Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ram Amrani | 3872 | 77.16% | 13 | 35.14% |
Michal Kalderon | 459 | 9.15% | 7 | 18.92% |
Yuval Bason | 256 | 5.10% | 2 | 5.41% |
Kamal Heib | 243 | 4.84% | 1 | 2.70% |
Parav Pandit | 134 | 2.67% | 1 | 2.70% |
Felix Kuhling | 14 | 0.28% | 1 | 2.70% |
Yuval Mintz | 12 | 0.24% | 2 | 5.41% |
Bart Van Assche | 9 | 0.18% | 2 | 5.41% |
Matan Barak | 8 | 0.16% | 1 | 2.70% |
Kees Cook | 3 | 0.06% | 1 | 2.70% |
Jason Gunthorpe | 2 | 0.04% | 1 | 2.70% |
Colin Ian King | 2 | 0.04% | 1 | 2.70% |
Leon Romanovsky | 1 | 0.02% | 1 | 2.70% |
Joerg Roedel | 1 | 0.02% | 1 | 2.70% |
Kirill V Tkhai | 1 | 0.02% | 1 | 2.70% |
Tomer Tayar | 1 | 0.02% | 1 | 2.70% |
Total | 5018 | 37 |
/* QLogic qedr NIC Driver * Copyright (c) 2015-2016 QLogic Corporation * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and /or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/module.h> #include <rdma/ib_verbs.h> #include <rdma/ib_addr.h> #include <rdma/ib_user_verbs.h> #include <rdma/iw_cm.h> #include <rdma/ib_mad.h> #include <linux/netdevice.h> #include <linux/iommu.h> #include <linux/pci.h> #include <net/addrconf.h> #include <linux/idr.h> #include <linux/qed/qed_chain.h> #include <linux/qed/qed_if.h> #include "qedr.h" #include "verbs.h" #include <rdma/qedr-abi.h> #include "qedr_iw_cm.h" MODULE_DESCRIPTION("QLogic 40G/100G ROCE Driver"); MODULE_AUTHOR("QLogic Corporation"); MODULE_LICENSE("Dual BSD/GPL"); #define QEDR_WQ_MULTIPLIER_DFT (3) static void qedr_ib_dispatch_event(struct qedr_dev *dev, u8 port_num, enum ib_event_type type) { struct ib_event ibev; ibev.device = &dev->ibdev; ibev.element.port_num = port_num; ibev.event = type; ib_dispatch_event(&ibev); } static enum rdma_link_layer qedr_link_layer(struct ib_device *device, u8 port_num) { return IB_LINK_LAYER_ETHERNET; } static void qedr_get_dev_fw_str(struct ib_device *ibdev, char *str) { struct qedr_dev *qedr = get_qedr_dev(ibdev); u32 fw_ver = (u32)qedr->attr.fw_ver; snprintf(str, IB_FW_VERSION_NAME_MAX, "%d. %d. %d. %d", (fw_ver >> 24) & 0xFF, (fw_ver >> 16) & 0xFF, (fw_ver >> 8) & 0xFF, fw_ver & 0xFF); } static struct net_device *qedr_get_netdev(struct ib_device *dev, u8 port_num) { struct qedr_dev *qdev; qdev = get_qedr_dev(dev); dev_hold(qdev->ndev); /* The HW vendor's device driver must guarantee * that this function returns NULL before the net device has finished * NETDEV_UNREGISTER state. */ return qdev->ndev; } static int qedr_roce_port_immutable(struct ib_device *ibdev, u8 port_num, struct ib_port_immutable *immutable) { struct ib_port_attr attr; int err; err = qedr_query_port(ibdev, port_num, &attr); if (err) return err; immutable->pkey_tbl_len = attr.pkey_tbl_len; immutable->gid_tbl_len = attr.gid_tbl_len; immutable->core_cap_flags = RDMA_CORE_PORT_IBA_ROCE | RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP; immutable->max_mad_size = IB_MGMT_MAD_SIZE; return 0; } static int qedr_iw_port_immutable(struct ib_device *ibdev, u8 port_num, struct ib_port_immutable *immutable) { struct ib_port_attr attr; int err; err = qedr_query_port(ibdev, port_num, &attr); if (err) return err; immutable->pkey_tbl_len = 