Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Herrenschmidt | 3624 | 99.94% | 1 | 33.33% |
Wei Yongjun | 1 | 0.03% | 1 | 33.33% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 33.33% |
Total | 3626 | 3 |
/* * Windfarm PowerMac thermal control. * Control loops for PowerMac7,2 and 7,3 * * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp. * * Use and redistribute under the terms of the GNU GPL v2. */ #include <linux/types.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/reboot.h> #include <asm/prom.h> #include <asm/smu.h> #include "windfarm.h" #include "windfarm_pid.h" #include "windfarm_mpu.h" #define VERSION "1.0" #undef DEBUG #undef LOTSA_DEBUG #ifdef DEBUG #define DBG(args...) printk(args) #else #define DBG(args...) do { } while(0) #endif #ifdef LOTSA_DEBUG #define DBG_LOTS(args...) printk(args) #else #define DBG_LOTS(args...) do { } while(0) #endif /* define this to force CPU overtemp to 60 degree, useful for testing * the overtemp code */ #undef HACKED_OVERTEMP /* We currently only handle 2 chips */ #define NR_CHIPS 2 #define NR_CPU_FANS 3 * NR_CHIPS /* Controls and sensors */ static struct wf_sensor *sens_cpu_temp[NR_CHIPS]; static struct wf_sensor *sens_cpu_volts[NR_CHIPS]; static struct wf_sensor *sens_cpu_amps[NR_CHIPS]; static struct wf_sensor *backside_temp; static struct wf_sensor *drives_temp; static struct wf_control *cpu_front_fans[NR_CHIPS]; static struct wf_control *cpu_rear_fans[NR_CHIPS]; static struct wf_control *cpu_pumps[NR_CHIPS]; static struct wf_control *backside_fan; static struct wf_control *drives_fan; static struct wf_control *slots_fan; static struct wf_control *cpufreq_clamp; /* We keep a temperature history for average calculation of 180s */ #define CPU_TEMP_HIST_SIZE 180 /* Fixed speed for slot fan */ #define SLOTS_FAN_DEFAULT_PWM 40 /* Scale value for CPU intake fans */ #define CPU_INTAKE_SCALE 0x0000f852 /* PID loop state */ static const struct mpu_data *cpu_mpu_data[NR_CHIPS]; static struct wf_cpu_pid_state cpu_pid[NR_CHIPS]; static bool cpu_pid_combined; static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; static int cpu_thist_pt; static s64 cpu_thist_total; static s32 cpu_all_tmax = 100 << 16; static struct wf_pid_state backside_pid; static int backside_tick; static struct wf_pid_state drives_pid; static int drives_tick; static int nr_chips; static bool have_all_controls; static bool have_all_sensors; static bool started; static int failure_state; #define FAILURE_SENSOR 1 #define FAILURE_FAN 2 #define FAILURE_PERM 4 #define FAILURE_LOW_OVERTEMP 8 #define FAILURE_HIGH_OVERTEMP 16 /* Overtemp values */ #define LOW_OVER_AVERAGE 0 #define LOW_OVER_IMMEDIATE (10 << 16) #define LOW_OVER_CLEAR ((-10) << 16) #define HIGH_OVER_IMMEDIATE (14 << 16) #define HIGH_OVER_AVERAGE (10 << 16) #define HIGH_OVER_IMMEDIATE (14 << 16) static void cpu_max_all_fans(void) { int i; /* We max all CPU fans in case of a sensor error. We also do the * cpufreq clamping now, even if it's supposedly done later by the * generic code anyway, we do it earlier here to react faster */ if (cpufreq_clamp) wf_control_set_max(cpufreq_clamp); for (i = 0; i < nr_chips; i++) { if (cpu_front_fans[i]) wf_control_set_max(cpu_front_fans[i]); if (cpu_rear_fans[i]) wf_control_set_max(cpu_rear_fans[i]); if (cpu_pumps[i]) wf_control_set_max(cpu_pumps[i]); } } static int cpu_check_overtemp(s32 temp) { int new_state = 0; s32 t_avg, t_old; static bool first = true; /* First check for immediate overtemps */ if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { new_state |= FAILURE_LOW_OVERTEMP; if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" " temperature !\n"); } if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { new_state |= FAILURE_HIGH_OVERTEMP; if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) printk(KERN_ERR "windfarm: Critical overtemp due to" " immediate CPU temperature !