Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Downey | 2092 | 76.77% | 2 | 10.00% |
Dmitry Torokhov | 561 | 20.59% | 5 | 25.00% |
Greg Kroah-Hartman | 50 | 1.83% | 5 | 25.00% |
Harvey Harrison | 10 | 0.37% | 1 | 5.00% |
Luiz Fernando N. Capitulino | 3 | 0.11% | 1 | 5.00% |
Daniel Mack | 3 | 0.11% | 1 | 5.00% |
Julia Lawall | 2 | 0.07% | 1 | 5.00% |
David Brownell | 1 | 0.04% | 1 | 5.00% |
Lucas De Marchi | 1 | 0.04% | 1 | 5.00% |
Jia-Ju Bai | 1 | 0.04% | 1 | 5.00% |
Arvind Yadav | 1 | 0.04% | 1 | 5.00% |
Total | 2725 | 20 |
/* * keyspan_remote: USB driver for the Keyspan DMR * * Copyright (C) 2005 Zymeta Corporation - Michael Downey (downey@zymeta.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. * * This driver has been put together with the support of Innosys, Inc. * and Keyspan, Inc the manufacturers of the Keyspan USB DMR product. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb/input.h> /* Parameters that can be passed to the driver. */ static int debug; module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "Enable extra debug messages and information"); /* Vendor and product ids */ #define USB_KEYSPAN_VENDOR_ID 0x06CD #define USB_KEYSPAN_PRODUCT_UIA11 0x0202 /* Defines for converting the data from the remote. */ #define ZERO 0x18 #define ZERO_MASK 0x1F /* 5 bits for a 0 */ #define ONE 0x3C #define ONE_MASK 0x3F /* 6 bits for a 1 */ #define SYNC 0x3F80 #define SYNC_MASK 0x3FFF /* 14 bits for a SYNC sequence */ #define STOP 0x00 #define STOP_MASK 0x1F /* 5 bits for the STOP sequence */ #define GAP 0xFF #define RECV_SIZE 8 /* The UIA-11 type have a 8 byte limit. */ /* * Table that maps the 31 possible keycodes to input keys. * Currently there are 15 and 17 button models so RESERVED codes * are blank areas in the mapping. */ static const unsigned short keyspan_key_table[] = { KEY_RESERVED, /* 0 is just a place holder. */ KEY_RESERVED, KEY_STOP, KEY_PLAYCD, KEY_RESERVED, KEY_PREVIOUSSONG, KEY_REWIND, KEY_FORWARD, KEY_NEXTSONG, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_PAUSE, KEY_VOLUMEUP, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_VOLUMEDOWN, KEY_RESERVED, KEY_UP, KEY_RESERVED, KEY_MUTE, KEY_LEFT, KEY_ENTER, KEY_RIGHT, KEY_RESERVED, KEY_RESERVED, KEY_DOWN, KEY_RESERVED, KEY_KPASTERISK, KEY_RESERVED, KEY_MENU }; /* table of devices that work with this driver */ static const struct usb_device_id keyspan_table[] = { { USB_DEVICE(USB_KEYSPAN_VENDOR_ID, USB_KEYSPAN_PRODUCT_UIA11) }, { } /* Terminating entry */ }; /* Structure to store all the real stuff that a remote sends to us. */ struct keyspan_message { u16 system; u8 button; u8 toggle; }; /* Structure used for all the bit testing magic needed to be done. */ struct bit_tester { u32 tester; int len; int pos; int bits_left; u8 buffer[32]; }; /* Structure to hold all of our driver specific stuff */ struct usb_keyspan { char name[128]; char phys[64]; unsigned short keymap[ARRAY_SIZE(keyspan_key_table)]; struct usb_device *udev; struct input_dev *input; struct usb_interface *interface; struct usb_endpoint_descriptor *in_endpoint; struct urb* irq_urb; int open; dma_addr_t in_dma; unsigned char *in_buffer; /* variables used to parse messages from remote. */ struct bit_tester data; int stage; int toggle; }; static struct usb_driver keyspan_driver; /* * Debug routine that prints out what we've received from the remote. */ static void keyspan_print(struct usb_keyspan* dev) /*unsigned char* data)*/ { char codes[4 * RECV_SIZE]; int i; for (i = 0; i < RECV_SIZE; i++) snprintf(codes + i * 3, 4, "%02x ", dev->in_buffer[i]); dev_info(&dev->udev->dev, "%s\n", codes); } /* * Routine that manages the bit_tester structure. It