Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Cercueil | 3173 | 99.91% | 1 | 33.33% |
Kees Cook | 2 | 0.06% | 1 | 33.33% |
Dan Carpenter | 1 | 0.03% | 1 | 33.33% |
Total | 3176 | 3 |
/* * AD5592R Digital <-> Analog converters driver * * Copyright 2014-2016 Analog Devices Inc. * Author: Paul Cercueil <paul.cercueil@analog.com> * * Licensed under the GPL-2. */ #include <linux/bitops.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/regulator/consumer.h> #include <linux/gpio/consumer.h> #include <linux/gpio/driver.h> #include <linux/gpio.h> #include <linux/property.h> #include <dt-bindings/iio/adi,ad5592r.h> #include "ad5592r-base.h" static int ad5592r_gpio_get(struct gpio_chip *chip, unsigned offset) { struct ad5592r_state *st = gpiochip_get_data(chip); int ret = 0; u8 val; mutex_lock(&st->gpio_lock); if (st->gpio_out & BIT(offset)) val = st->gpio_val; else ret = st->ops->gpio_read(st, &val); mutex_unlock(&st->gpio_lock); if (ret < 0) return ret; return !!(val & BIT(offset)); } static void ad5592r_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { struct ad5592r_state *st = gpiochip_get_data(chip); mutex_lock(&st->gpio_lock); if (value) st->gpio_val |= BIT(offset); else st->gpio_val &= ~BIT(offset); st->ops->reg_write(st, AD5592R_REG_GPIO_SET, st->gpio_val); mutex_unlock(&st->gpio_lock); } static int ad5592r_gpio_direction_input(struct gpio_chip *chip, unsigned offset) { struct ad5592r_state *st = gpiochip_get_data(chip); int ret; mutex_lock(&st->gpio_lock); st->gpio_out &= ~BIT(offset); st->gpio_in |= BIT(offset); ret = st->ops->reg_write(st, AD5592R_REG_GPIO_OUT_EN, st->gpio_out); if (ret < 0) goto err_unlock; ret = st->ops->reg_write(st, AD5592R_REG_GPIO_IN_EN, st->gpio_in); err_unlock: mutex_unlock(&st->gpio_lock); return ret; } static int ad5592r_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) { struct ad5592r_state *st = gpiochip_get_data(chip); int ret; mutex_lock(&st->gpio_lock); if (value) st->gpio_val |= BIT(offset); else st->gpio_val &= ~BIT(offset); st->gpio_in &= ~BIT(offset); st->gpio_out |= BIT(offset); ret = st->ops->reg_write(st, AD5592R_REG_GPIO_SET, st->gpio_val); if (ret < 0) goto err_unlock; ret = st->ops->reg_write(st, AD5592R_REG_GPIO_OUT_EN, st->gpio_out); if (ret < 0) goto err_unlock; ret = st->ops->reg_write(st, AD5592R_REG_GPIO_IN_EN, st->gpio_in); err_unlock: mutex_unlock(&st->gpio_lock); return ret; } static int ad5592r_gpio_request(struct gpio_chip *chip, unsigned offset) { struct ad5592r_state *st = gpiochip_get_data(chip); if (!(st->gpio_map & BIT(offset))) { dev_err(st->dev, "GPIO %d is reserved by alternate function\n", offset); return -ENODEV; } return 0; } static int ad5592r_gpio_init(struct ad5592r_state *st) { if (!st->gpio_map) return 0; st->gpiochip.label = dev_name(st->dev); st->gpiochip.base = -1; st->gpiochip.ngpio = 8; st->gpiochip.parent = st->dev; st->gpiochip.can_sleep = true; st->gpiochip.direction_input = ad5592r_gpio_direction_input; st->gpiochip.direction_output = ad5592r_gpio_direction_output; st->gpiochip.get = ad5592r_gpio_get; st->gpiochip.set = ad5592r_gpio_set; st->gpiochip.request = ad5592r_gpio_request; st->gpiochip.owner = THIS_MODULE; mutex_init(&st->gpio_lock); return gpiochip_add_data(&st->gpiochip, st); } static void ad5592r_gpio_cleanup(struct ad5592r_state *st) { if (st->gpio_map) gpiochip_remove(&st->gpiochip); } static int ad5592r_reset(struct ad5592r_state *st) { struct