\n"); } /* * The first time around, initialize the array with the first * temperature reading */ if (first) { int i; cpu_thist_total = 0; for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) { cpu_thist[i] = temp; cpu_thist_total += temp; } first = false; } /* * We calculate a history of max temperatures and use that for the * overtemp management */ t_old = cpu_thist[cpu_thist_pt]; cpu_thist[cpu_thist_pt] = temp; cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; cpu_thist_total -= t_old; cpu_thist_total += temp; t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); /* Now check for average overtemps */ if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { new_state |= FAILURE_LOW_OVERTEMP; if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) printk(KERN_ERR "windfarm: Overtemp due to average CPU" " temperature !\n"); } if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { new_state |= FAILURE_HIGH_OVERTEMP; if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) printk(KERN_ERR "windfarm: Critical overtemp due to" " average CPU temperature !\n"); } /* Now handle overtemp conditions. We don't currently use the windfarm * overtemp handling core as it's not fully suited to the needs of those * new machine. This will be fixed later. */ if (new_state) { /* High overtemp -> immediate shutdown */ if (new_state & FAILURE_HIGH_OVERTEMP) machine_power_off(); if ((failure_state & new_state) != new_state) cpu_max_all_fans(); failure_state |= new_state; } else if ((failure_state & FAILURE_LOW_OVERTEMP) && (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); failure_state &= ~FAILURE_LOW_OVERTEMP; } return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); } static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power) { s32 dtemp, volts, amps; int rc; /* Get diode temperature */ rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp); if (rc) { DBG(" CPU%d: temp reading error !\n", cpu); return -EIO; } DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp))); *temp = dtemp; /* Get voltage */ rc = wf_sensor_get(sens_cpu_volts[cpu], &volts); if (rc) { DBG(" CPU%d, volts reading error !\n", cpu); return -EIO; } DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts))); /* Get current */ rc = wf_sensor_get(sens_cpu_amps[cpu], &s); if (rc) { DBG(" CPU%d, current reading error !\n", cpu); return -EIO; } DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps))); /* Calculate power */ /* Scale voltage and current raw sensor values according to fixed scales * obtained in Darwin and calculate power from I and V */ *power = (((u64)volts) * ((u64)amps)) >> 16; DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power))); return 0; } static void cpu_fans_tick_split(void) { int err, cpu; s32 intake, temp, power, t_max = 0; DBG_LOTS("* cpu fans_tick_split()\n"); for (cpu = 0; cpu < nr_chips; ++cpu) { struct wf_cpu_pid_state *sp = &cpu_pid[cpu]; /* Read current speed */ wf_control_get(cpu_rear_fans[cpu], &sp->target); DBG_LOTS(" CPU%d: cur_target = %d RPM\n", cpu, sp->target); err = read_one_cpu_vals(cpu, &temp, &power); if (err) { failure_state |= FAILURE_SENSOR; cpu_max_all_fans(); return; } /* Keep track of highest temp */ t_max = max(t_max, temp); /* Handle possible overtemps */ if (cpu_check_overtemp(t_max)) return; /* Run PID */ wf_cpu_pid_run(sp, power, temp); DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target); /* Apply result directly to exhaust fan */ err = wf_control_set(cpu_rear_fans[cpu], sp->target); if (err) { pr_warning("wf_pm72: Fan %s reports error %d\n", cpu_rear_fans[cpu]->name, err); failure_state |= FAILURE_FAN; break; } /* Scale result for intake fan */ intake = (sp->target * CPU_INTAKE_SCALE) >> 16; DBG_LOTS(" CPU%d: intake = %d RPM\n", cpu, intake); err = wf_control_set(cpu_front_fans[cpu], intake); if (err) { pr_warning("wf_pm72: Fan %s reports error %d\n", cpu_front_fans[cpu]->name, err); failure_state |= FAILURE_FAN; break; } } } static void cpu_fans_tick_combined(void) { s32 temp0, power0, temp1, power1, t_max = 0; s32 temp, power, intake, pump; struct