Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Parav Pandit | 1005 | 25.99% | 16 | 21.05% |
Mark Bloch | 912 | 23.58% | 2 | 2.63% |
Sean Hefty | 845 | 21.85% | 9 | 11.84% |
Matan Barak | 421 | 10.89% | 6 | 7.89% |
Jason Gunthorpe | 160 | 4.14% | 4 | 5.26% |
Aleksey Senin | 150 | 3.88% | 1 | 1.32% |
Roland Dreier | 120 | 3.10% | 4 | 5.26% |
David S. Miller | 97 | 2.51% | 6 | 7.89% |
Tom Tucker | 41 | 1.06% | 2 | 2.63% |
Moni Shoua | 40 | 1.03% | 2 | 2.63% |
Leon Romanovsky | 12 | 0.31% | 5 | 6.58% |
Paolo Abeni | 12 | 0.31% | 2 | 2.63% |
Guy Shapiro | 12 | 0.31% | 1 | 1.32% |
Yue haibing | 5 | 0.13% | 1 | 1.32% |
Or Gerlitz | 5 | 0.13% | 1 | 1.32% |
Yuval Shaia | 5 | 0.13% | 1 | 1.32% |
Eric Dumazet | 4 | 0.10% | 2 | 2.63% |
Tejun Heo | 4 | 0.10% | 2 | 2.63% |
Alexey Dobriyan | 3 | 0.08% | 1 | 1.32% |
Paul Gortmaker | 3 | 0.08% | 1 | 1.32% |
Ira Weiny | 2 | 0.05% | 1 | 1.32% |
Al Viro | 2 | 0.05% | 1 | 1.32% |
Johannes Berg | 2 | 0.05% | 1 | 1.32% |
Or Kehati | 2 | 0.05% | 1 | 1.32% |
David Howells | 1 | 0.03% | 1 | 1.32% |
Bhaktipriya Shridhar | 1 | 0.03% | 1 | 1.32% |
Yoann Padioleau | 1 | 0.03% | 1 | 1.32% |
Total | 3867 | 76 |
/* * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/mutex.h> #include <linux/inetdevice.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/module.h> #include <net/arp.h> #include <net/neighbour.h> #include <net/route.h> #include <net/netevent.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include <rdma/ib_addr.h> #include <rdma/ib_sa.h> #include <rdma/ib.h> #include <rdma/rdma_netlink.h> #include <net/netlink.h> #include "core_priv.h" struct addr_req { struct list_head list; struct sockaddr_storage src_addr; struct sockaddr_storage dst_addr; struct rdma_dev_addr *addr; void *context; void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context); unsigned long timeout; struct delayed_work work; bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */ int status; u32 seq; }; static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); static DEFINE_SPINLOCK(lock); static LIST_HEAD(req_list); static struct workqueue_struct *addr_wq; static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, .len = sizeof(struct rdma_nla_ls_gid)}, }; static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) { struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; int ret; if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) return false; ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), nlmsg_len(nlh), ib_nl_addr_policy, NULL); if (ret) return false; return true; } static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) { const struct nlattr *head, *curr; union ib_gid gid; struct addr_req *req; int len, rem; int found = 0; head = (const struct nlattr *)nlmsg_data(nlh); len = nlmsg_len(nlh); nla_for_each_attr(curr, head, len, rem) { if (curr->nla_type == LS_NLA_TYPE_DGID) memcpy(&gid, nla_data(curr), nla_len(curr)); } spin_lock_bh(&lock); list_for_each_entry(req, &req_list, list) { if (nlh->nlmsg_seq != req->seq) continue; /* We set the DGID part, the rest was set earlier */ rdma_addr_set_dgid(req->addr, &gid); req->status = 0; found = 1; break; } spin_unlock_bh(&lock); if (!found) pr_info("Couldn't find request waiting for DGID: %pI6\n", &gid); } int ib_nl_handle_ip_res_resp(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { if ((nlh->nlmsg_flags & NLM_F_REQUEST) || !(NETLINK_CB(skb).sk)) return -EPERM; if (ib_nl_is_good_ip_resp(nlh)) ib_nl_process_good_ip_rsep(nlh); return skb->len; } static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, const void *daddr, u32 seq, u16 family) { struct sk_buff *skb = NULL; struct nlmsghdr *nlh; struct rdma_ls_ip_resolve_header *header; void *data; size_t size; int attrtype; int len; if (family == AF_INET) { size = sizeof(struct in_addr); attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; } else { size = sizeof(struct in6_addr); attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; } len = nla_total_size(sizeof(size)); len += NLMSG_ALIGN(sizeof(*header)); skb = nlmsg_new(len, GFP_KERNEL); if (!skb) return -ENOMEM; data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); if (!data) { nlmsg_free(skb); return -ENODATA; } /* Construct the family header first */ header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); header->ifindex = dev_addr->bound_dev_if; nla_put(skb, attrtype, size, daddr); /* Repair the nlmsg header length */ nlmsg_end(skb, nlh); rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL); /* Make the request retry, so when we get the response from userspace * we will have something. */ return -ENODATA; } int rdma_addr_size(const struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return sizeof(struct sockaddr_in); case AF_INET6: return sizeof(struct sockaddr_in6); case AF_IB: return sizeof(struct sockaddr_ib); default: return 0; } } EXPORT_SYMBOL(rdma_addr_size); int rdma_addr_size_in6(struct sockaddr_in6 *addr) { int ret = rdma_addr_size((struct sockaddr *) addr); return ret <= sizeof(*addr) ? ret : 0; } EXPORT_SYMBOL(rdma_addr_size_in6); int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr) { int ret = rdma_addr_size((struct sockaddr *) addr); return ret <= sizeof(*addr) ? ret : 0; } EXPORT_SYMBOL(rdma_addr_size_kss); /** * rdma_copy_src_l2_addr - Copy netdevice source addresses * @dev_addr: Destination address pointer where to copy the addresses * @dev: Netdevice whose source addresses to copy * * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice. * This includes unicast address, broadcast address, device type and * interface index. */ void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr, const struct net_device *dev) { dev_addr->dev_type = dev->type; memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); dev_addr->bound_dev_if = dev->ifindex; } EXPORT_SYMBOL(rdma_copy_src_l2_addr); static struct net_device * rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in) { struct net_device *dev = NULL; int ret = -EADDRNOTAVAIL; switch (src_in->sa_family) { case AF_INET: dev = __ip_dev_find(net, ((const struct sockaddr_in *)src_in)->sin_addr.s_addr, false); if (dev) ret = 0; break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: for_each_netdev_rcu(net, dev) { if (ipv6_chk_addr(net, &((const struct sockaddr_in6 *)src_in)->sin6_addr, dev, 1)) { ret = 0; break; } } break; #endif } return ret ? ERR_PTR(ret) : dev; } int rdma_translate_ip(const struct sockaddr *addr, struct rdma_dev_addr *dev_addr) { struct net_device *dev; if (dev_addr->bound_dev_if) { dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (!dev) return -ENODEV; rdma_copy_src_l2_addr(dev_addr, dev); dev_put(dev); return 0; } rcu_read_lock(); dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr); if (!IS_ERR(dev)) rdma_copy_src_l2_addr(dev_addr, dev); rcu_read_unlock(); return PTR_ERR_OR_ZERO(dev); } EXPORT_SYMBOL(rdma_translate_ip); static void set_timeout(struct addr_req *req, unsigned long time) { unsigned long delay; delay = time - jiffies; if ((long)delay < 0) delay = 0; mod_delayed_work(addr_wq, &req->work, delay); } static void queue_req(struct addr_req *req) { spin_lock_bh(&lock); list_add_tail(&req->list, &req_list); set_timeout(req, req->timeout); spin_unlock_bh(&lock); } static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr, const void *daddr, u32 seq, u16 family) { if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) return -EADDRNOTAVAIL; return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); } static int dst_fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, const void *daddr) { struct neighbour *n; int ret = 0; n = dst_neigh_lookup(dst, daddr); if (!n) return -ENODATA; if (!