Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stefan Popa | 3687 | 100.00% | 2 | 100.00% |
Total | 3687 | 2 |
// SPDX-License-Identifier: GPL-2.0+ /* * AD5758 Digital to analog converters driver * * Copyright 2018 Analog Devices Inc. * * TODO: Currently CRC is not supported in this driver */ #include <linux/bsearch.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/property.h> #include <linux/spi/spi.h> #include <linux/gpio/consumer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> /* AD5758 registers definition */ #define AD5758_NOP 0x00 #define AD5758_DAC_INPUT 0x01 #define AD5758_DAC_OUTPUT 0x02 #define AD5758_CLEAR_CODE 0x03 #define AD5758_USER_GAIN 0x04 #define AD5758_USER_OFFSET 0x05 #define AD5758_DAC_CONFIG 0x06 #define AD5758_SW_LDAC 0x07 #define AD5758_KEY 0x08 #define AD5758_GP_CONFIG1 0x09 #define AD5758_GP_CONFIG2 0x0A #define AD5758_DCDC_CONFIG1 0x0B #define AD5758_DCDC_CONFIG2 0x0C #define AD5758_WDT_CONFIG 0x0F #define AD5758_DIGITAL_DIAG_CONFIG 0x10 #define AD5758_ADC_CONFIG 0x11 #define AD5758_FAULT_PIN_CONFIG 0x12 #define AD5758_TWO_STAGE_READBACK_SELECT 0x13 #define AD5758_DIGITAL_DIAG_RESULTS 0x14 #define AD5758_ANALOG_DIAG_RESULTS 0x15 #define AD5758_STATUS 0x16 #define AD5758_CHIP_ID 0x17 #define AD5758_FREQ_MONITOR 0x18 #define AD5758_DEVICE_ID_0 0x19 #define AD5758_DEVICE_ID_1 0x1A #define AD5758_DEVICE_ID_2 0x1B #define AD5758_DEVICE_ID_3 0x1C /* AD5758_DAC_CONFIG */ #define AD5758_DAC_CONFIG_RANGE_MSK GENMASK(3, 0) #define AD5758_DAC_CONFIG_RANGE_MODE(x) (((x) & 0xF) << 0) #define AD5758_DAC_CONFIG_INT_EN_MSK BIT(5) #define AD5758_DAC_CONFIG_INT_EN_MODE(x) (((x) & 0x1) << 5) #define AD5758_DAC_CONFIG_OUT_EN_MSK BIT(6) #define AD5758_DAC_CONFIG_OUT_EN_MODE(x) (((x) & 0x1) << 6) #define AD5758_DAC_CONFIG_SR_EN_MSK BIT(8) #define AD5758_DAC_CONFIG_SR_EN_MODE(x) (((x) & 0x1) << 8) #define AD5758_DAC_CONFIG_SR_CLOCK_MSK GENMASK(12, 9) #define AD5758_DAC_CONFIG_SR_CLOCK_MODE(x) (((x) & 0xF) << 9) #define AD5758_DAC_CONFIG_SR_STEP_MSK GENMASK(15, 13) #define AD5758_DAC_CONFIG_SR_STEP_MODE(x) (((x) & 0x7) << 13) /* AD5758_KEY */ #define AD5758_KEY_CODE_RESET_1 0x15FA #define AD5758_KEY_CODE_RESET_2 0xAF51 #define AD5758_KEY_CODE_SINGLE_ADC_CONV 0x1ADC #define AD5758_KEY_CODE_RESET_WDT 0x0D06 #define AD5758_KEY_CODE_CALIB_MEM_REFRESH 0xFCBA /* AD5758_DCDC_CONFIG1 */ #define AD5758_DCDC_CONFIG1_DCDC_VPROG_MSK GENMASK(4, 0) #define AD5758_DCDC_CONFIG1_DCDC_VPROG_MODE(x) (((x) & 0x1F) << 0) #define AD5758_DCDC_CONFIG1_DCDC_MODE_MSK GENMASK(6, 5) #define AD5758_DCDC_CONFIG1_DCDC_MODE_MODE(x) (((x) & 0x3) << 5) #define AD5758_DCDC_CONFIG1_PROT_SW_EN_MSK BIT(7) #define AD5758_DCDC_CONFIG1_PROT_SW_EN_MODE(x) (((x) & 0x1) << 7) /* AD5758_DCDC_CONFIG2 */ #define AD5758_DCDC_CONFIG2_ILIMIT_MSK GENMASK(3, 1) #define AD5758_DCDC_CONFIG2_ILIMIT_MODE(x) (((x) & 0x7) << 1) #define AD5758_DCDC_CONFIG2_INTR_SAT_3WI_MSK BIT(11) #define AD5758_DCDC_CONFIG2_BUSY_3WI_MSK BIT(12) /* AD5758_DIGITAL_DIAG_RESULTS */ #define AD5758_CAL_MEM_UNREFRESHED_MSK BIT(15) #define AD5758_WR_FLAG_MSK(x) (0x80 | ((x) & 