1; immutable->gid_tbl_len = 1; immutable->core_cap_flags = RDMA_CORE_PORT_IWARP; immutable->max_mad_size = 0; return 0; } /* QEDR sysfs interface */ static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr, char *buf) { struct qedr_dev *dev = dev_get_drvdata(device); return scnprintf(buf, PAGE_SIZE, "0x%x\n", dev->pdev->vendor); } static DEVICE_ATTR_RO(hw_rev); static ssize_t hca_type_show(struct device *device, struct device_attribute *attr, char *buf) { return scnprintf(buf, PAGE_SIZE, "%s\n", "HCA_TYPE_TO_SET"); } static DEVICE_ATTR_RO(hca_type); static struct attribute *qedr_attributes[] = { &dev_attr_hw_rev.attr, &dev_attr_hca_type.attr, NULL }; static const struct attribute_group qedr_attr_group = { .attrs = qedr_attributes, }; static const struct ib_device_ops qedr_iw_dev_ops = { .get_port_immutable = qedr_iw_port_immutable, .query_gid = qedr_iw_query_gid, }; static int qedr_iw_register_device(struct qedr_dev *dev) { dev->ibdev.node_type = RDMA_NODE_RNIC; ib_set_device_ops(&dev->ibdev, &qedr_iw_dev_ops); dev->ibdev.iwcm = kzalloc(sizeof(*dev->ibdev.iwcm), GFP_KERNEL); if (!dev->ibdev.iwcm) return -ENOMEM; dev->ibdev.iwcm->connect = qedr_iw_connect; dev->ibdev.iwcm->accept = qedr_iw_accept; dev->ibdev.iwcm->reject = qedr_iw_reject; dev->ibdev.iwcm->create_listen = qedr_iw_create_listen; dev->ibdev.iwcm->destroy_listen = qedr_iw_destroy_listen; dev->ibdev.iwcm->add_ref = qedr_iw_qp_add_ref; dev->ibdev.iwcm->rem_ref = qedr_iw_qp_rem_ref; dev->ibdev.iwcm->get_qp = qedr_iw_get_qp; memcpy(dev->ibdev.iwcm->ifname, dev->ndev->name, sizeof(dev->ibdev.iwcm->ifname)); return 0; } static const struct ib_device_ops qedr_roce_dev_ops = { .get_port_immutable = qedr_roce_port_immutable, }; static void qedr_roce_register_device(struct qedr_dev *dev) { dev->ibdev.node_type = RDMA_NODE_IB_CA; ib_set_device_ops(&dev->ibdev, &qedr_roce_dev_ops); } static const struct ib_device_ops qedr_dev_ops = { .alloc_mr = qedr_alloc_mr, .alloc_pd = qedr_alloc_pd, .alloc_ucontext = qedr_alloc_ucontext, .create_ah = qedr_create_ah, .create_cq = qedr_create_cq, .create_qp = qedr_create_qp, .create_srq = qedr_create_srq, .dealloc_pd = qedr_dealloc_pd, .dealloc_ucontext = qedr_dealloc_ucontext, .dereg_mr = qedr_dereg_mr, .destroy_ah = qedr_destroy_ah, .destroy_cq = qedr_destroy_cq, .destroy_qp = qedr_destroy_qp, .destroy_srq = qedr_destroy_srq, .get_dev_fw_str = qedr_get_dev_fw_str, .get_dma_mr = qedr_get_dma_mr, .get_link_layer = qedr_link_layer, .get_netdev = qedr_get_netdev, .map_mr_sg = qedr_map_mr_sg, .mmap = qedr_mmap, .modify_port = qedr_modify_port, .modify_qp = qedr_modify_qp, .modify_srq = qedr_modify_srq, .poll_cq = qedr_poll_cq, .post_recv = qedr_post_recv, .post_send = qedr_post_send, .post_srq_recv = qedr_post_srq_recv, .process_mad = qedr_process_mad, .query_device = qedr_query_device, .query_pkey = qedr_query_pkey, .query_port = qedr_query_port, .query_qp = qedr_query_qp, .query_srq = qedr_query_srq, .reg_user_mr = qedr_reg_user_mr, .req_notify_cq = qedr_arm_cq, .resize_cq = qedr_resize_cq, }; static int qedr_register_device(struct qedr_dev *dev) { int rc; dev->ibdev.node_guid = dev->attr.node_guid; memcpy(dev->ibdev.node_desc, QEDR_NODE_DESC, sizeof(QEDR_NODE_DESC)); dev->ibdev.owner = THIS_MODULE; dev->ibdev.uverbs_abi_ver = QEDR_ABI_VERSION; dev->ibdev.uverbs_cmd_mask = QEDR_UVERBS(GET_CONTEXT) | QEDR_UVERBS(QUERY_DEVICE) | QEDR_UVERBS(QUERY_PORT) | QEDR_UVERBS(ALLOC_PD) | QEDR_UVERBS(DEALLOC_PD) | QEDR_UVERBS(CREATE_COMP_CHANNEL) | QEDR_UVERBS(CREATE_CQ) | QEDR_UVERBS(RESIZE_CQ) | QEDR_UVERBS(DESTROY_CQ) | QEDR_UVERBS(REQ_NOTIFY_CQ) | QEDR_UVERBS(CREATE_QP) | QEDR_UVERBS(MODIFY_QP) | QEDR_UVERBS(QUERY_QP) | QEDR_UVERBS(DESTROY_QP) | QEDR_UVERBS(CREATE_SRQ) | QEDR_UVERBS(DESTROY_SRQ) | QEDR_UVERBS(QUERY_SRQ) | QEDR_UVERBS(MODIFY_SRQ) | QEDR_UVERBS(POST_SRQ_RECV) | QEDR_UVERBS(REG_MR) | QEDR_UVERBS(DEREG_MR) | QEDR_UVERBS(POLL_CQ) | QEDR_UVERBS(POST_SEND) | QEDR_UVERBS(POST_RECV); if (IS_IWARP(dev)) { rc = qedr_iw_register_device(dev); if (rc) return rc; } else { qedr_roce_register_device(dev); } dev->ibdev.phys_port_cnt = 1; dev->ibdev.num_comp_vectors = dev->num_cnq; dev->ibdev.dev.parent = &dev->pdev->dev; rdma_set_device_sysfs_group(&dev->ibdev, &qedr_attr_group); ib_set_device_ops(&dev->ibdev, &qedr_dev_ops); dev->ibdev.driver_id = RDMA_DRIVER_QEDR; return ib_register_device(&dev->ibdev, "qedr%d", NULL); } /* This function allocates fast-path status block memory */ static int qedr_alloc_mem_sb(struct qedr_dev *dev, struct qed_sb_info *sb_info, u16 sb_id) { struct status_block_e4 *sb_virt; dma_addr_t sb_phys; int rc; sb_virt = dma_alloc_coherent(&dev->pdev->dev, sizeof(*sb_virt), &sb_phys, GFP_KERNEL); if (!sb_virt) return -ENOMEM; rc = dev->ops->common->sb_init(dev->cdev, sb_info, sb_virt, sb_phys, sb_id, QED_SB_TYPE_CNQ); if (rc) { pr_err("Status block initialization failed\n"); dma_free_coherent(&dev->pdev->dev, sizeof(*sb_virt), sb_virt, sb_phys); return rc; } return 0; } static void qedr_free_mem_sb(struct qedr_dev *dev, struct qed_sb_info *sb_info, int sb_id) { if (sb_info->sb_virt) { dev->ops->common->sb_release(dev->cdev, sb_info, sb_id); dma_free_coherent(&dev->pdev->dev, sizeof(*sb_info->sb_virt), (void *)sb_info->sb_virt, sb_info->sb_phys); } } static void qedr_free_resources(struct qedr_dev *dev) { int i; if (IS_IWARP(dev)) destroy_workqueue(dev->iwarp_wq); for (i = 0; i < dev->num_cnq; i++) { qedr_free_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i); dev->ops->common->chain_free(dev->cdev, &dev->cnq_array[i].pbl); } kfree(dev->cnq_array); kfree(dev->sb_array); kfree(dev->sgid_tbl); } static int qedr_alloc_resources(struct qedr_dev *dev) { struct qedr_cnq *cnq; __le16 *cons_pi; u16 n_entries; int i, rc; dev->sgid_tbl = kcalloc(QEDR_MAX_SGID, sizeof(union ib_gid), GFP_KERNEL); if (!dev->sgid_tbl) return -ENOMEM; spin_lock_init(&dev->sgid_lock); if (IS_IWARP(dev)) { spin_lock_init(&dev->qpidr.idr_lock); idr_init(&dev->qpidr.idr); dev->iwarp_wq = create_singlethread_workqueue("qedr_iwarpq"); } /* Allocate Status blocks for CNQ */ dev->sb_array = kcalloc(dev->num_cnq, sizeof(*dev->sb_array), GFP_KERNEL); if (!dev->sb_array) { rc = -ENOMEM; goto err1; } dev->cnq_array = kcalloc(dev->num_cnq, sizeof(*dev->cnq_array), GFP_KERNEL); if (!dev->cnq_array) { rc = -ENOMEM; goto