IIO_CURRENT, AXP20X_BATT_DISCHRG_I_H), }; static int axp20x_adc_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct axp20x_adc_iio *info = iio_priv(indio_dev); int size = 12; /* * N.B.: Unlike the Chinese datasheets tell, the charging current is * stored on 12 bits, not 13 bits. Only discharging current is on 13 * bits. */ if (chan->type == IIO_CURRENT && chan->channel == AXP20X_BATT_DISCHRG_I) size = 13; else size = 12; *val = axp20x_read_variable_width(info->regmap, chan->address, size); if (*val < 0) return *val; return IIO_VAL_INT; } static int axp22x_adc_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct axp20x_adc_iio *info = iio_priv(indio_dev); int size; /* * N.B.: Unlike the Chinese datasheets tell, the charging current is * stored on 12 bits, not 13 bits. Only discharging current is on 13 * bits. */ if (chan->type == IIO_CURRENT && chan->channel == AXP22X_BATT_DISCHRG_I) size = 13; else size = 12; *val = axp20x_read_variable_width(info->regmap, chan->address, size); if (*val < 0) return *val; return IIO_VAL_INT; } static int axp813_adc_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct axp20x_adc_iio *info = iio_priv(indio_dev); *val = axp20x_read_variable_width(info->regmap, chan->address, 12); if (*val < 0) return *val; return IIO_VAL_INT; } static int axp20x_adc_scale_voltage(int channel, int *val, int *val2) { switch (channel) { case AXP20X_ACIN_V: case AXP20X_VBUS_V: *val = 1; *val2 = 700000; return IIO_VAL_INT_PLUS_MICRO; case AXP20X_GPIO0_V: case AXP20X_GPIO1_V: *val = 0; *val2 = 500000; return IIO_VAL_INT_PLUS_MICRO; case AXP20X_BATT_V: *val = 1; *val2 = 100000; return IIO_VAL_INT_PLUS_MICRO; case AXP20X_IPSOUT_V: *val = 1; *val2 = 400000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int axp813_adc_scale_voltage(int channel, int *val, int *val2) { switch (channel) { case AXP813_GPIO0_V: *val = 0; *val2 = 800000; return IIO_VAL_INT_PLUS_MICRO; case AXP813_BATT_V: *val = 1; *val2 = 100000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int axp20x_adc_scale_current(int channel, int *val, int *val2) { switch (channel) { case AXP20X_ACIN_I: *val = 0; *val2 = 625000; return IIO_VAL_INT_PLUS_MICRO; case AXP20X_VBUS_I: *val = 0; *val2 = 375000; return IIO_VAL_INT_PLUS_MICRO; case AXP20X_BATT_DISCHRG_I: case AXP20X_BATT_CHRG_I: *val = 0; *val2 = 500000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int axp20x_adc_scale(struct iio_chan_spec const *chan, int *val, int *val2) { switch (chan->type) { case IIO_VOLTAGE: return axp20x_adc_scale_voltage(chan->channel, val, val2); case IIO_CURRENT: return axp20x_adc_scale_current(chan->channel, val, val2); case IIO_TEMP: *val = 100; return IIO_VAL_INT; default: return -EINVAL; } } static int axp22x_adc_scale(struct iio_chan_spec const *chan, int *val, int *val2) { switch (chan->type) { case IIO_VOLTAGE: if (chan->channel != AXP22X_BATT_V) return -EINVAL; *val = 1; *val2 = 100000; return IIO_VAL_INT_PLUS_MICRO; case IIO_CURRENT: *val = 0; *val2 = 500000; return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = 100; return IIO_VAL_INT; default: return -EINVAL; } } static int axp813_adc_scale(struct iio_chan_spec const *chan, int *val, int *val2) { switch (chan->type) { case IIO_VOLTAGE: return axp813_adc_scale_voltage(chan->channel, val, val2); case IIO_CURRENT: *val = 1; return IIO_VAL_INT; case IIO_TEMP: *val = 100; return IIO_VAL_INT; default: return -EINVAL; } } static int axp20x_adc_offset_voltage(struct iio_dev *indio_dev, int channel, int *val) { struct axp20x_adc_iio *info = iio_priv(indio_dev); int ret; ret = regmap_read(info->regmap, AXP20X_GPIO10_IN_RANGE, val); if (ret < 0) return ret; switch (channel) { case AXP20X_GPIO0_V: *val &= AXP20X_GPIO10_IN_RANGE_GPIO0; break; case AXP20X_GPIO1_V: *val &= AXP20X_GPIO10_IN_RANGE_GPIO1; break; default: return -EINVAL; } *val = *val ? 