makes sure that there are * at least bits_needed bits loaded into the tester. */ static int keyspan_load_tester(struct usb_keyspan* dev, int bits_needed) { if (dev->data.bits_left >= bits_needed) return 0; /* * Somehow we've missed the last message. The message will be repeated * though so it's not too big a deal */ if (dev->data.pos >= dev->data.len) { dev_dbg(&dev->interface->dev, "%s - Error ran out of data. pos: %d, len: %d\n", __func__, dev->data.pos, dev->data.len); return -1; } /* Load as much as we can into the tester. */ while ((dev->data.bits_left + 7 < (sizeof(dev->data.tester) * 8)) && (dev->data.pos < dev->data.len)) { dev->data.tester += (dev->data.buffer[dev->data.pos++] << dev->data.bits_left); dev->data.bits_left += 8; } return 0; } static void keyspan_report_button(struct usb_keyspan *remote, int button, int press) { struct input_dev *input = remote->input; input_event(input, EV_MSC, MSC_SCAN, button); input_report_key(input, remote->keymap[button], press); input_sync(input); } /* * Routine that handles all the logic needed to parse out the message from the remote. */ static void keyspan_check_data(struct usb_keyspan *remote) { int i; int found = 0; struct keyspan_message message; switch(remote->stage) { case 0: /* * In stage 0 we want to find the start of a message. The remote sends a 0xFF as filler. * So the first byte that isn't a FF should be the start of a new message. */ for (i = 0; i < RECV_SIZE && remote->in_buffer[i] == GAP; ++i); if (i < RECV_SIZE) { memcpy(remote->data.buffer, remote->in_buffer, RECV_SIZE); remote->data.len = RECV_SIZE; remote->data.pos = 0; remote->data.tester = 0; remote->data.bits_left = 0; remote->stage = 1; } break; case 1: /* * Stage 1 we should have 16 bytes and should be able to detect a * SYNC. The SYNC is 14 bits, 7 0's and then 7 1's. */ memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE); remote->data.len += RECV_SIZE; found = 0; while ((remote->data.bits_left >= 14 || remote->data.pos < remote->data.len) && !found) { for (i = 0; i < 8; ++i) { if (keyspan_load_tester(remote, 14) != 0) { remote->stage = 0; return; } if ((remote->data.tester & SYNC_MASK) == SYNC) { remote->data.tester = remote->data.tester >> 14; remote->data.bits_left -= 14; found = 1; break; } else { remote->data.tester = remote->data.tester >> 1; --remote->data.bits_left; } } } if (!found) { remote->stage = 0; remote->data.len = 0; } else { remote->stage = 2; } break; case 2: /* * Stage 2 we should have 24 bytes which will be enough for a full * message. We need to parse out the system code, button code, * toggle code, and stop. */ memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE); remote->data.len += RECV_SIZE; message.system = 0; for (i = 0; i < 9; i++) { keyspan_load_tester(remote, 6); if ((remote->data.tester & ZERO_MASK) == ZERO) { message.system = message.system << 1; remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else if ((remote->data.tester & ONE_MASK) == ONE) { message.system = (message.system << 1) + 1; remote->data.tester = remote->data.tester >> 6; remote->data.bits_left -= 6; } else { dev_err(&remote->interface->dev, "%s - Unknown sequence found in system data.\n", __func__); remote->stage = 0; return; } } message.button = 0; for (i = 0; i < 5; i++) { keyspan_load_tester(remote, 6); if ((remote->data.tester & ZERO_MASK) == ZERO) { message.button = message.button << 1; remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else if ((remote->data.tester & ONE_MASK) == ONE) { message.button = (message.button << 1) + 1; remote->data.tester = remote->data.tester >> 6; remote->data.bits_left -= 6; } else { dev_err(&remote->interface->dev, "%s - Unknown sequence found in button data.