err2; } dev->sb_start = dev->ops->rdma_get_start_sb(dev->cdev); /* Allocate CNQ PBLs */ n_entries = min_t(u32, QED_RDMA_MAX_CNQ_SIZE, QEDR_ROCE_MAX_CNQ_SIZE); for (i = 0; i < dev->num_cnq; i++) { cnq = &dev->cnq_array[i]; rc = qedr_alloc_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i); if (rc) goto err3; rc = dev->ops->common->chain_alloc(dev->cdev, QED_CHAIN_USE_TO_CONSUME, QED_CHAIN_MODE_PBL, QED_CHAIN_CNT_TYPE_U16, n_entries, sizeof(struct regpair *), &cnq->pbl, NULL); if (rc) goto err4; cnq->dev = dev; cnq->sb = &dev->sb_array[i]; cons_pi = dev->sb_array[i].sb_virt->pi_array; cnq->hw_cons_ptr = &cons_pi[QED_ROCE_PROTOCOL_INDEX]; cnq->index = i; sprintf(cnq->name, "qedr%d@pci:%s", i, pci_name(dev->pdev)); DP_DEBUG(dev, QEDR_MSG_INIT, "cnq[%d].cons=%d\n", i, qed_chain_get_cons_idx(&cnq->pbl)); } return 0; err4: qedr_free_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i); err3: for (--i; i >= 0; i--) { dev->ops->common->chain_free(dev->cdev, &dev->cnq_array[i].pbl); qedr_free_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i); } kfree(dev->cnq_array); err2: kfree(dev->sb_array); err1: kfree(dev->sgid_tbl); return rc; } static void qedr_pci_set_atomic(struct qedr_dev *dev, struct pci_dev *pdev) { int rc = pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64); if (rc) { dev->atomic_cap = IB_ATOMIC_NONE; DP_DEBUG(dev, QEDR_MSG_INIT, "Atomic capability disabled\n"); } else { dev->atomic_cap = IB_ATOMIC_GLOB; DP_DEBUG(dev, QEDR_MSG_INIT, "Atomic capability enabled\n"); } } static const struct qed_rdma_ops *qed_ops; #define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo)) static irqreturn_t qedr_irq_handler(int irq, void *handle) { u16 hw_comp_cons, sw_comp_cons; struct qedr_cnq *cnq = handle; struct regpair *cq_handle; struct qedr_cq *cq; qed_sb_ack(cnq->sb, IGU_INT_DISABLE, 0); qed_sb_update_sb_idx(cnq->sb); hw_comp_cons = le16_to_cpu(*cnq->hw_cons_ptr); sw_comp_cons = qed_chain_get_cons_idx(&cnq->pbl); /* Align protocol-index and chain reads */ rmb(); while (sw_comp_cons != hw_comp_cons) { cq_handle = (struct regpair *)qed_chain_consume(&cnq->pbl); cq = (struct qedr_cq *)(uintptr_t)HILO_U64(cq_handle->hi, cq_handle->lo); if (cq == NULL) { DP_ERR(cnq->dev, "Received NULL CQ cq_handle->hi=%d cq_handle->lo=%d sw_comp_cons=%d hw_comp_cons=%d\n", cq_handle->hi, cq_handle->lo, sw_comp_cons, hw_comp_cons); break; } if (cq->sig != QEDR_CQ_MAGIC_NUMBER) { DP_ERR(cnq->dev, "Problem with cq signature, cq_handle->hi=%d ch_handle->lo=%d cq=%p\n", cq_handle->hi, cq_handle->lo, cq); break; } cq->arm_flags = 0; if (!cq->destroyed && cq->ibcq.comp_handler) (*cq->ibcq.comp_handler) (&cq->ibcq, cq->ibcq.cq_context); /* The CQ's CNQ notification counter is checked before * destroying the CQ in a busy-wait loop that waits for all of * the CQ's CNQ interrupts to be processed. It is increased * here, only after the completion handler, to ensure that the * the handler is not running when the CQ is destroyed. */ cq->cnq_notif++; sw_comp_cons = qed_chain_get_cons_idx(&cnq->pbl); cnq->n_comp++; } qed_ops->rdma_cnq_prod_update(cnq->dev->rdma_ctx, cnq->index, sw_comp_cons); qed_sb_ack(cnq->sb, IGU_INT_ENABLE, 