gpio_desc *gpio; struct iio_dev *iio_dev = iio_priv_to_dev(st); gpio = devm_gpiod_get_optional(st->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(gpio)) return PTR_ERR(gpio); if (gpio) { udelay(1); gpiod_set_value(gpio, 1); } else { mutex_lock(&iio_dev->mlock); /* Writing this magic value resets the device */ st->ops->reg_write(st, AD5592R_REG_RESET, 0xdac); mutex_unlock(&iio_dev->mlock); } udelay(250); return 0; } static int ad5592r_get_vref(struct ad5592r_state *st) { int ret; if (st->reg) { ret = regulator_get_voltage(st->reg); if (ret < 0) return ret; return ret / 1000; } else { return 2500; } } static int ad5592r_set_channel_modes(struct ad5592r_state *st) { const struct ad5592r_rw_ops *ops = st->ops; int ret; unsigned i; struct iio_dev *iio_dev = iio_priv_to_dev(st); u8 pulldown = 0, tristate = 0, dac = 0, adc = 0; u16 read_back; for (i = 0; i < st->num_channels; i++) { switch (st->channel_modes[i]) { case CH_MODE_DAC: dac |= BIT(i); break; case CH_MODE_ADC: adc |= BIT(i); break; case CH_MODE_DAC_AND_ADC: dac |= BIT(i); adc |= BIT(i); break; case CH_MODE_GPIO: st->gpio_map |= BIT(i); st->gpio_in |= BIT(i); /* Default to input */ break; case CH_MODE_UNUSED: /* fall-through */ default: switch (st->channel_offstate[i]) { case CH_OFFSTATE_OUT_TRISTATE: tristate |= BIT(i); break; case CH_OFFSTATE_OUT_LOW: st->gpio_out |= BIT(i); break; case CH_OFFSTATE_OUT_HIGH: st->gpio_out |= BIT(i); st->gpio_val |= BIT(i); break; case CH_OFFSTATE_PULLDOWN: /* fall-through */ default: pulldown |= BIT(i); break; } } } mutex_lock(&iio_dev->mlock); /* Pull down unused pins to GND */ ret = ops->reg_write(st, AD5592R_REG_PULLDOWN, pulldown); if (ret) goto err_unlock; ret = ops->reg_write(st, AD5592R_REG_TRISTATE, tristate); if (ret) goto err_unlock; /* Configure pins that we use */ ret = ops->reg_write(st, AD5592R_REG_DAC_EN, dac); if (ret) goto err_unlock; ret = ops->reg_write(st, AD5592R_REG_ADC_EN, adc); if (ret) goto err_unlock; ret = ops->reg_write(st, AD5592R_REG_GPIO_SET, st->gpio_val); if (ret) goto err_unlock; ret = ops->reg_write(st, AD5592R_REG_GPIO_OUT_EN, st->gpio_out); if (ret) goto err_unlock; ret = ops->reg_write(st, AD5592R_REG_GPIO_IN_EN, st->gpio_in); if (ret) goto err_unlock; /* Verify that we can read back at least one register */ ret = ops->reg_read(st, AD5592R_REG_ADC_EN, &read_back); if (!ret && (read_back & 0xff) != adc) ret = -EIO; err_unlock: mutex_unlock(&iio_dev->mlock); return ret; } static int ad5592r_reset_channel_modes(struct ad5592r_state *st) { int i; for (i = 0; i < ARRAY_SIZE(st->channel_modes); i++) st->channel_modes[i] = CH_MODE_UNUSED; return ad5592r_set_channel_modes(st); } static int ad5592r_write_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad5592r_state *st = iio_priv(iio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: if (val >= (1 << chan->scan_type.realbits) || val < 0) return -EINVAL; if (!chan->output) return -EINVAL; mutex_lock(&iio_dev->mlock); ret = st->ops->write_dac(st, chan->channel, val); if (!ret) st->cached_dac[chan->channel] = val; mutex_unlock(&iio_dev->mlock); return ret; case IIO_CHAN_INFO_SCALE: if (chan->type == IIO_VOLTAGE) { bool gain; if (val == st->scale_avail[0][0] && val2 == st->scale_avail[0][1]) gain = false; else if (val == st->scale_avail[1][0] && val2 == st->scale_avail[1][1]) gain = true; else return -EINVAL; mutex_lock(&iio_dev->mlock); ret = st->ops->reg_read(st, AD5592R_REG_CTRL, &st->cached_gp_ctrl); if (ret < 0) { mutex_unlock(&iio_dev->mlock); return ret; } if (chan->output) { if (gain) st->cached_gp_ctrl |= AD5592R_REG_CTRL_DAC_RANGE; else st->cached_gp_ctrl &= ~AD5592R_REG_CTRL_DAC_RANGE; } else { if (gain) st->cached_gp_ctrl |= AD5592R_REG_CTRL_ADC_RANGE; else st->cached_gp_ctrl &= ~AD5592R_REG_CTRL_ADC_RANGE; } ret = st->ops->reg_write(st, AD5592R_REG_CTRL, st->cached_gp_ctrl); mutex_unlock(&iio_dev->mlock); return ret; } break; default: return -EINVAL; } return 0; } static int ad5592r_read_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { struct ad5592r_state *st = iio_priv(iio_dev); u16 read_val; int ret; switch (m) { case IIO_CHAN_INFO_RAW: mutex_lock(&iio_dev->mlock); if (!chan->output) { ret = st->ops->read_adc(st, chan->channel, &read_val); if (ret) goto unlock; if ((read_val >> 12 & 0x7) != (chan->channel & 0x7)) { dev_err(st->dev, "Error while reading channel %u\n", chan->channel); ret = -EIO; goto unlock; } read_val &= GENMASK(11, 0); } else { read_val = st->cached_dac[chan->channel]; } dev_dbg(st->dev, "Channel %u read: 0x%04hX\n", chan->channel, read_val); *val = (int) read_val; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_SCALE: *val = ad5592r_get_vref(st); if (chan->type == IIO_TEMP) { s64 tmp = *val * (3767897513LL / 25LL); *val = div_s64_rem(tmp, 1000000000LL, val2); ret = IIO_VAL_INT_PLUS_MICRO; } else { int mult; mutex_lock(&iio_dev->mlock); if (chan->output) mult = !!(st->cached_gp_ctrl & AD5592R_REG_CTRL_DAC_RANGE); else mult = !!(st->cached_gp_ctrl & AD5592R_REG_CTRL_ADC_RANGE); *val *= ++mult; *val2 = chan->scan_type.realbits; ret = IIO_VAL_FRACTIONAL_LOG2; } break; case IIO_CHAN_INFO_OFFSET: ret = ad5592r_get_vref(st); mutex_lock(&iio_dev->mlock); if (st->cached_gp_ctrl & AD5592R_REG_CTRL_ADC_RANGE) *val = (-34365 * 25) / ret; else *val = (-75365 * 25) / ret; ret = IIO_VAL_INT; break; default: ret = -EINVAL; } unlock: mutex_unlock(&iio_dev->mlock); return ret; } static int ad5592r_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; default: return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; } static const struct iio_info ad5592r_info = { .read_raw = ad5592r_read_raw, .write_raw = ad5592r_write_raw, .write_raw_get_fmt = ad5592r_write_raw_get_fmt, }; static ssize_t ad5592r_show_scale_available(struct iio_dev *iio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct ad5592r_state *st = iio_priv(iio_dev); return sprintf(buf, "%d.%09u %d.%09u\n", st->scale_avail[0][0], st->scale_avail[0][1], st->scale_avail[1][0], st->scale_avail[1][1]); } static struct iio_chan_spec_ext_info ad5592r_ext_info[] = { { .name = "scale_available", .read = ad5592r_show_scale_available, .shared = true, }, {}, }; static void ad5592r_setup_channel(struct iio_dev *iio_dev, struct iio_chan_spec *chan, bool output, unsigned id) { chan->type = IIO_VOLTAGE; chan->indexed = 1; chan->output = output; chan->channel = id; chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW); chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE); chan->scan_type.sign = 'u'; chan->scan_type.realbits = 12; chan->scan_type.storagebits = 16; chan->ext_info = ad5592r_ext_info; } static int ad5592r_alloc_channels(struct ad5592r_state *st) { unsigned i, curr_channel = 0, num_channels = st->num_channels; struct iio_dev *iio_dev = iio_priv_to_dev(st); struct iio_chan_spec *channels; struct fwnode_handle *child; u32 reg, tmp; int