700000 : 0; return IIO_VAL_INT; } static int axp20x_adc_offset(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { switch (chan->type) { case IIO_VOLTAGE: return axp20x_adc_offset_voltage(indio_dev, chan->channel, val); case IIO_TEMP: *val = -1447; return IIO_VAL_INT; default: return -EINVAL; } } static int axp20x_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { switch (mask) { case IIO_CHAN_INFO_OFFSET: return axp20x_adc_offset(indio_dev, chan, val); case IIO_CHAN_INFO_SCALE: return axp20x_adc_scale(chan, val, val2); case IIO_CHAN_INFO_RAW: return axp20x_adc_raw(indio_dev, chan, val); default: return -EINVAL; } } static int axp22x_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { switch (mask) { case IIO_CHAN_INFO_OFFSET: *val = -2677; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: return axp22x_adc_scale(chan, val, val2); case IIO_CHAN_INFO_RAW: return axp22x_adc_raw(indio_dev, chan, val); default: return -EINVAL; } } static int axp813_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { switch (mask) { case IIO_CHAN_INFO_OFFSET: *val = -2667; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: return axp813_adc_scale(chan, val, val2); case IIO_CHAN_INFO_RAW: return axp813_adc_raw(indio_dev, chan, val); default: return -EINVAL; } } static int axp20x_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct axp20x_adc_iio *info = iio_priv(indio_dev); unsigned int reg, regval; /* * The AXP20X PMIC allows the user to choose between 0V and 0.7V offsets * for (independently) GPIO0 and GPIO1 when in ADC mode. */ if (mask != IIO_CHAN_INFO_OFFSET) return -EINVAL; if (val != 0 && val != 700000) return -EINVAL; val = val ? 1 : 0; switch (chan->channel) { case AXP20X_GPIO0_V: reg = AXP20X_GPIO10_IN_RANGE_GPIO0; regval = AXP20X_GPIO10_IN_RANGE_GPIO0_VAL(val); break; case AXP20X_GPIO1_V: reg = AXP20X_GPIO10_IN_RANGE_GPIO1; regval = AXP20X_GPIO10_IN_RANGE_GPIO1_VAL(val); break; default: return -EINVAL; } return regmap_update_bits(info->regmap, AXP20X_GPIO10_IN_RANGE, reg, regval); } static const struct iio_info axp20x_adc_iio_info = { .read_raw = axp20x_read_raw, .write_raw = axp20x_write_raw, }; static const struct iio_info axp22x_adc_iio_info = { .read_raw = axp22x_read_raw, }; static const struct iio_info axp813_adc_iio_info = { .read_raw = axp813_read_raw, }; static int axp20x_adc_rate(struct axp20x_adc_iio *info, int rate) { return regmap_update_bits(info->regmap, AXP20X_ADC_RATE, AXP20X_ADC_RATE_MASK, AXP20X_ADC_RATE_HZ(rate)); } static int axp22x_adc_rate(struct axp20x_adc_iio *info, int rate) { return regmap_update_bits(info->regmap, AXP20X_ADC_RATE, AXP20X_ADC_RATE_MASK, AXP22X_ADC_RATE_HZ(rate)); } static int axp813_adc_rate(struct axp20x_adc_iio *info, int rate) { return regmap_update_bits(info->regmap, AXP813_ADC_RATE, AXP813_ADC_RATE_MASK, AXP813_ADC_RATE_HZ(rate)); } struct axp_data { const struct iio_info *iio_info; int num_channels; struct iio_chan_spec const *channels; unsigned long adc_en1_mask; int (*adc_rate)(struct axp20x_adc_iio *info, int rate); bool adc_en2; struct iio_map *maps; }; static const struct axp_data axp20x_data = { .iio_info = &axp20x_adc_iio_info, .num_channels = ARRAY_SIZE(axp20x_adc_channels), .channels = axp20x_adc_channels, .adc_en1_mask = AXP20X_ADC_EN1_MASK, .adc_rate = axp20x_adc_rate, .adc_en2 = true, .maps = axp20x_maps, }; static const struct axp_data axp22x_data = { .iio_info = &axp22x_adc_iio_info, .num_channels = ARRAY_SIZE(axp22x_adc_channels), .channels = axp22x_adc_channels, .adc_en1_mask = AXP22X_ADC_EN1_MASK, .adc_rate = axp22x_adc_rate, .adc_en2 = false, .maps = axp22x_maps, }; static const struct axp_data axp813_data = { .iio_info = &axp813_adc_iio_info, .num_channels = ARRAY_SIZE(axp813_adc_channels), .channels = axp813_adc_channels, .adc_en1_mask = AXP22X_ADC_EN1_MASK, .adc_rate = axp813_adc_rate, .adc_en2 = false, .maps = axp22x_maps, }; static const struct of_device_id axp20x_adc_of_match[] = { { .compatible = "x-powers,axp209-adc", .data = (void *)&axp20x_data, }, { .compatible = "x-powers,axp221-adc", .data = (void *)&axp22x_data, }, { .compatible = "x-powers,axp813-adc", .data = (void *)&axp813_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, axp20x_adc_of_match); static const struct platform_device_id axp20x_adc_id_match[] = { { .name = "axp20x-adc", .driver_data = (kernel_ulong_t)&axp20x_data, }, { .name = "axp22x-adc", .driver_data = (kernel_ulong_t)&axp22x_data, }, { .name = "axp813-adc", .driver_data = (kernel_ulong_t)&axp813_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(platform, axp20x_adc_id_match); static int axp20x_probe(struct platform_device *pdev) { struct axp20x_adc_iio *info; struct iio_dev *indio_dev; struct axp20x_dev *axp20x_dev; int ret; axp20x_dev = dev_get_drvdata(pdev->dev.parent); indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*info)); if (!indio_dev) return -ENOMEM; info = iio_priv(indio_dev); platform_set_drvdata(pdev, indio_dev); info->regmap = axp20x_dev->regmap; indio_dev->dev.parent = &pdev->dev; indio_dev->dev.of_node = pdev->dev.of_node; indio_dev->modes = INDIO_DIRECT_MODE; if (!pdev->dev.of_node) { const struct platform_device_id *id; id = platform_get_device_id(pdev); info->data = (struct axp_data *)id->driver_data; } else { struct device *dev = &pdev->dev; info->data = (struct axp_data *)of_device_get_match_data(dev); } indio_dev->name = platform_get_device_id(pdev)->name; indio_dev->info = info->data->iio_info; indio_dev->num_channels = info->data->num_channels; indio_dev->channels = info->data->channels; /* Enable the ADCs on IP */ regmap_write(info->regmap, AXP20X_ADC_EN1, info->data->adc_en1_mask); if (info->data->adc_en2) /* Enable GPIO0/1 and internal temperature ADCs */ regmap_update_bits(info->regmap, AXP20X_ADC_EN2, AXP20X_ADC_EN2_MASK, AXP20X_ADC_EN2_MASK); /* Configure ADCs rate */ info->data->adc_rate(info, 100); ret = iio_map_array_register(indio_dev, info->data->maps); if (ret < 0) { dev_err(&pdev->dev, "failed to register IIO maps: %d\n", ret); goto fail_map; } ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&pdev->dev, "could not register the device\n"); goto fail_register; } return 0; fail_register: iio_map_array_unregister(indio_dev); fail_map: regmap_write(info->regmap, AXP20X_ADC_EN1, 0); if (info->data->adc_en2) regmap_write(info->regmap, AXP20X_ADC_EN2, 0); return ret; } static int axp20x_remove(struct platform_device *pdev) { struct iio_dev *indio_dev = platform_get_drvdata(pdev); struct axp20x_adc_iio *info = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_map_array_unregister(indio_dev); regmap_write(info->regmap, AXP20X_ADC_EN1, 0); if (info->data->adc_en2) regmap_write(info->regmap, AXP20X_ADC_EN2, 0); return 0; } static struct platform_driver axp20x_adc_driver = { .driver = { .name = "axp20x-adc", .of_match_table = of_match_ptr(axp20x_adc_of_match), }, .id_table = axp20x_adc_id_match, .probe = axp20x_probe, .remove = axp20x_remove, }; module_platform_driver(axp20x_adc_driver); MODULE_DESCRIPTION("ADC driver for AXP20X and AXP22X PMICs"); MODULE_AUTHOR("Quentin Schulz <quentin.schulz@free-electrons.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1