(n->nud_state & NUD_VALID)) { neigh_event_send(n, NULL); ret = -ENODATA; } else { memcpy(dev_addr->dst_dev_addr, n->ha, MAX_ADDR_LEN); } neigh_release(n); return ret; } static bool has_gateway(const struct dst_entry *dst, sa_family_t family) { struct rtable *rt; struct rt6_info *rt6; if (family == AF_INET) { rt = container_of(dst, struct rtable, dst); return rt->rt_uses_gateway; } rt6 = container_of(dst, struct rt6_info, dst); return rt6->rt6i_flags & RTF_GATEWAY; } static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, const struct sockaddr *dst_in, u32 seq) { const struct sockaddr_in *dst_in4 = (const struct sockaddr_in *)dst_in; const struct sockaddr_in6 *dst_in6 = (const struct sockaddr_in6 *)dst_in; const void *daddr = (dst_in->sa_family == AF_INET) ? (const void *)&dst_in4->sin_addr.s_addr : (const void *)&dst_in6->sin6_addr; sa_family_t family = dst_in->sa_family; /* If we have a gateway in IB mode then it must be an IB network */ if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB) return ib_nl_fetch_ha(dev_addr, daddr, seq, family); else return dst_fetch_ha(dst, dev_addr, daddr); } static int addr4_resolve(struct sockaddr *src_sock, const struct sockaddr *dst_sock, struct rdma_dev_addr *addr, struct rtable **prt) { struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock; const struct sockaddr_in *dst_in = (const struct sockaddr_in *)dst_sock; __be32 src_ip = src_in->sin_addr.s_addr; __be32 dst_ip = dst_in->sin_addr.s_addr; struct rtable *rt; struct flowi4 fl4; int ret; memset(&fl4, 0, sizeof(fl4)); fl4.daddr = dst_ip; fl4.saddr = src_ip; fl4.flowi4_oif = addr->bound_dev_if; rt = ip_route_output_key(addr->net, &fl4); ret = PTR_ERR_OR_ZERO(rt); if (ret) return ret; src_in->sin_addr.s_addr = fl4.saddr; addr->hoplimit = ip4_dst_hoplimit(&rt->dst); *prt = rt; return 0; } #if IS_ENABLED(CONFIG_IPV6) static int addr6_resolve(struct sockaddr *src_sock, const struct sockaddr *dst_sock, struct rdma_dev_addr *addr, struct dst_entry **pdst) { struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock; const struct sockaddr_in6 *dst_in = (const struct sockaddr_in6 *)dst_sock; struct flowi6 fl6; struct dst_entry *dst; int ret; memset(&fl6, 0, sizeof fl6); fl6.daddr = dst_in->sin6_addr; fl6.saddr = src_in->sin6_addr; fl6.flowi6_oif = addr->bound_dev_if; ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6); if (ret < 0) return ret; if (ipv6_addr_any(&src_in->sin6_addr)) src_in->sin6_addr = fl6.saddr; addr->hoplimit = ip6_dst_hoplimit(dst); *pdst = dst; return 0; } #else static int addr6_resolve(struct sockaddr *src_sock, const struct sockaddr *dst_sock, struct rdma_dev_addr *addr, struct dst_entry **pdst) { return -EADDRNOTAVAIL; } #endif static int addr_resolve_neigh(const struct dst_entry *dst, const struct sockaddr *dst_in, struct rdma_dev_addr *addr, unsigned int ndev_flags, u32 seq) { int ret = 0; if (ndev_flags & IFF_LOOPBACK) { memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN); } else { if (!(ndev_flags & IFF_NOARP)) { /* If the device doesn't do ARP internally */ ret = fetch_ha(dst, addr, dst_in, seq); } } return ret; } static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr, const struct sockaddr *dst_in, const struct dst_entry *dst, const struct net_device *ndev) { int ret = 0; if (dst->dev->flags & IFF_LOOPBACK) ret = rdma_translate_ip(dst_in, dev_addr); else rdma_copy_src_l2_addr(dev_addr, dst->dev); /* * If there's a gateway and type of device not ARPHRD_INFINIBAND, * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the * network type accordingly. */ if (has_gateway(dst, dst_in->sa_family) && ndev->type != ARPHRD_INFINIBAND) dev_addr->network = dst_in->sa_family == AF_INET ? RDMA_NETWORK_IPV4 : RDMA_NETWORK_IPV6; else dev_addr->network = RDMA_NETWORK_IB; return ret; } static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr, unsigned int *ndev_flags, const struct sockaddr *dst_in, const struct dst_entry *dst) { struct net_device *ndev = READ_ONCE(dst->dev); *ndev_flags = ndev->flags; /* A physical device must be the RDMA device to use */ if (ndev->flags & IFF_LOOPBACK) { /* * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or * loopback IP address. So if route is resolved to loopback * interface, translate that to a real ndev based on non * loopback IP address. */ ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in); if (IS_ERR(ndev)) return -ENODEV; } return