1); return IRQ_HANDLED; } static void qedr_sync_free_irqs(struct qedr_dev *dev) { u32 vector; int i; for (i = 0; i < dev->int_info.used_cnt; i++) { if (dev->int_info.msix_cnt) { vector = dev->int_info.msix[i * dev->num_hwfns].vector; synchronize_irq(vector); free_irq(vector, &dev->cnq_array[i]); } } dev->int_info.used_cnt = 0; } static int qedr_req_msix_irqs(struct qedr_dev *dev) { int i, rc = 0; if (dev->num_cnq > dev->int_info.msix_cnt) { DP_ERR(dev, "Interrupt mismatch: %d CNQ queues > %d MSI-x vectors\n", dev->num_cnq, dev->int_info.msix_cnt); return -EINVAL; } for (i = 0; i < dev->num_cnq; i++) { rc = request_irq(dev->int_info.msix[i * dev->num_hwfns].vector, qedr_irq_handler, 0, dev->cnq_array[i].name, &dev->cnq_array[i]); if (rc) { DP_ERR(dev, "Request cnq %d irq failed\n", i); qedr_sync_free_irqs(dev); } else { DP_DEBUG(dev, QEDR_MSG_INIT, "Requested cnq irq for %s [entry %d]. Cookie is at %p\n", dev->cnq_array[i].name, i, &dev->cnq_array[i]); dev->int_info.used_cnt++; } } return rc; } static int qedr_setup_irqs(struct qedr_dev *dev) { int rc; DP_DEBUG(dev, QEDR_MSG_INIT, "qedr_setup_irqs\n"); /* Learn Interrupt configuration */ rc = dev->ops->rdma_set_rdma_int(dev->cdev, dev->num_cnq); if (rc < 0) return rc; rc = dev->ops->rdma_get_rdma_int(dev->cdev, &dev->int_info); if (rc) { DP_DEBUG(dev, QEDR_MSG_INIT, "get_rdma_int failed\n"); return rc; } if (dev->int_info.msix_cnt) { DP_DEBUG(dev, QEDR_MSG_INIT, "rdma msix_cnt = %d\n", dev->int_info.msix_cnt); rc = qedr_req_msix_irqs(dev); if (rc) return rc; } DP_DEBUG(dev, QEDR_MSG_INIT, "qedr_setup_irqs succeeded\n"); return 0; } static int qedr_set_device_attr(struct qedr_dev *dev) { struct qed_rdma_device *qed_attr; struct qedr_device_attr *attr; u32 page_size; /* Part 1 - query core capabilities */ qed_attr = dev->ops->rdma_query_device(dev->rdma_ctx); /* Part 2 - check capabilities */ page_size = ~dev->attr.page_size_caps + 1; if (page_size > PAGE_SIZE) { DP_ERR(dev, "Kernel PAGE_SIZE is %ld which is smaller than minimum page size (%d) required by qedr\n", PAGE_SIZE, page_size); return -ENODEV; } /* Part 3 - copy and update capabilities */ attr = &dev->attr; attr->vendor_id = qed_attr->vendor_id; attr->vendor_part_id = qed_attr->vendor_part_id; attr->hw_ver = qed_attr->hw_ver; attr->fw_ver = qed_attr->fw_ver; attr->node_guid = qed_attr->node_guid; attr->sys_image_guid = qed_attr->sys_image_guid; attr->max_cnq = qed_attr->max_cnq; attr->max_sge = qed_attr->max_sge; attr->max_inline = qed_attr->max_inline; attr->max_sqe = min_t(u32, qed_attr->max_wqe, QEDR_MAX_SQE); attr->max_rqe = min_t(u32, qed_attr->max_wqe, QEDR_MAX_RQE); attr->max_qp_resp_rd_atomic_resc = qed_attr->max_qp_resp_rd_atomic_resc; attr->max_qp_req_rd_atomic_resc = qed_attr->max_qp_req_rd_atomic_resc; attr->max_dev_resp_rd_atomic_resc = qed_attr->max_dev_resp_rd_atomic_resc; attr->max_cq = qed_attr->max_cq; attr->max_qp = qed_attr->max_qp; attr->max_mr = qed_attr->max_mr; attr->max_mr_size = qed_attr->max_mr_size; attr->max_cqe = min_t(u64, qed_attr->max_cqe, QEDR_MAX_CQES); attr->max_mw = qed_attr->max_mw; attr->max_fmr = qed_attr->max_fmr; attr->max_mr_mw_fmr_pbl = qed_attr->max_mr_mw_fmr_pbl; attr->max_mr_mw_fmr_size = qed_attr->max_mr_mw_fmr_size; attr->max_pd = qed_attr->max_pd; attr->max_ah = qed_attr->max_ah; attr->max_pkey = qed_attr->max_pkey; attr->max_srq = qed_attr->max_srq; attr->max_srq_wr = qed_attr->max_srq_wr; attr->dev_caps = qed_attr->dev_caps; attr->page_size_caps = qed_attr->page_size_caps; attr->dev_ack_delay = qed_attr->dev_ack_delay; attr->reserved_lkey = qed_attr->reserved_lkey; attr->bad_pkey_counter = qed_attr->bad_pkey_counter; attr->max_stats_queues = qed_attr->max_stats_queues; return 0; } static void qedr_unaffiliated_event(void *context, u8 event_code) { pr_err("unaffiliated event not implemented yet\n"); } static void qedr_affiliated_event(void *context, u8 e_code, void *fw_handle) { #define EVENT_TYPE_NOT_DEFINED 0 #define EVENT_TYPE_CQ 1 #define EVENT_TYPE_QP 2 #define EVENT_TYPE_SRQ 3 struct qedr_dev *dev = (struct qedr_dev *)context; struct regpair *async_handle = (struct regpair *)fw_handle; u64 roce_handle64 = ((u64) async_handle->hi << 32) + async_handle->lo; u8 event_type = EVENT_TYPE_NOT_DEFINED; struct ib_event event; struct ib_srq *ibsrq; struct qedr_srq *srq; unsigned long flags; struct ib_cq *ibcq; struct ib_qp *ibqp; struct qedr_cq *cq; struct qedr_qp *qp; u16 srq_id; if (IS_ROCE(dev)) { switch (e_code) { case ROCE_ASYNC_EVENT_CQ_OVERFLOW_ERR: event.event = IB_EVENT_CQ_ERR; event_type = EVENT_TYPE_CQ; break; case ROCE_ASYNC_EVENT_SQ_DRAINED: event.event = IB_EVENT_SQ_DRAINED; event_type = EVENT_TYPE_QP; break; case ROCE_ASYNC_EVENT_QP_CATASTROPHIC_ERR: event.event = IB_EVENT_QP_FATAL; event_type = EVENT_TYPE_QP; break; case ROCE_ASYNC_EVENT_LOCAL_INVALID_REQUEST_ERR: event.event = IB_EVENT_QP_REQ_ERR; event_type = EVENT_TYPE_QP; break; case ROCE_ASYNC_EVENT_LOCAL_ACCESS_ERR: event.event = IB_EVENT_QP_ACCESS_ERR; event_type = EVENT_TYPE_QP; break; case ROCE_ASYNC_EVENT_SRQ_LIMIT: event.event = IB_EVENT_SRQ_LIMIT_REACHED; event_type = EVENT_TYPE_SRQ; break; case ROCE_ASYNC_EVENT_SRQ_EMPTY: event.event = IB_EVENT_SRQ_ERR; event_type = EVENT_TYPE_SRQ; break; default: DP_ERR(dev, "unsupported event %d on handle=%llx\n", e_code, roce_handle64); } } else { switch (e_code) { case QED_IWARP_EVENT_SRQ_LIMIT: event.event = IB_EVENT_SRQ_LIMIT_REACHED; event_type = EVENT_TYPE_SRQ; break; case QED_IWARP_EVENT_SRQ_EMPTY: event.event = IB_EVENT_SRQ_ERR; event_type = EVENT_TYPE_SRQ; break; default: DP_ERR(dev, "unsupported event %d on handle=%llx\n", e_code, roce_handle64); } } switch (event_type) { case EVENT_TYPE_CQ: cq = (struct qedr_cq *)(uintptr_t)roce_handle64; if (cq) { ibcq = &cq->ibcq; if (ibcq->event_handler) { event.device = ibcq->device; event.element.cq = ibcq; ibcq->event_handler(&event, ibcq->cq_context); } } else { WARN(1, "Error: CQ event with NULL pointer ibcq. Handle=%llx\n", roce_handle64); } DP_ERR(dev, "CQ event %d on handle %p\n", e_code, cq); break; case EVENT_TYPE_QP: qp = (struct qedr_qp *)(uintptr_t)roce_handle64; if (qp) { ibqp = &qp->ibqp; if (ibqp->event_handler) { event.device = ibqp->device; event.element.qp = ibqp; ibqp->event_handler(&event, ibqp->qp_context); } } else { WARN(1, "Error: QP event