wf_control *pump0, *pump1; struct wf_cpu_pid_state *sp = &cpu_pid[0]; int err, cpu; DBG_LOTS("* cpu fans_tick_combined()\n"); /* Read current speed from cpu 0 */ wf_control_get(cpu_rear_fans[0], &sp->target); DBG_LOTS(" CPUs: cur_target = %d RPM\n", sp->target); /* Read values for both CPUs */ err = read_one_cpu_vals(0, &temp0, &power0); if (err) { failure_state |= FAILURE_SENSOR; cpu_max_all_fans(); return; } err = read_one_cpu_vals(1, &temp1, &power1); if (err) { failure_state |= FAILURE_SENSOR; cpu_max_all_fans(); return; } /* Keep track of highest temp */ t_max = max(t_max, max(temp0, temp1)); /* Handle possible overtemps */ if (cpu_check_overtemp(t_max)) return; /* Use the max temp & power of both */ temp = max(temp0, temp1); power = max(power0, power1); /* Run PID */ wf_cpu_pid_run(sp, power, temp); /* Scale result for intake fan */ intake = (sp->target * CPU_INTAKE_SCALE) >> 16; /* Same deal with pump speed */ pump0 = cpu_pumps[0]; pump1 = cpu_pumps[1]; if (!pump0) { pump0 = pump1; pump1 = NULL; } pump = (sp->target * wf_control_get_max(pump0)) / cpu_mpu_data[0]->rmaxn_exhaust_fan; DBG_LOTS(" CPUs: target = %d RPM\n", sp->target); DBG_LOTS(" CPUs: intake = %d RPM\n", intake); DBG_LOTS(" CPUs: pump = %d RPM\n", pump); for (cpu = 0; cpu < nr_chips; cpu++) { err = wf_control_set(cpu_rear_fans[cpu], sp->target); if (err) { pr_warning("wf_pm72: Fan %s reports error %d\n", cpu_rear_fans[cpu]->name, err); failure_state |= FAILURE_FAN; } err = wf_control_set(cpu_front_fans[cpu], intake); if (err) { pr_warning("wf_pm72: Fan %s reports error %d\n", cpu_front_fans[cpu]->name, err); failure_state |= FAILURE_FAN; } err = 0; if (cpu_pumps[cpu]) err = wf_control_set(cpu_pumps[cpu], pump); if (err) { pr_warning("wf_pm72: Pump %s reports error %d\n", cpu_pumps[cpu]->name, err); failure_state |= FAILURE_FAN; } } } /* Implementation... */ static int cpu_setup_pid(int cpu) { struct wf_cpu_pid_param pid; const struct mpu_data *mpu = cpu_mpu_data[cpu]; s32 tmax, ttarget, ptarget; int fmin, fmax, hsize; /* Get PID params from the appropriate MPU EEPROM */ tmax = mpu->tmax << 16; ttarget = mpu->ttarget << 16; ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16; DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n", cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax)); /* We keep a global tmax for overtemp calculations */ if (tmax < cpu_all_tmax) cpu_all_tmax = tmax; /* Set PID min/max by using the rear fan min/max */ fmin = wf_control_get_min(cpu_rear_fans[cpu]); fmax = wf_control_get_max(cpu_rear_fans[cpu]); DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax); /* History size */ hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY); DBG("wf_72: CPU%d history size = %d\n", cpu, hsize); /* Initialize PID loop */ pid.interval = 1; /* seconds */ pid.history_len = hsize; pid.gd = mpu->pid_gd; pid.gp = mpu->pid_gp; pid.gr = mpu->pid_gr; pid.tmax = tmax; pid.ttarget = ttarget; pid.pmaxadj = ptarget; pid.min = fmin; pid.max = fmax; wf_cpu_pid_init(&cpu_pid[cpu], &pid); cpu_pid[cpu].target = 1000; return 0; } /* Backside/U3 fan */ static struct wf_pid_param backside_u3_param = { .interval = 5, .history_len = 2, .gd = 40 << 20, .gp = 5 << 20, .gr = 0, .itarget = 65 << 16, .additive = 1, .min = 20, .max = 100, }; static struct wf_pid_param backside_u3h_param = { .interval = 5, .history_len = 2, .gd = 20 << 20, .gp = 5 << 20, .gr = 0, .itarget = 75 << 16, .additive = 1, .min = 20, .max = 100, }; static void backside_fan_tick(void) { s32 temp; int speed; int err; if (!backside_fan || !backside_temp || !backside_tick) return; if (--backside_tick > 0) return; backside_tick = backside_pid.param.interval; DBG_LOTS("* backside fans tick\n"); /* Update fan speed from actual fans */ err = wf_control_get(backside_fan, &speed); if (!err) backside_pid.target = speed; err = wf_sensor_get(backside_temp, &temp); if (err) { printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n", err); failure_state |= FAILURE_SENSOR; wf_control_set_max(backside_fan); return; } speed = wf_pid_run(&backside_pid, temp); DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", FIX32TOPRINT(temp), speed); err = wf_control_set(backside_fan, speed); if (err) { printk(KERN_WARNING "windfarm: backside fan error %d\n", err); failure_state |= FAILURE_FAN; } } static void backside_setup_pid(void) { /* first time initialize things */ s32 fmin = wf_control_get_min(backside_fan); s32 fmax = wf_control_get_max(backside_fan); struct wf_pid_param param; struct device_node *u3; int u3h = 1; /* conservative by default */ u3 = of_find_node_by_path("/u3@0,f8000000"); if (u3 != NULL) { const u32 *vers = of_get_property(u3, "device-rev", NULL); if (vers) if (((*vers) & 0x3f) < 0x34) u3h = 0; of_node_put(u3); } param = u3h ? backside_u3h_param : backside_u3_param; param.min = max(param.min, fmin); param.max = min(param.max, fmax); wf_pid_init(&backside_pid, ¶m); backside_tick = 1; pr_info("wf_pm72: Backside control loop started.\n"); } /* Drive bay fan */ static const struct wf_pid_param drives_param = { .interval = 5, .history_len = 2, .gd = 30 << 20, .gp = 5 << 20, .gr = 0, .itarget = 40 << 16, .additive = 1, .min = 300, .max = 4000, }; static void drives_fan_tick(void) { s32 temp; int speed; int err; if (!drives_fan || !drives_temp || !drives_tick) return; if (--drives_tick > 0) return; drives_tick = drives_pid.param.interval; DBG_LOTS("* drives fans tick\n"); /* Update fan speed from actual fans */ err = wf_control_get(drives_fan, &speed); if (!err) drives_pid.target = speed; err = wf_sensor_get(drives_temp, &temp); if (err) { pr_warning("wf_pm72: drive bay temp sensor error %d\n", err); failure_state |= FAILURE_SENSOR; wf_control_set_max(drives_fan); return; } speed = wf_pid_run(&drives_pid, temp); DBG_LOTS("drives PID temp=%d.%.3d speed=%d\n", FIX32TOPRINT(temp), speed); err = wf_control_set(drives_fan, speed); if (err) { printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err); failure_state |= FAILURE_FAN; } } static void drives_setup_pid(void) { /* first time initialize things */ s32 fmin = wf_control_get_min(drives_fan); s32 fmax = wf_control_get_max(drives_fan); struct wf_pid_param param = drives_param; param.min = max(param.min, fmin); param.max = min(param.max, fmax); wf_pid_init(&drives_pid, ¶m); drives_tick = 1; pr_info("wf_pm72: Drive bay control loop started.\n"); } static void set_fail_state(void) { cpu_max_all_fans(); if (backside_fan) wf_control_set_max(backside_fan); if (slots_fan) wf_control_set_max(slots_fan); if (drives_fan) wf_control_set_max(drives_fan); } static void pm72_tick(void) { int i, last_failure; if (!started) { started = true; printk(KERN_INFO "windfarm: CPUs control loops started.\n"); for (i = 0; i < nr_chips; ++i) { if (cpu_setup_pid(i) < 0) { failure_state = FAILURE_PERM; set_fail_state(); break; } } DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); backside_setup_pid(); drives_setup_pid(); /* * We don't have the right stuff to drive the PCI fan * so we fix it to a default value */ wf_control_set(slots_fan, SLOTS_FAN_DEFAULT_PWM); #ifdef HACKED_OVERTEMP cpu_all_tmax = 60 << 16; #endif } /* Permanent failure, bail out */ if (failure_state & FAILURE_PERM) return; /* * Clear all failure bits except low overtemp which will be eventually * cleared by the control loop itself */ last_failure = failure_state; failure_state &= FAILURE_LOW_OVERTEMP; if (cpu_pid_combined) cpu_fans_tick_combined(); else cpu_fans_tick_split(); backside_fan_tick(); drives_fan_tick(); DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n", last_failure, failure_state); /* Check for failures. Any failure causes cpufreq clamping */ if (failure_state && last_failure == 0 && cpufreq_clamp) wf_control_set_max(cpufreq_clamp); if (failure_state == 0 && last_failure && cpufreq_clamp) wf_control_set_min(cpufreq_clamp); /* That's it for now, we might want to deal with other failures * differently in the future though */ } static void pm72_new_control(struct