ret; device_for_each_child_node(st->dev, child) { ret = fwnode_property_read_u32(child, "reg", ®); if (ret || reg >= ARRAY_SIZE(st->channel_modes)) continue; ret = fwnode_property_read_u32(child, "adi,mode", &tmp); if (!ret) st->channel_modes[reg] = tmp; fwnode_property_read_u32(child, "adi,off-state", &tmp); if (!ret) st->channel_offstate[reg] = tmp; } channels = devm_kcalloc(st->dev, 1 + 2 * num_channels, sizeof(*channels), GFP_KERNEL); if (!channels) return -ENOMEM; for (i = 0; i < num_channels; i++) { switch (st->channel_modes[i]) { case CH_MODE_DAC: ad5592r_setup_channel(iio_dev, &channels[curr_channel], true, i); curr_channel++; break; case CH_MODE_ADC: ad5592r_setup_channel(iio_dev, &channels[curr_channel], false, i); curr_channel++; break; case CH_MODE_DAC_AND_ADC: ad5592r_setup_channel(iio_dev, &channels[curr_channel], true, i); curr_channel++; ad5592r_setup_channel(iio_dev, &channels[curr_channel], false, i); curr_channel++; break; default: continue; } } channels[curr_channel].type = IIO_TEMP; channels[curr_channel].channel = 8; channels[curr_channel].info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET); curr_channel++; iio_dev->num_channels = curr_channel; iio_dev->channels = channels; return 0; } static void ad5592r_init_scales(struct ad5592r_state *st, int vref_mV) { s64 tmp = (s64)vref_mV * 1000000000LL >> 12; st->scale_avail[0][0] = div_s64_rem(tmp, 1000000000LL, &st->scale_avail[0][1]); st->scale_avail[1][0] = div_s64_rem(tmp * 2, 1000000000LL, &st->scale_avail[1][1]); } int ad5592r_probe(struct device *dev, const char *name, const struct ad5592r_rw_ops *ops) { struct iio_dev *iio_dev; struct ad5592r_state *st; int ret; iio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!iio_dev) return -ENOMEM; st = iio_priv(iio_dev); st->dev = dev; st->ops = ops; st->num_channels = 8; dev_set_drvdata(dev, iio_dev); st->reg = devm_regulator_get_optional(dev, "vref"); if (IS_ERR(st->reg)) { if ((PTR_ERR(st->reg) != -ENODEV) && dev->of_node) return PTR_ERR(st->reg); st->reg = NULL; } else { ret = regulator_enable(st->reg); if (ret) return ret; } iio_dev->dev.parent = dev; iio_dev->name = name; iio_dev->info = &ad5592r_info; iio_dev->modes = INDIO_DIRECT_MODE; ad5592r_init_scales(st, ad5592r_get_vref(st)); ret = ad5592r_reset(st); if (ret) goto error_disable_reg; ret = ops->reg_write(st, AD5592R_REG_PD, (st->reg == NULL) ? AD5592R_REG_PD_EN_REF : 0); if (ret) goto error_disable_reg; ret = ad5592r_alloc_channels(st); if (ret) goto error_disable_reg; ret = ad5592r_set_channel_modes(st); if (ret) goto error_reset_ch_modes; ret = iio_device_register(iio_dev); if (ret) goto error_reset_ch_modes; ret = ad5592r_gpio_init(st); if (ret) goto error_dev_unregister; return 0; error_dev_unregister: iio_device_unregister(iio_dev); error_reset_ch_modes: ad5592r_reset_channel_modes(st); error_disable_reg: if (st->reg) regulator_disable(st->reg); return ret; } EXPORT_SYMBOL_GPL(ad5592r_probe); int ad5592r_remove(struct device *dev) { struct iio_dev *iio_dev = dev_get_drvdata(dev); struct ad5592r_state *st = iio_priv(iio_dev); iio_device_unregister(iio_dev); ad5592r_reset_channel_modes(st); ad5592r_gpio_cleanup(st); if (st->reg) regulator_disable(st->reg); return 0; } EXPORT_SYMBOL_GPL(ad5592r_remove); MODULE_AUTHOR("Paul Cercueil <paul.cercueil@analog.com>"); MODULE_DESCRIPTION("Analog Devices AD5592R multi-channel converters"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1