Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 3538 | 87.68% | 6 | 33.33% |
Andrew Morton | 464 | 11.50% | 2 | 11.11% |
Kees Cook | 13 | 0.32% | 1 | 5.56% |
Adrian Bunk | 6 | 0.15% | 1 | 5.56% |
Julia Lawall | 3 | 0.07% | 1 | 5.56% |
Tejun Heo | 3 | 0.07% | 1 | 5.56% |
Linus Torvalds | 2 | 0.05% | 1 | 5.56% |
Karsten Keil | 2 | 0.05% | 1 | 5.56% |
Joe Perches | 2 | 0.05% | 2 | 11.11% |
Kai Germaschewski | 2 | 0.05% | 2 | 11.11% |
Total | 4035 | 18 |
/* $Id: hfc_2bs0.c,v 1.20.2.6 2004/02/11 13:21:33 keil Exp $ * * specific routines for CCD's HFC 2BS0 * * Author Karsten Keil * Copyright by Karsten Keil <keil@isdn4linux.de> * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * */ #include <linux/init.h> #include "hisax.h" #include "hfc_2bs0.h" #include "isac.h" #include "isdnl1.h" #include <linux/interrupt.h> #include <linux/slab.h> static inline int WaitForBusy(struct IsdnCardState *cs) { int to = 130; u_char val; while (!(cs->BC_Read_Reg(cs, HFC_STATUS, 0) & HFC_BUSY) && to) { val = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2 | (cs->hw.hfc.cip & 3)); udelay(1); to--; } if (!to) { printk(KERN_WARNING "HiSax: %s timeout\n", __func__); return (0); } else return (to); } static inline int WaitNoBusy(struct IsdnCardState *cs) { int to = 125; while ((cs->BC_Read_Reg(cs, HFC_STATUS, 0) & HFC_BUSY) && to) { udelay(1); to--; } if (!to) { printk(KERN_WARNING "HiSax: waitforBusy timeout\n"); return (0); } else return (to); } static int GetFreeFifoBytes(struct BCState *bcs) { int s; if (bcs->hw.hfc.f1 == bcs->hw.hfc.f2) return (bcs->cs->hw.hfc.fifosize); s = bcs->hw.hfc.send[bcs->hw.hfc.f1] - bcs->hw.hfc.send[bcs->hw.hfc.f2]; if (s <= 0) s += bcs->cs->hw.hfc.fifosize; s = bcs->cs->hw.hfc.fifosize - s; return (s); } static int ReadZReg(struct BCState *bcs, u_char reg) { int val; WaitNoBusy(bcs->cs); val = 256 * bcs->cs->BC_Read_Reg(bcs->cs, HFC_DATA, reg | HFC_CIP | HFC_Z_HIGH); WaitNoBusy(bcs->cs); val += bcs->cs->BC_Read_Reg(bcs->cs, HFC_DATA, reg | HFC_CIP | HFC_Z_LOW); return (val); } static void hfc_clear_fifo(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; int idx, cnt; int rcnt, z1, z2; u_char cip, f1, f2; if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO)) debugl1(cs, "hfc_clear_fifo"); cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel); if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) { cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip); WaitForBusy(cs); } WaitNoBusy(cs); f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip); cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel); WaitNoBusy(cs); f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip); z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel)); z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel)); cnt = 32; while (((f1 != f2) || (z1 != z2)) && cnt--) { if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc clear %d f1(%d) f2(%d)", bcs->channel, f1, f2); rcnt = z1 - z2; if (rcnt < 0) rcnt += cs->hw.hfc.fifosize; if (rcnt) rcnt++; if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc clear %d z1(%x) z2(%x) cnt(%d)", bcs->channel, z1, z2, rcnt); cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel); idx = 0; while ((idx < rcnt) && WaitNoBusy(cs)) { cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip); idx++; } if (f1 != f2) { WaitNoBusy(cs); cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC | HFC_CHANNEL(bcs->channel)); WaitForBusy(cs); } cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel); WaitNoBusy(cs); f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip); cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel); WaitNoBusy(cs); f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip); z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel)); z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel)); } return; } static