\n", __func__); remote->stage = 0; return; } } keyspan_load_tester(remote, 6); if ((remote->data.tester & ZERO_MASK) == ZERO) { message.toggle = 0; remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else if ((remote->data.tester & ONE_MASK) == ONE) { message.toggle = 1; remote->data.tester = remote->data.tester >> 6; remote->data.bits_left -= 6; } else { dev_err(&remote->interface->dev, "%s - Error in message, invalid toggle.\n", __func__); remote->stage = 0; return; } keyspan_load_tester(remote, 5); if ((remote->data.tester & STOP_MASK) == STOP) { remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else { dev_err(&remote->interface->dev, "Bad message received, no stop bit found.\n"); } dev_dbg(&remote->interface->dev, "%s found valid message: system: %d, button: %d, toggle: %d\n", __func__, message.system, message.button, message.toggle); if (message.toggle != remote->toggle) { keyspan_report_button(remote, message.button, 1); keyspan_report_button(remote, message.button, 0); remote->toggle = message.toggle; } remote->stage = 0; break; } } /* * Routine for sending all the initialization messages to the remote. */ static int keyspan_setup(struct usb_device* dev) { int retval = 0; retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x11, 0x40, 0x5601, 0x0, NULL, 0, 0); if (retval) { dev_dbg(&dev->dev, "%s - failed to set bit rate due to error: %d\n", __func__, retval); return(retval); } retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x44, 0x40, 0x0, 0x0, NULL, 0, 0); if (retval) { dev_dbg(&dev->dev, "%s - failed to set resume sensitivity due to error: %d\n", __func__, retval); return(retval); } retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x22, 0x40, 0x0, 0x0, NULL, 0, 0); if (retval) { dev_dbg(&dev->dev, "%s - failed to turn receive on due to error: %d\n", __func__, retval); return(retval); } dev_dbg(&dev->dev, "%s - Setup complete.\n", __func__); return(retval); } /* * Routine used to handle a new message that has come in. */ static void keyspan_irq_recv(struct urb *urb) { struct usb_keyspan *dev = urb->context; int retval; /* Check our status in case we need to bail out early. */ switch (urb->status) { case 0: break; /* Device went away so don't keep trying to read from it. */ case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: return; default: goto resubmit; } if (debug) keyspan_print(dev); keyspan_check_data(dev); resubmit: retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval) dev_err(&dev->interface->dev, "%s - usb_submit_urb failed with result: %d\n", __func__, retval); } static int keyspan_open(struct input_dev *dev) { struct usb_keyspan *remote = input_get_drvdata(dev); remote->irq_urb->dev = remote->udev; if (usb_submit_urb(remote->irq_urb, GFP_KERNEL)) return -EIO; return 0; } static void keyspan_close(struct input_dev *dev) { struct usb_keyspan *remote = input_get_drvdata(dev); usb_kill_urb(remote->irq_urb); } static struct usb_endpoint_descriptor *keyspan_get_in_endpoint(struct usb_host_interface *iface) { struct usb_endpoint_descriptor *endpoint; int i; for (i = 0; i < iface->desc.bNumEndpoints; ++i) { endpoint = &iface->endpoint[i].desc; if (usb_endpoint_is_int_in(endpoint)) { /* we found our interrupt in endpoint */ return endpoint; } } return NULL; } /* * Routine that sets up the driver to handle a specific USB device detected on the bus. */ static int keyspan_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_endpoint_descriptor *endpoint; struct usb_keyspan *remote; struct input_dev *input_dev; int i, error; endpoint = keyspan_get_in_endpoint(interface->cur_altsetting); if (!endpoint) return -ENODEV; remote = kzalloc(sizeof(*remote), GFP_KERNEL); input_dev = input_allocate_device(); if (!remote || !input_dev) { error = -ENOMEM; goto fail1; } remote->udev = udev; remote->input = input_dev; remote->interface = interface; remote->in_endpoint = endpoint; remote->toggle = -1; /* Set to -1 so we will always not match the toggle from the first remote message. */ remote->in_buffer = usb_alloc_coherent(udev, RECV_SIZE, GFP_KERNEL, &remote->in_dma); if (!remote->in_buffer) { error = -ENOMEM; goto fail1; } remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL); if (!remote->irq_urb) { error = -ENOMEM; goto fail2; } error = keyspan_setup(udev); if (error) { error = -ENODEV; goto fail3; } if (udev->manufacturer) strlcpy(remote->name, udev->manufacturer, sizeof(remote->name)); if (udev->product) { if (udev->manufacturer) strlcat(remote->name, " ", sizeof(remote->name)); strlcat(remote->name, udev->product, sizeof(remote->name)); } if (!strlen(remote->name)) snprintf(remote->name, sizeof(remote->name), "USB Keyspan Remote %04x:%04x", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct)); usb_make_path(udev, remote->phys, sizeof(remote->phys)); strlcat(remote->phys, "/input0", sizeof(remote->phys)); memcpy(remote->keymap, keyspan_key_table, sizeof(remote->keymap)); input_dev->name = remote->name; input_dev->phys = remote->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &interface->dev; input_dev->keycode = remote->keymap; input_dev->keycodesize = sizeof(unsigned short); input_dev->keycodemax = ARRAY_SIZE(remote->keymap); input_set_capability(input_dev, EV_MSC, MSC_SCAN); __set_bit(EV_KEY, input_dev->evbit); for (i = 0; i < ARRAY_SIZE(keyspan_key_table); i++) __set_bit(keyspan_key_table[i], input_dev->keybit); __clear_bit(KEY_RESERVED, input_dev->keybit); input_set_drvdata(input_dev, remote); input_dev->open = keyspan_open; input_dev->close = keyspan_close; /* * Initialize the URB to access the device. * The urb gets sent to the device in keyspan_open() */ usb_fill_int_urb(remote->irq_urb, remote->udev, usb_rcvintpipe(remote->udev, endpoint->bEndpointAddress), remote->in_buffer, RECV_SIZE, keyspan_irq_recv, remote, endpoint->bInterval); remote->irq_urb->transfer_dma = remote->in_dma; remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* we can register the device now, as it is ready */ error = input_register_device(remote->input); if (error) goto fail3; /* save our data pointer in this interface device */ usb_set_intfdata(interface, remote); return 0; fail3: usb_free_urb(remote->irq_urb); fail2: usb_free_coherent(udev, RECV_SIZE, remote->in_buffer, remote->in_dma); fail1: kfree(remote); input_free_device(input_dev); return error; } /* * Routine called when a device is disconnected from the USB. */ static void keyspan_disconnect(struct usb_interface *interface) { struct usb_keyspan *remote; remote = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); if (remote) { /* We have a valid driver structure so clean up everything we allocated. */ input_unregister_device(remote->input); usb_kill_urb(remote->irq_urb); usb_free_urb(remote->irq_urb); usb_free_coherent(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma); kfree(remote); } } /* * Standard driver set up sections */ static struct usb_driver keyspan_driver = { .name = "keyspan_remote", .probe = keyspan_probe, .disconnect = keyspan_disconnect, .id_table = keyspan_table }; module_usb_driver(keyspan_driver); MODULE_DEVICE_TABLE(usb, keyspan_table); MODULE_AUTHOR("Michael Downey <downey@zymeta.com>"); MODULE_DESCRIPTION("Driver for the USB Keyspan remote control."); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1