0x1F)) #define AD5758_FULL_SCALE_MICRO 65535000000ULL /** * struct ad5758_state - driver instance specific data * @spi: spi_device * @lock: mutex lock * @out_range: struct which stores the output range * @dc_dc_mode: variable which stores the mode of operation * @dc_dc_ilim: variable which stores the dc-to-dc converter current limit * @slew_time: variable which stores the target slew time * @pwr_down: variable which contains whether a channel is powered down or not * @data: spi transfer buffers */ struct ad5758_range { int reg; int min; int max; }; struct ad5758_state { struct spi_device *spi; struct mutex lock; struct gpio_desc *gpio_reset; struct ad5758_range out_range; unsigned int dc_dc_mode; unsigned int dc_dc_ilim; unsigned int slew_time; bool pwr_down; __be32 d32[3]; }; /** * Output ranges corresponding to bits [3:0] from DAC_CONFIG register * 0000: 0 V to 5 V voltage range * 0001: 0 V to 10 V voltage range * 0010: ±5 V voltage range * 0011: ±10 V voltage range * 1000: 0 mA to 20 mA current range * 1001: 0 mA to 24 mA current range * 1010: 4 mA to 20 mA current range * 1011: ±20 mA current range * 1100: ±24 mA current range * 1101: -1 mA to +22 mA current range */ enum ad5758_output_range { AD5758_RANGE_0V_5V, AD5758_RANGE_0V_10V, AD5758_RANGE_PLUSMINUS_5V, AD5758_RANGE_PLUSMINUS_10V, AD5758_RANGE_0mA_20mA = 8, AD5758_RANGE_0mA_24mA, AD5758_RANGE_4mA_24mA, AD5758_RANGE_PLUSMINUS_20mA, AD5758_RANGE_PLUSMINUS_24mA, AD5758_RANGE_MINUS_1mA_PLUS_22mA, }; enum ad5758_dc_dc_mode { AD5758_DCDC_MODE_POWER_OFF, AD5758_DCDC_MODE_DPC_CURRENT, AD5758_DCDC_MODE_DPC_VOLTAGE, AD5758_DCDC_MODE_PPC_CURRENT, }; static const struct ad5758_range ad5758_voltage_range[] = { { AD5758_RANGE_0V_5V, 0, 5000000 }, { AD5758_RANGE_0V_10V, 0, 10000000 }, { AD5758_RANGE_PLUSMINUS_5V, -5000000, 5000000 }, { AD5758_RANGE_PLUSMINUS_10V, -10000000, 10000000 } }; static const struct ad5758_range ad5758_current_range[] = { { AD5758_RANGE_0mA_20mA, 0, 20000}, { AD5758_RANGE_0mA_24mA, 0, 24000 }, { AD5758_RANGE_4mA_24mA, 4, 24000 }, { AD5758_RANGE_PLUSMINUS_20mA, -20000, 20000 }, { AD5758_RANGE_PLUSMINUS_24mA, -24000, 24000 }, { AD5758_RANGE_MINUS_1mA_PLUS_22mA, -1000, 22000 }, }; static const int ad5758_sr_clk[16] = { 240000, 200000, 150000, 128000, 64000, 32000, 16000, 8000, 4000, 2000, 1000, 512, 256, 128, 64, 16 }; static const int ad5758_sr_step[8] = { 4, 12, 64, 120, 256, 500, 1820, 2048 }; static const int ad5758_dc_dc_ilim[6] = { 150000, 200000, 250000, 300000, 350000, 400000 }; static int ad5758_spi_reg_read(struct ad5758_state *st, unsigned int addr) { struct spi_transfer t[] = { { .tx_buf = &st->d32[0], .len = 4, .cs_change = 1, }, { .tx_buf = &st->d32[1], .rx_buf = &st->d32[2], .len = 4, }, }; int ret; st->d32[0] = cpu_to_be32( (AD5758_WR_FLAG_MSK(AD5758_TWO_STAGE_READBACK_SELECT) << 24) | (addr << 8)); st->d32[1] = cpu_to_be32(AD5758_WR_FLAG_MSK(AD5758_NOP) << 24); ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t)); if (ret < 0) return ret; return (be32_to_cpu(st->d32[2]) >> 8) & 0xFFFF; } static int ad5758_spi_reg_write(struct