struct sk_buff * hfc_empty_fifo(struct BCState *bcs, int count) { u_char *ptr; struct sk_buff *skb; struct IsdnCardState *cs = bcs->cs; int idx; int chksum; u_char stat, cip; if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO)) debugl1(cs, "hfc_empty_fifo"); idx = 0; if (count > HSCX_BUFMAX + 3) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "hfc_empty_fifo: incoming packet too large"); cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel); while ((idx++ < count) && WaitNoBusy(cs)) cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip); WaitNoBusy(cs); stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC | HFC_CHANNEL(bcs->channel)); WaitForBusy(cs); return (NULL); } if ((count < 4) && (bcs->mode != L1_MODE_TRANS)) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "hfc_empty_fifo: incoming packet too small"); cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel); while ((idx++ < count) && WaitNoBusy(cs)) cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip); WaitNoBusy(cs); stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC | HFC_CHANNEL(bcs->channel)); WaitForBusy(cs); #ifdef ERROR_STATISTIC bcs->err_inv++; #endif return (NULL); } if (bcs->mode == L1_MODE_TRANS) count -= 1; else count -= 3; if (!(skb = dev_alloc_skb(count))) printk(KERN_WARNING "HFC: receive out of memory\n"); else { ptr = skb_put(skb, count); idx = 0; cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel); while ((idx < count) && WaitNoBusy(cs)) { *ptr++ = cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip); idx++; } if (idx != count) { debugl1(cs, "RFIFO BUSY error"); printk(KERN_WARNING "HFC FIFO channel %d BUSY Error\n", bcs->channel); dev_kfree_skb_any(skb); if (bcs->mode != L1_MODE_TRANS) { WaitNoBusy(cs); stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC | HFC_CHANNEL(bcs->channel)); WaitForBusy(cs); } return (NULL); } if (bcs->mode != L1_MODE_TRANS) { WaitNoBusy(cs); chksum = (cs->BC_Read_Reg(cs, HFC_DATA, cip) << 8); WaitNoBusy(cs); chksum += cs->BC_Read_Reg(cs, HFC_DATA, cip); WaitNoBusy(cs); stat = cs->BC_Read_Reg(cs, HFC_DATA, cip); if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc_empty_fifo %d chksum %x stat %x", bcs->channel, chksum, stat); if (stat) { debugl1(cs, "FIFO CRC error"); dev_kfree_skb_any(skb); skb = NULL; #ifdef ERROR_STATISTIC bcs->err_crc++; #endif } WaitNoBusy(cs); stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC | HFC_CHANNEL(bcs->channel)); WaitForBusy(cs); } } return (skb); } static void hfc_fill_fifo(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; int idx, fcnt; int count; int z1, z2; u_char cip; if (!bcs->tx_skb) return; if (bcs->tx_skb->len <= 0) return; cip = HFC_CIP | HFC_F1 | HFC_SEND | HFC_CHANNEL(bcs->channel); if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) { cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip); WaitForBusy(cs); } WaitNoBusy(cs); if (bcs->mode != L1_MODE_TRANS) { bcs->hw.hfc.f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip); cip = HFC_CIP | HFC_F2 | HFC_SEND | HFC_CHANNEL(bcs->channel); WaitNoBusy(cs); bcs->hw.hfc.f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip); bcs->hw.hfc.send[bcs->hw.hfc.f1] = ReadZReg(bcs, HFC_Z1 | HFC_SEND | HFC_CHANNEL(bcs->channel)); if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc_fill_fifo %d f1(%d) f2(%d) z1(%x)", bcs->channel, bcs->hw.hfc.f1, bcs->hw.hfc.f2, bcs->hw.hfc.send[bcs->hw.hfc.f1]); fcnt = bcs->hw.hfc.f1 - bcs->hw.hfc.f2; if (fcnt < 0) fcnt += 32; if (fcnt > 30) { if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc_fill_fifo more as 30 frames"); return; } count = GetFreeFifoBytes(bcs); } else { WaitForBusy(cs); z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel)); z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel)); count = z1 - z2; if (count < 0) count += cs->hw.hfc.fifosize; } /* L1_MODE_TRANS */ if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc_fill_fifo %d count(%u/%d)", bcs->channel, bcs->tx_skb->len, count); if (count < bcs->tx_skb->len) { if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc_fill_fifo no fifo mem"); return; } cip = HFC_CIP | HFC_FIFO_IN | HFC_SEND | HFC_CHANNEL(bcs->channel); idx = 0; while ((idx < bcs->tx_skb->len) && WaitNoBusy(cs)) cs->BC_Write_Reg(cs, HFC_DATA_NODEB, cip, bcs->tx_skb->data[idx++]); if (idx != bcs->tx_skb->len) { debugl1(cs, "FIFO Send BUSY error"); printk(KERN_WARNING "HFC S FIFO channel %d BUSY Error\n", bcs->channel); } else { count = bcs->tx_skb->len; bcs->tx_cnt -= count; if (PACKET_NOACK == bcs->tx_skb->pkt_type) count = -1; dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = NULL; if (bcs->mode != L1_MODE_TRANS) { WaitForBusy(cs); WaitNoBusy(cs); cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F1_INC | HFC_SEND | HFC_CHANNEL(bcs->channel)); } if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) && (count >= 0)) { u_long flags; spin_lock_irqsave(&bcs->aclock, flags); bcs->ackcnt += count; spin_unlock_irqrestore(&bcs->aclock, flags); schedule_event(bcs, B_ACKPENDING); } test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); } return; } void main_irq_hfc(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; int z1, z2, rcnt; u_char f1, f2, cip; int receive, transmit, count = 5; struct sk_buff *skb; Begin: count--; cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel); if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) { cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip); WaitForBusy(cs); } WaitNoBusy(cs); receive = 0; if (bcs->mode == L1_MODE_HDLC) { f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip); cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel); WaitNoBusy(cs); f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip); if (f1 != f2) { if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc rec %d f1(%d) f2(%d)", bcs->channel, f1, f2); receive = 1; } } if (receive || (bcs->mode == L1_MODE_TRANS)) { WaitForBusy(cs); z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel)); z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel)); rcnt = z1 - z2; if (rcnt < 0) rcnt += cs->hw.hfc.fifosize; if ((bcs->mode == L1_MODE_HDLC) || (rcnt)) { rcnt++; if (cs->debug & L1_DEB_HSCX) debugl1(cs, "hfc rec %d z1(%x) z2(%x) cnt(%d)", bcs->channel, z1, z2, rcnt); /* sti(); */ if ((skb = hfc_empty_fifo(bcs, rcnt))) { skb_queue_tail(&bcs->rqueue, skb); schedule_event(bcs, B_RCVBUFREADY); } } receive = 1; } if (bcs->tx_skb) { transmit = 1; test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); hfc_fill_fifo(bcs); if (test_bit(BC_FLG_BUSY, &bcs->Flag)) transmit = 0; } else { if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { transmit = 1; test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); hfc_fill_fifo(bcs); if (test_bit(BC_FLG_BUSY, &bcs->Flag)) transmit = 0; } else { transmit = 0; schedule_event(bcs, B_XMTBUFREADY); } } if ((receive || transmit) && count) goto Begin; return; } static void mode_hfc(struct BCState *bcs, int mode, int bc) { struct IsdnCardState *cs = bcs->cs; if (cs->debug & L1_DEB_HSCX) debugl1(cs, "HFC 2BS0 mode %d bchan %d/%d", mode, bc, bcs->channel); bcs->mode = mode; bcs->channel = bc; switch (mode) { case (L1_MODE_NULL): if (bc) { cs->hw.hfc.ctmt &= ~1; cs->hw.hfc.isac_spcr &= ~0x03; } else { cs->hw.hfc.ctmt &= ~2; cs->hw.hfc.isac_spcr &= ~0x0c; } break; case (L1_MODE_TRANS): cs->hw.hfc.ctmt &= ~(1 << bc); /* set HDLC mode */ cs->BC_Write_Reg(cs, HFC_STATUS, cs->hw.hfc.ctmt, cs->hw.hfc.ctmt); hfc_clear_fifo(bcs); /* complete fifo clear */ if (bc) { cs->hw.hfc.ctmt |= 1; cs->hw.hfc.isac_spcr &= ~0x03; cs->hw.hfc.isac_spcr |= 0x02; } else { cs->hw.hfc.ctmt |= 2; cs->hw.hfc.isac_spcr &= ~0x0c; cs->hw.hfc.isac_spcr |= 0x08; } break; case (L1_MODE_HDLC): if (bc) { cs->hw.hfc.ctmt &= ~1; cs->hw.hfc.isac_spcr &= ~0x03; cs->hw.hfc.isac_spcr |= 0x02; } else { cs->hw.hfc.ctmt &= ~2; cs->hw.hfc.isac_spcr &= ~0x0c; cs->hw.hfc.isac_spcr |= 0x08; } break; } cs->BC_Write_Reg(cs, HFC_STATUS, cs->hw.hfc.ctmt, cs->hw.hfc.ctmt); cs->writeisac(cs, ISAC_SPCR, cs->hw.hfc.isac_spcr); if (mode == L1_MODE_HDLC) hfc_clear_fifo(bcs); } static void hfc_l2l1(struct PStack *st, int pr, void *arg) { struct BCState *bcs = st->l1.bcs; struct sk_buff *skb = arg; u_long flags; switch (pr) { case (PH_DATA | REQUEST): spin_lock_irqsave(&bcs->cs->lock, flags); if (bcs->tx_skb) { skb_queue_tail(&bcs->squeue, skb); } else { bcs->tx_skb = skb; test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); bcs->cs->BC_Send_Data(bcs); } spin_unlock_irqrestore(&bcs->cs->lock, flags); break; case (PH_PULL | INDICATION): spin_lock_irqsave(&bcs->cs->lock, flags); if (bcs->tx_skb) { printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n"); } else { test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); bcs->tx_skb = skb; bcs->cs->BC_Send_Data(bcs); } spin_unlock_irqrestore(&bcs->cs->lock, flags); break; case (PH_PULL | REQUEST): if (!bcs->tx_skb) { test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags); st->l1.l1l2(st, PH_PULL | CONFIRM, NULL); } else test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags); break; case (PH_ACTIVATE | REQUEST): spin_lock_irqsave(&bcs->cs->lock, flags); test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag); mode_hfc(bcs, st->l1.mode, st->l1.bc); spin_unlock_irqrestore(&bcs->cs->lock, flags); l1_msg_b(st, pr, arg); break; case (PH_DEACTIVATE | REQUEST): l1_msg_b(st, pr, arg); break; case (PH_DEACTIVATE | CONFIRM): spin_lock_irqsave(&bcs->cs->lock, flags); test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag); test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); mode_hfc(bcs, 0, st->l1.bc); spin_unlock_irqrestore(&bcs->cs->lock, flags); st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL); break; } } static void close_hfcstate(struct BCState *bcs) { mode_hfc(bcs, 0, bcs->channel); if (test_bit(BC_FLG_INIT, &bcs->Flag)) { skb_queue_purge(&bcs->rqueue); skb_queue_purge(&bcs->squeue); if (bcs->tx_skb) { dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); } } test_and_clear_bit(BC_FLG_INIT, &bcs->Flag); } static int open_hfcstate(struct IsdnCardState *cs, struct BCState *bcs) { if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) { skb_queue_head_init(&bcs->rqueue); skb_queue_head_init(&bcs->squeue); } bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); bcs->event = 0; bcs->tx_cnt = 0; return (0); } static int setstack_hfc(struct PStack *st, struct BCState *bcs) { bcs->channel = st->l1.bc; if (open_hfcstate(st->l1.hardware, bcs)) return (-1); st->l1.bcs = bcs; st->l2.l2l1 = hfc_l2l1; setstack_manager(st); bcs->st = st; setstack_l1_B(st); return (0); } static void init_send(struct BCState *bcs) { int i; bcs->hw.hfc.send = kmalloc_array(32, sizeof(unsigned int), GFP_ATOMIC); if (!bcs->hw.hfc.send) { printk(KERN_WARNING "HiSax: No memory for hfc.send\n"); return; } for (i = 0; i < 32; i++) bcs->hw.hfc.send[i] = 0x1fff; } void inithfc(struct IsdnCardState *cs) { init_send(&cs->bcs[0]); init_send(&cs->bcs[1]); cs->BC_Send_Data = &hfc_fill_fifo; cs->bcs[0].BC_SetStack = setstack_hfc; cs->bcs[1].BC_SetStack = setstack_hfc; cs->bcs[0].BC_Close = close_hfcstate; cs->bcs[1].BC_Close = close_hfcstate; mode_hfc(cs->bcs, 0, 0); mode_hfc(cs->bcs + 1, 0, 0); } void releasehfc(struct IsdnCardState *cs) { kfree(cs->bcs[0].hw.hfc.send); cs->bcs[0].hw.hfc.send = NULL; kfree(cs->bcs[1].hw.hfc.send); cs->bcs[1].hw.hfc.send = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1