with NULL pointer ibqp. Handle=%llx\n", roce_handle64); } DP_ERR(dev, "QP event %d on handle %p\n", e_code, qp); break; case EVENT_TYPE_SRQ: srq_id = (u16)roce_handle64; spin_lock_irqsave(&dev->srqidr.idr_lock, flags); srq = idr_find(&dev->srqidr.idr, srq_id); if (srq) { ibsrq = &srq->ibsrq; if (ibsrq->event_handler) { event.device = ibsrq->device; event.element.srq = ibsrq; ibsrq->event_handler(&event, ibsrq->srq_context); } } else { DP_NOTICE(dev, "SRQ event with NULL pointer ibsrq. Handle=%llx\n", roce_handle64); } spin_unlock_irqrestore(&dev->srqidr.idr_lock, flags); DP_NOTICE(dev, "SRQ event %d on handle %p\n", e_code, srq); default: break; } } static int qedr_init_hw(struct qedr_dev *dev) { struct qed_rdma_add_user_out_params out_params; struct qed_rdma_start_in_params *in_params; struct qed_rdma_cnq_params *cur_pbl; struct qed_rdma_events events; dma_addr_t p_phys_table; u32 page_cnt; int rc = 0; int i; in_params = kzalloc(sizeof(*in_params), GFP_KERNEL); if (!in_params) { rc = -ENOMEM; goto out; } in_params->desired_cnq = dev->num_cnq; for (i = 0; i < dev->num_cnq; i++) { cur_pbl = &in_params->cnq_pbl_list[i]; page_cnt = qed_chain_get_page_cnt(&dev->cnq_array[i].pbl); cur_pbl->num_pbl_pages = page_cnt; p_phys_table = qed_chain_get_pbl_phys(&dev->cnq_array[i].pbl); cur_pbl->pbl_ptr = (u64)p_phys_table; } events.affiliated_event = qedr_affiliated_event; events.unaffiliated_event = qedr_unaffiliated_event; events.context = dev; in_params->events = &events; in_params->cq_mode = QED_RDMA_CQ_MODE_32_BITS; in_params->max_mtu = dev->ndev->mtu; dev->iwarp_max_mtu = dev->ndev->mtu; ether_addr_copy(&in_params->mac_addr[0], dev->ndev->dev_addr); rc = dev->ops->rdma_init(dev->cdev, in_params); if (rc) goto out; rc = dev->ops->rdma_add_user(dev->rdma_ctx, &out_params); if (rc) goto out; dev->db_addr = (void __iomem *)(uintptr_t)out_params.dpi_addr; dev->db_phys_addr = out_params.dpi_phys_addr; dev->db_size = out_params.dpi_size; dev->dpi = out_params.dpi; rc = qedr_set_device_attr(dev); out: kfree(in_params); if (rc) DP_ERR(dev, "Init HW Failed rc = %d\n", rc); return rc; } static void qedr_stop_hw(struct qedr_dev *dev) { dev->ops->rdma_remove_user(dev->rdma_ctx, dev->dpi); dev->ops->rdma_stop(dev->rdma_ctx); } static struct qedr_dev *qedr_add(struct qed_dev *cdev, struct pci_dev *pdev, struct net_device *ndev) { struct qed_dev_rdma_info dev_info; struct qedr_dev *dev; int rc = 0; dev = (struct qedr_dev *)ib_alloc_device(sizeof(*dev)); if (!dev) { pr_err("Unable to allocate ib device\n"); return NULL; } DP_DEBUG(dev, QEDR_MSG_INIT, "qedr add device called\n"); dev->pdev = pdev; dev->ndev = ndev; dev->cdev = cdev; qed_ops = qed_get_rdma_ops(); if (!qed_ops) { DP_ERR(dev, "Failed to get qed roce operations\n"); goto init_err; } dev->ops = qed_ops; rc = qed_ops->fill_dev_info(cdev, &dev_info); if (rc) goto init_err; dev->user_dpm_enabled = dev_info.user_dpm_enabled; dev->rdma_type = dev_info.rdma_type; dev->num_hwfns = dev_info.common.num_hwfns; dev->rdma_ctx = dev->ops->rdma_get_rdma_ctx(cdev); dev->num_cnq = dev->ops->rdma_get_min_cnq_msix(cdev); if (!dev->num_cnq) { DP_ERR(dev, "Failed. At least one CNQ is required.