ad5758_state *st, unsigned int addr, unsigned int val) { st->d32[0] = cpu_to_be32((AD5758_WR_FLAG_MSK(addr) << 24) | ((val & 0xFFFF) << 8)); return spi_write(st->spi, &st->d32[0], sizeof(st->d32[0])); } static int ad5758_spi_write_mask(struct ad5758_state *st, unsigned int addr, unsigned long int mask, unsigned int val) { int regval; regval = ad5758_spi_reg_read(st, addr); if (regval < 0) return regval; regval &= ~mask; regval |= val; return ad5758_spi_reg_write(st, addr, regval); } static int cmpfunc(const void *a, const void *b) { return *(int *)a - *(int *)b; } static int ad5758_find_closest_match(const int *array, unsigned int size, int val) { int i; for (i = 0; i < size; i++) { if (val <= array[i]) return i; } return size - 1; } static int ad5758_wait_for_task_complete(struct ad5758_state *st, unsigned int reg, unsigned int mask) { unsigned int timeout; int ret; timeout = 10; do { ret = ad5758_spi_reg_read(st, reg); if (ret < 0) return ret; if (!(ret & mask)) return 0; usleep_range(100, 1000); } while (--timeout); dev_err(&st->spi->dev, "Error reading bit 0x%x in 0x%x register\n", mask, reg); return -EIO; } static int ad5758_calib_mem_refresh(struct ad5758_state *st) { int ret; ret = ad5758_spi_reg_write(st, AD5758_KEY, AD5758_KEY_CODE_CALIB_MEM_REFRESH); if (ret < 0) { dev_err(&st->spi->dev, "Failed to initiate a calibration memory refresh\n"); return ret; } /* Wait to allow time for the internal calibrations to complete */ return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS, AD5758_CAL_MEM_UNREFRESHED_MSK); } static int ad5758_soft_reset(struct ad5758_state *st) { int ret; ret = ad5758_spi_reg_write(st, AD5758_KEY, AD5758_KEY_CODE_RESET_1); if (ret < 0) return ret; ret = ad5758_spi_reg_write(st, AD5758_KEY, AD5758_KEY_CODE_RESET_2); /* Perform a software reset and wait at least 100us */ usleep_range(100, 1000); return ret; } static int ad5758_set_dc_dc_conv_mode(struct ad5758_state *st, enum ad5758_dc_dc_mode mode) { int ret; ret = ad5758_spi_write_mask(st, AD5758_DCDC_CONFIG1, AD5758_DCDC_CONFIG1_DCDC_MODE_MSK, AD5758_DCDC_CONFIG1_DCDC_MODE_MODE(mode)); if (ret < 0) return ret; /* * Poll the BUSY_3WI bit in the DCDC_CONFIG2 register until it is 0. * This allows the 3-wire interface communication to complete. */ ret = ad5758_wait_for_task_complete(st, AD5758_DCDC_CONFIG2, AD5758_DCDC_CONFIG2_BUSY_3WI_MSK); if (ret < 0) return ret; st->dc_dc_mode = mode; return ret; } static int ad5758_set_dc_dc_ilim(struct ad5758_state *st, unsigned int ilim) { int ret; ret = ad5758_spi_write_mask(st, AD5758_DCDC_CONFIG2, AD5758_DCDC_CONFIG2_ILIMIT_MSK, AD5758_DCDC_CONFIG2_ILIMIT_MODE(ilim)); if (ret < 0) return ret; /* * Poll the BUSY_3WI bit in the DCDC_CONFIG2 register until it is 0. * This allows the 3-wire interface communication to complete. */ return ad5758_wait_for_task_complete(st, AD5758_DCDC_CONFIG2, AD5758_DCDC_CONFIG2_BUSY_3WI_MSK); } static int ad5758_slew_rate_set(struct ad5758_state *st, unsigned int sr_clk_idx, unsigned int sr_step_idx) { unsigned int mode; unsigned long int mask; int ret; mask = AD5758_DAC_CONFIG_SR_EN_MSK | AD5758_DAC_CONFIG_SR_CLOCK_MSK | AD5758_DAC_CONFIG_SR_STEP_MSK; mode = AD5758_DAC_CONFIG_SR_EN_MODE(1) | AD5758_DAC_CONFIG_SR_STEP_MODE(sr_step_idx) | AD5758_DAC_CONFIG_SR_CLOCK_MODE(sr_clk_idx); ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG, mask, mode); if (ret < 0) return ret; /* Wait to allow time for the internal calibrations to complete */ return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS, AD5758_CAL_MEM_UNREFRESHED_MSK); } static int ad5758_slew_rate_config(struct ad5758_state *st) { unsigned int sr_clk_idx, sr_step_idx; int i, res; s64 diff_new, diff_old; u64 sr_step, calc_slew_time; sr_clk_idx = 0; sr_step_idx = 0; diff_old = S64_MAX; /* * The slew time can be determined by using the formula: * Slew Time = (Full Scale Out / (Step Size x Update Clk Freq)) * where Slew time is expressed in microseconds * Given the desired slew time, the following algorithm determines the * best match for the step size and the update clock frequency. */ for (i = 0; i < ARRAY_SIZE(ad5758_sr_clk); i++) { /* * Go through each valid update clock freq and determine a raw * value for the step size by using the formula: * Step Size = Full Scale Out / (Update Clk Freq * Slew Time) */ sr_step = AD5758_FULL_SCALE_MICRO; do_div(sr_step, ad5758_sr_clk[i]); do_div(sr_step, st->slew_time); /* * After a raw value for step size was determined, find the * closest valid match */ res = ad5758_find_closest_match(ad5758_sr_step, ARRAY_SIZE(ad5758_sr_step), sr_step); /* Calculate the slew time */ calc_slew_time = AD5758_FULL_SCALE_MICRO; do_div(calc_slew_time, ad5758_sr_step[res]); do_div(calc_slew_time, ad5758_sr_clk[i]); /* * Determine with how many microseconds the calculated slew time * is different from the desired slew time and store the diff * for the next iteration */ diff_new = abs(st->slew_time - calc_slew_time); if (diff_new < diff_old) { diff_old = diff_new; sr_clk_idx = i; sr_step_idx = res; } } return ad5758_slew_rate_set(st, sr_clk_idx, sr_step_idx); } static int ad5758_set_out_range(struct ad5758_state *st, int range) { int ret; ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG, AD5758_DAC_CONFIG_RANGE_MSK, AD5758_DAC_CONFIG_RANGE_MODE(range)); if (ret < 0) return ret; /* Wait to allow time for the internal calibrations to complete */ return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS, AD5758_CAL_MEM_UNREFRESHED_MSK); } static int ad5758_fault_prot_switch_en(struct ad5758_state *st, bool enable) { int ret; ret = ad5758_spi_write_mask(st, AD5758_DCDC_CONFIG1, AD5758_DCDC_CONFIG1_PROT_SW_EN_MSK, AD5758_DCDC_CONFIG1_PROT_SW_EN_MODE(enable)); if (ret < 0) return ret; /* * Poll the BUSY_3WI bit in the DCDC_CONFIG2 register until it is 0. * This allows the 3-wire interface communication to complete. */ return ad5758_wait_for_task_complete(st, AD5758_DCDC_CONFIG2, AD5758_DCDC_CONFIG2_BUSY_3WI_MSK); } static int ad5758_internal_buffers_en(struct ad5758_state *st, bool enable) { int ret; ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG, AD5758_DAC_CONFIG_INT_EN_MSK, AD5758_DAC_CONFIG_INT_EN_MODE(enable)); if (ret < 0) return ret; /* Wait to allow time for the internal calibrations to complete */ return ad5758_wait_for_task_complete(st, AD5758_DIGITAL_DIAG_RESULTS, AD5758_CAL_MEM_UNREFRESHED_MSK); } static int ad5758_reset(struct ad5758_state *st) { if (st->gpio_reset) { gpiod_set_value(st->gpio_reset, 0); usleep_range(100, 1000); gpiod_set_value(st->gpio_reset, 1); usleep_range(100, 1000); return 0; } else { /* Perform a software reset */ return ad5758_soft_reset(st); } } static int ad5758_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct ad5758_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); if (readval) { ret = ad5758_spi_reg_read(st, reg); if (ret < 0) { mutex_unlock(&st->lock); return ret; } *readval = ret; ret = 0; } else { ret = ad5758_spi_reg_write(st, reg, writeval); } mutex_unlock(&st->lock); return ret; } static int ad5758_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct ad5758_state *st = iio_priv(indio_dev); int max, min, ret; switch (info) { case IIO_CHAN_INFO_RAW: mutex_lock(&st->lock); ret = ad5758_spi_reg_read(st, AD5758_DAC_INPUT); mutex_unlock(&st->lock); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: min = st->out_range.min; max = st->out_range.max; *val = (max - min) / 1000; *val2 = 16; return IIO_VAL_FRACTIONAL_LOG2; case IIO_CHAN_INFO_OFFSET: min = st->out_range.min; max = st->out_range.max; *val = ((min * (1 << 16)) / (max - min)) / 1000; return IIO_VAL_INT; default: return -EINVAL; } } static int ad5758_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long info) { struct ad5758_state *st = iio_priv(indio_dev); int ret; switch (info) { case IIO_CHAN_INFO_RAW: mutex_lock(&st->lock); ret = ad5758_spi_reg_write(st, AD5758_DAC_INPUT, val); mutex_unlock(&st->lock); return ret; default: return -EINVAL; } } static ssize_t ad5758_read_powerdown(struct iio_dev *indio_dev, uintptr_t priv, const struct iio_chan_spec *chan, char *buf) { struct ad5758_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", st->pwr_down); } static ssize_t ad5758_write_powerdown(struct iio_dev *indio_dev, uintptr_t priv, struct iio_chan_spec const *chan, const char *buf, size_t len) { struct ad5758_state *st = iio_priv(indio_dev); bool pwr_down; unsigned int dcdc_config1_mode, dc_dc_mode, dac_config_mode, val; unsigned long int dcdc_config1_msk, dac_config_msk; int ret; ret = kstrtobool(buf, &pwr_down); if (ret) return ret; mutex_lock(&st->lock); if (pwr_down) { dc_dc_mode = AD5758_DCDC_MODE_POWER_OFF; val = 0; } else { dc_dc_mode = st->dc_dc_mode; val = 1; } dcdc_config1_mode = AD5758_DCDC_CONFIG1_DCDC_MODE_MODE(dc_dc_mode) | AD5758_DCDC_CONFIG1_PROT_SW_EN_MODE(val); dcdc_config1_msk = AD5758_DCDC_CONFIG1_DCDC_MODE_MSK | AD5758_DCDC_CONFIG1_PROT_SW_EN_MSK; ret = ad5758_spi_write_mask(st, AD5758_DCDC_CONFIG1, dcdc_config1_msk, dcdc_config1_mode); if (ret < 0) goto err_unlock; dac_config_mode = AD5758_DAC_CONFIG_OUT_EN_MODE(val) | AD5758_DAC_CONFIG_INT_EN_MODE(val); dac_config_msk = AD5758_DAC_CONFIG_OUT_EN_MSK | AD5758_DAC_CONFIG_INT_EN_MSK; ret = ad5758_spi_write_mask(st, AD5758_DAC_CONFIG, dac_config_msk, dac_config_mode); if (ret < 0) goto err_unlock; st->pwr_down = pwr_down; err_unlock: mutex_unlock(&st->lock); return ret ? ret : len; } static const struct iio_info ad5758_info = { .read_raw = ad5758_read_raw, .write_raw = ad5758_write_raw, .debugfs_reg_access = &ad5758_reg_access, }; static const struct iio_chan_spec_ext_info ad5758_ext_info[] = { { .name = "powerdown", .read = ad5758_read_powerdown, .write = ad5758_write_powerdown, .shared = IIO_SHARED_BY_TYPE, }, { } }; #define AD5758_DAC_CHAN(_chan_type) { \ .type = (_chan_type), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .indexed = 1, \ .output = 1, \ .ext_info = ad5758_ext_info, \ } static const struct iio_chan_spec ad5758_voltage_ch[] = { AD5758_DAC_CHAN(IIO_VOLTAGE) }; static const struct iio_chan_spec ad5758_current_ch[] = { AD5758_DAC_CHAN(IIO_CURRENT) }; static bool ad5758_is_valid_mode(enum ad5758_dc_dc_mode mode) { switch (mode) { case AD5758_DCDC_MODE_DPC_CURRENT: case AD5758_DCDC_MODE_DPC_VOLTAGE: case AD5758_DCDC_MODE_PPC_CURRENT: return true; default: return false; } } static int ad5758_crc_disable(struct ad5758_state *st) { unsigned int mask; mask = (AD5758_WR_FLAG_MSK(AD5758_DIGITAL_DIAG_CONFIG) << 24) | 0x5C3A; st->d32[0] = cpu_to_be32(mask); return spi_write(st->spi, &st->d32[0], 4); } static int ad5758_find_out_range(struct ad5758_state *st, const struct ad5758_range *range, unsigned int size, int min, int max) { int i; for (i = 0; i < size; i++) { if ((min == range[i].min) && (max == range[i].max)) { st->out_range.reg = range[i].reg; st->out_range.min = range[i].min; st->out_range.max = range[i].max; return 0; } } return -EINVAL; } static int ad5758_parse_dt(struct ad5758_state *st) { unsigned int tmp, tmparray[2], size; const struct ad5758_range *range; int *index, ret; st->dc_dc_ilim = 0; ret = device_property_read_u32(&st->spi->dev, "adi,dc-dc-ilim-microamp", &tmp); if (ret) { dev_dbg(&st->spi->dev, "Missing \"dc-dc-ilim-microamp\" property\n"); } else { index = bsearch(&tmp, ad5758_dc_dc_ilim, ARRAY_SIZE(ad5758_dc_dc_ilim), sizeof(int), cmpfunc); if (!index) dev_dbg(&st->spi->dev, "dc-dc-ilim out of range\n"); else st->dc_dc_ilim = index - ad5758_dc_dc_ilim; } ret = device_property_read_u32(&st->spi->dev, "adi,dc-dc-mode", &st->dc_dc_mode); if (ret) { dev_err(&st->spi->dev, "Missing \"dc-dc-mode\" property\n"); return ret; } if (!ad5758_is_valid_mode(st->dc_dc_mode)) return -EINVAL; if (st->dc_dc_mode == AD5758_DCDC_MODE_DPC_VOLTAGE) { ret = device_property_read_u32_array(&st->spi->dev, "adi,range-microvolt", tmparray, 2); if (ret) { dev_err(&st->spi->dev, "Missing \"range-microvolt\" property\n"); return ret; } range = ad5758_voltage_range; size = ARRAY_SIZE(ad5758_voltage_range); } else { ret = device_property_read_u32_array(&st->spi->dev, "adi,range-microamp", tmparray, 2); if (ret) { dev_err(&st->spi->dev, "Missing \"range-microamp\" property\n"); return ret; } range = ad5758_current_range; size = ARRAY_SIZE(ad5758_current_range); } ret = ad5758_find_out_range(st, range, size, tmparray[0], tmparray[1]); if (ret) { dev_err(&st->spi->dev, "range invalid\n"); return ret; } ret = device_property_read_u32(&st->spi->dev, "adi,slew-time-us", &tmp); if (ret) { dev_dbg(&st->spi->dev, "Missing \"slew-time-us\" property\n"); st->slew_time = 0; } else { st->slew_time = tmp; } return 0; } static int ad5758_init(struct ad5758_state *st) { int regval, ret; st->gpio_reset = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(st->gpio_reset)) return PTR_ERR(st->gpio_reset); /* Disable CRC checks */ ret = ad5758_crc_disable(st); if (ret < 0) return ret; /* Perform a reset */ ret = ad5758_reset(st); if (ret < 0) return ret; /* Disable CRC checks */ ret = ad5758_crc_disable(st); if (ret < 0) return ret; /* Perform a calibration memory refresh */ ret = ad5758_calib_mem_refresh(st); if (ret < 0) return ret; regval = ad5758_spi_reg_read(st, AD5758_DIGITAL_DIAG_RESULTS); if (regval < 0) return regval; /* Clear all the error flags */ ret = ad5758_spi_reg_write(st, AD5758_DIGITAL_DIAG_RESULTS, regval); if (ret < 0) return ret; /* Set the dc-to-dc current limit */ ret = ad5758_set_dc_dc_ilim(st, st->dc_dc_ilim); if (ret < 0) return ret; /* Configure the dc-to-dc controller mode */ ret = ad5758_set_dc_dc_conv_mode(st, st->dc_dc_mode); if (ret < 0) return ret; /* Configure the output range */ ret = ad5758_set_out_range(st, st->out_range.reg); if (ret < 0) return ret; /* Enable Slew Rate Control, set the slew rate clock and step */ if (st->slew_time) { ret = ad5758_slew_rate_config(st); if (ret < 0) return ret; } /* Enable the VIOUT fault protection switch (FPS is closed) */ ret = ad5758_fault_prot_switch_en(st, 1); if (ret < 0) return ret; /* Power up the DAC and internal (INT) amplifiers */ ret = ad5758_internal_buffers_en(st, 1); if (ret < 0) return ret; /* Enable VIOUT */ return ad5758_spi_write_mask(st, AD5758_DAC_CONFIG, AD5758_DAC_CONFIG_OUT_EN_MSK, AD5758_DAC_CONFIG_OUT_EN_MODE(1)); } static int ad5758_probe(struct spi_device *spi) { struct ad5758_state *st; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); spi_set_drvdata(spi, indio_dev); st->spi = spi; mutex_init(&st->lock); indio_dev->dev.parent = &spi->dev; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->info = &ad5758_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->num_channels = 1; ret = ad5758_parse_dt(st); if (ret < 0) return ret; if (st->dc_dc_mode == AD5758_DCDC_MODE_DPC_VOLTAGE) indio_dev->channels = ad5758_voltage_ch; else indio_dev->channels = ad5758_current_ch; ret = ad5758_init(st); if (ret < 0) { dev_err(&spi->dev, "AD5758 init failed\n"); return ret; } return devm_iio_device_register(&st->spi->dev, indio_dev); } static const struct spi_device_id ad5758_id[] = { { "ad5758", 0 }, {} }; MODULE_DEVICE_TABLE(spi, ad5758_id); static struct spi_driver ad5758_driver = { .driver = { .name = KBUILD_MODNAME, }, .probe = ad5758_probe, .id_table = ad5758_id, }; module_spi_driver(ad5758_driver); MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>"); MODULE_DESCRIPTION("Analog Devices AD5758 DAC"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1