copy_src_l2_addr(dev_addr, dst_in, dst, ndev); } static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr) { struct net_device *ndev; ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr); if (IS_ERR(ndev)) return PTR_ERR(ndev); /* * Since we are holding the rcu, reading net and ifindex * are safe without any additional reference; because * change_net_namespace() in net/core/dev.c does rcu sync * after it changes the state to IFF_DOWN and before * updating netdev fields {net, ifindex}. */ addr->net = dev_net(ndev); addr->bound_dev_if = ndev->ifindex; return 0; } static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr) { addr->net = &init_net; addr->bound_dev_if = 0; } static int addr_resolve(struct sockaddr *src_in, const struct sockaddr *dst_in, struct rdma_dev_addr *addr, bool resolve_neigh, bool resolve_by_gid_attr, u32 seq) { struct dst_entry *dst = NULL; unsigned int ndev_flags = 0; struct rtable *rt = NULL; int ret; if (!addr->net) { pr_warn_ratelimited("%s: missing namespace\n", __func__); return -EINVAL; } rcu_read_lock(); if (resolve_by_gid_attr) { if (!addr->sgid_attr) { rcu_read_unlock(); pr_warn_ratelimited("%s: missing gid_attr\n", __func__); return -EINVAL; } /* * If the request is for a specific gid attribute of the * rdma_dev_addr, derive net from the netdevice of the * GID attribute. */ ret = set_addr_netns_by_gid_rcu(addr); if (ret) { rcu_read_unlock(); return ret; } } if (src_in->sa_family == AF_INET) { ret = addr4_resolve(src_in, dst_in, addr, &rt); dst = &rt->dst; } else { ret = addr6_resolve(src_in, dst_in, addr, &dst); } if (ret) { rcu_read_unlock(); goto done; } ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst); rcu_read_unlock(); /* * Resolve neighbor destination address if requested and * only if src addr translation didn't fail. */ if (!ret && resolve_neigh) ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq); if (src_in->sa_family == AF_INET) ip_rt_put(rt); else dst_release(dst); done: /* * Clear the addr net to go back to its original state, only if it was * derived from GID attribute in this context. */ if (resolve_by_gid_attr) rdma_addr_set_net_defaults(addr); return ret; } static void process_one_req(struct work_struct *_work) { struct addr_req *req; struct sockaddr *src_in, *dst_in; req = container_of(_work, struct addr_req, work.work); if (req->status == -ENODATA) { src_in = (struct sockaddr *)&req->src_addr; dst_in = (struct sockaddr *)&req->dst_addr; req->status = addr_resolve(src_in, dst_in, req->addr, true, req->resolve_by_gid_attr, req->seq); if (req->status && time_after_eq(jiffies, req->timeout)) { req->status = -ETIMEDOUT; } else if (req->status == -ENODATA) { /* requeue the work for retrying again */ spin_lock_bh(&lock); if (!list_empty(&req->list)) set_timeout(req, req->timeout); spin_unlock_bh(&lock); return; } } req->callback(req->status, (struct sockaddr *)&req->src_addr, req->addr, req->context); req->callback = NULL; spin_lock_bh(&lock); if (!list_empty(&req->list)) { /* * Although the work will normally have been canceled by the * workqueue, it can still be requeued as long as it is on the * req_list. */ cancel_delayed_work(&req->work); list_del_init(&req->list); kfree(req); } spin_unlock_bh(&lock); } int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr, struct rdma_dev_addr *addr, unsigned long timeout_ms, void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context), bool resolve_by_gid_attr, void *context) { struct sockaddr *src_in, *dst_in; struct addr_req *req; int ret = 0; req = kzalloc(sizeof *req, GFP_KERNEL); if (!req) return -ENOMEM; src_in = (struct sockaddr *) &req->src_addr; dst_in = (struct sockaddr *) &req->dst_addr; if (src_addr) { if (src_addr->sa_family != dst_addr->sa_family) { ret = -EINVAL; goto err; } memcpy(src_in, src_addr, rdma_addr_size(src_addr)); } else { src_in->sa_family = dst_addr->sa_family; } memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); req->addr = addr; req->callback = callback; req->context = context; req->resolve_by_gid_attr = resolve_by_gid_attr; INIT_DELAYED_WORK(&req->work, process_one_req); req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); req->status = addr_resolve(src_in, dst_in, addr, true, req->resolve_by_gid_attr, req->seq); switch (req->status) { case 0: req->timeout = jiffies; queue_req(req); break; case -ENODATA: req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; queue_req(req); break; default: ret = req->status; goto err; } return ret; err: kfree(req); return ret; } EXPORT_SYMBOL(rdma_resolve_ip); int roce_resolve_route_from_path(struct sa_path_rec *rec, const struct ib_gid_attr *attr) { union { struct sockaddr _sockaddr; struct sockaddr_in _sockaddr_in; struct sockaddr_in6 _sockaddr_in6; } sgid, dgid; struct rdma_dev_addr dev_addr = {}; int ret; if (rec->roce.route_resolved) return 0; rdma_gid2ip(&sgid._sockaddr, &rec->sgid); rdma_gid2ip(&dgid._sockaddr, &rec->dgid); if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family) return -EINVAL; if (!attr || !attr->ndev) return -EINVAL; dev_addr.net = &init_net; dev_addr.sgid_attr = attr; ret = addr_resolve(&sgid._sockaddr, &dgid._sockaddr, &dev_addr, false, true, 0); if (ret) return ret; if ((dev_addr.network == RDMA_NETWORK_IPV4 || dev_addr.network == RDMA_NETWORK_IPV6) && rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2) return -EINVAL; rec->roce.route_resolved = true; return 0; } /** * rdma_addr_cancel - Cancel resolve ip request * @addr: Pointer to address structure given previously * during rdma_resolve_ip(). * rdma_addr_cancel() is synchronous function which cancels any pending * request if there is any. */ void rdma_addr_cancel(struct rdma_dev_addr *addr) { struct addr_req *req, *temp_req; struct addr_req *found = NULL; spin_lock_bh(&lock); list_for_each_entry_safe(req, temp_req, &req_list, list) { if (req->addr == addr) { /* * Removing from the list means we take ownership of * the req */ list_del_init(&req->list); found = req; break; } } spin_unlock_bh(&lock); if (!found) return; /* * sync canceling the work after removing it from the req_list * guarentees no work is running and none will be started. */ cancel_delayed_work_sync(&found->work); kfree(found); } EXPORT_SYMBOL(rdma_addr_cancel); struct resolve_cb_context { struct completion comp; int status; }; static void resolve_cb(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context) { ((struct resolve_cb_context *)context)->status = status; complete(&((struct resolve_cb_context *)context)->comp); } int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, const union ib_gid *dgid, u8 *dmac, const struct ib_gid_attr *sgid_attr, int *hoplimit) { struct rdma_dev_addr dev_addr; struct resolve_cb_context ctx; union { struct sockaddr _sockaddr; struct sockaddr_in _sockaddr_in; struct sockaddr_in6 _sockaddr_in6; } sgid_addr, dgid_addr; int ret; rdma_gid2ip(&sgid_addr._sockaddr, sgid); rdma_gid2ip(&dgid_addr._sockaddr, dgid); memset(&dev_addr, 0, sizeof(dev_addr)); dev_addr.net = &init_net; dev_addr.sgid_attr = sgid_attr; init_completion(&ctx.comp); ret = rdma_resolve_ip(&sgid_addr._sockaddr, &dgid_addr._sockaddr, &dev_addr, 1000, resolve_cb, true, &ctx); if (ret) return ret; wait_for_completion(&ctx.comp); ret = ctx.status; if (ret) return ret; memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); *hoplimit = dev_addr.hoplimit; return 0; } static int netevent_callback(struct notifier_block *self, unsigned long event, void *ctx) { struct addr_req *req; if (event == NETEVENT_NEIGH_UPDATE) { struct neighbour *neigh = ctx; if (neigh->nud_state & NUD_VALID) { spin_lock_bh(&lock); list_for_each_entry(req, &req_list, list) set_timeout(req, jiffies); spin_unlock_bh(&lock); } } return 0; } static struct notifier_block nb = { .notifier_call = netevent_callback }; int addr_init(void) { addr_wq = alloc_ordered_workqueue("ib_addr", 0); if (!addr_wq) return -ENOMEM; register_netevent_notifier(&nb); return 0; } void addr_cleanup(void) { unregister_netevent_notifier(&nb); destroy_workqueue(addr_wq); WARN_ON(!list_empty(&req_list)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1