\n"); rc = -ENOMEM; goto init_err; } dev->wq_multiplier = QEDR_WQ_MULTIPLIER_DFT; qedr_pci_set_atomic(dev, pdev); rc = qedr_alloc_resources(dev); if (rc) goto init_err; rc = qedr_init_hw(dev); if (rc) goto alloc_err; rc = qedr_setup_irqs(dev); if (rc) goto irq_err; rc = qedr_register_device(dev); if (rc) { DP_ERR(dev, "Unable to allocate register device\n"); goto reg_err; } if (!test_and_set_bit(QEDR_ENET_STATE_BIT, &dev->enet_state)) qedr_ib_dispatch_event(dev, QEDR_PORT, IB_EVENT_PORT_ACTIVE); DP_DEBUG(dev, QEDR_MSG_INIT, "qedr driver loaded successfully\n"); return dev; reg_err: qedr_sync_free_irqs(dev); irq_err: qedr_stop_hw(dev); alloc_err: qedr_free_resources(dev); init_err: ib_dealloc_device(&dev->ibdev); DP_ERR(dev, "qedr driver load failed rc=%d\n", rc); return NULL; } static void qedr_remove(struct qedr_dev *dev) { /* First unregister with stack to stop all the active traffic * of the registered clients. */ ib_unregister_device(&dev->ibdev); qedr_stop_hw(dev); qedr_sync_free_irqs(dev); qedr_free_resources(dev); ib_dealloc_device(&dev->ibdev); } static void qedr_close(struct qedr_dev *dev) { if (test_and_clear_bit(QEDR_ENET_STATE_BIT, &dev->enet_state)) qedr_ib_dispatch_event(dev, QEDR_PORT, IB_EVENT_PORT_ERR); } static void qedr_shutdown(struct qedr_dev *dev) { qedr_close(dev); qedr_remove(dev); } static void qedr_open(struct qedr_dev *dev) { if (!test_and_set_bit(QEDR_ENET_STATE_BIT, &dev->enet_state)) qedr_ib_dispatch_event(dev, QEDR_PORT, IB_EVENT_PORT_ACTIVE); } static void qedr_mac_address_change(struct qedr_dev *dev) { union ib_gid *sgid = &dev->sgid_tbl[0]; u8 guid[8], mac_addr[6]; int rc; /* Update SGID */ ether_addr_copy(&mac_addr[0], dev->ndev->dev_addr); guid[0] = mac_addr[0] ^ 2; guid[1] = mac_addr[1]; guid[2] = mac_addr[2]; guid[3] = 0xff; guid[4] = 0xfe; guid[5] = mac_addr[3]; guid[6] = mac_addr[4]; guid[7] = mac_addr[5]; sgid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); memcpy(&sgid->raw[8], guid, sizeof(guid)); /* Update LL2 */ rc = dev->ops->ll2_set_mac_filter(dev->cdev, dev->gsi_ll2_mac_address, dev->ndev->dev_addr); ether_addr_copy(dev->gsi_ll2_mac_address, dev->ndev->dev_addr); qedr_ib_dispatch_event(dev, QEDR_PORT, IB_EVENT_GID_CHANGE); if (rc) DP_ERR(dev, "Error updating mac filter\n"); } /* event handling via NIC driver ensures that all the NIC specific * initialization done before RoCE driver notifies * event to stack. */ static void qedr_notify(struct qedr_dev *dev, enum qede_rdma_event event) { switch (event) { case QEDE_UP: qedr_open(dev); break; case QEDE_DOWN: qedr_close(dev); break; case QEDE_CLOSE: qedr_shutdown(dev); break; case QEDE_CHANGE_ADDR: qedr_mac_address_change(dev); break; default: pr_err("Event not supported\n"); } } static struct qedr_driver qedr_drv = { .name = "qedr_driver", .add = qedr_add, .remove = qedr_remove, .notify = qedr_notify, }; static int __init qedr_init_module(void) { return qede_rdma_register_driver(&qedr_drv); } static void __exit qedr_exit_module(void) { qede_rdma_unregister_driver(&qedr_drv); } module_init(qedr_init_module); module_exit(qedr_exit_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1