wf_control *ct) { bool all_controls; bool had_pump = cpu_pumps[0] || cpu_pumps[1]; if (!strcmp(ct->name, "cpu-front-fan-0")) cpu_front_fans[0] = ct; else if (!strcmp(ct->name, "cpu-front-fan-1")) cpu_front_fans[1] = ct; else if (!strcmp(ct->name, "cpu-rear-fan-0")) cpu_rear_fans[0] = ct; else if (!strcmp(ct->name, "cpu-rear-fan-1")) cpu_rear_fans[1] = ct; else if (!strcmp(ct->name, "cpu-pump-0")) cpu_pumps[0] = ct; else if (!strcmp(ct->name, "cpu-pump-1")) cpu_pumps[1] = ct; else if (!strcmp(ct->name, "backside-fan")) backside_fan = ct; else if (!strcmp(ct->name, "slots-fan")) slots_fan = ct; else if (!strcmp(ct->name, "drive-bay-fan")) drives_fan = ct; else if (!strcmp(ct->name, "cpufreq-clamp")) cpufreq_clamp = ct; all_controls = cpu_front_fans[0] && cpu_rear_fans[0] && backside_fan && slots_fan && drives_fan; if (nr_chips > 1) all_controls &= cpu_front_fans[1] && cpu_rear_fans[1]; have_all_controls = all_controls; if ((cpu_pumps[0] || cpu_pumps[1]) && !had_pump) { pr_info("wf_pm72: Liquid cooling pump(s) detected," " using new algorithm !\n"); cpu_pid_combined = true; } } static void pm72_new_sensor(struct wf_sensor *sr) { bool all_sensors; if (!strcmp(sr->name, "cpu-diode-temp-0")) sens_cpu_temp[0] = sr; else if (!strcmp(sr->name, "cpu-diode-temp-1")) sens_cpu_temp[1] = sr; else if (!strcmp(sr->name, "cpu-voltage-0")) sens_cpu_volts[0] = sr; else if (!strcmp(sr->name, "cpu-voltage-1")) sens_cpu_volts[1] = sr; else if (!strcmp(sr->name, "cpu-current-0")) sens_cpu_amps[0] = sr; else if (!strcmp(sr->name, "cpu-current-1")) sens_cpu_amps[1] = sr; else if (!strcmp(sr->name, "backside-temp")) backside_temp = sr; else if (!strcmp(sr->name, "hd-temp")) drives_temp = sr; all_sensors = sens_cpu_temp[0] && sens_cpu_volts[0] && sens_cpu_amps[0] && backside_temp && drives_temp; if (nr_chips > 1) all_sensors &= sens_cpu_temp[1] && sens_cpu_volts[1] && sens_cpu_amps[1]; have_all_sensors = all_sensors; } static int pm72_wf_notify(struct notifier_block *self, unsigned long event, void *data) { switch (event) { case WF_EVENT_NEW_SENSOR: pm72_new_sensor(data); break; case WF_EVENT_NEW_CONTROL: pm72_new_control(data); break; case WF_EVENT_TICK: if (have_all_controls && have_all_sensors) pm72_tick(); } return 0; } static struct notifier_block pm72_events = { .notifier_call = pm72_wf_notify, }; static int wf_pm72_probe(struct platform_device *dev) { wf_register_client(&pm72_events); return 0; } static int wf_pm72_remove(struct platform_device *dev) { wf_unregister_client(&pm72_events); /* should release all sensors and controls */ return 0; } static struct platform_driver wf_pm72_driver = { .probe = wf_pm72_probe, .remove = wf_pm72_remove, .driver = { .name = "windfarm", }, }; static int __init wf_pm72_init(void) { struct device_node *cpu; int i; if (!of_machine_is_compatible("PowerMac7,2") && !of_machine_is_compatible("PowerMac7,3")) return -ENODEV; /* Count the number of CPU cores */ nr_chips = 0; for_each_node_by_type(cpu, "cpu") ++nr_chips; if (nr_chips > NR_CHIPS) nr_chips = NR_CHIPS; pr_info("windfarm: Initializing for desktop G5 with %d chips\n", nr_chips); /* Get MPU data for each CPU */ for (i = 0; i < nr_chips; i++) { cpu_mpu_data[i] = wf_get_mpu(i); if (!cpu_mpu_data[i]) { pr_err("wf_pm72: Failed to find MPU data for CPU %d\n", i); return -ENXIO; } } #ifdef MODULE request_module("windfarm_fcu_controls"); request_module("windfarm_lm75_sensor"); request_module("windfarm_ad7417_sensor"); request_module("windfarm_max6690_sensor"); request_module("windfarm_cpufreq_clamp"); #endif /* MODULE */ platform_driver_register(&wf_pm72_driver); return 0; } static void __exit wf_pm72_exit(void) { platform_driver_unregister(&wf_pm72_driver); } module_init(wf_pm72_init); module_exit(wf_pm72_exit); MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>"); MODULE_DESCRIPTION("Thermal control for AGP PowerMac G5s"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:windfarm");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1