Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Artur Paszkiewicz | 5586 | 80.56% | 11 | 57.89% |
Tomasz Majchrzak | 808 | 11.65% | 1 | 5.26% |
Pawel Baldysiak | 496 | 7.15% | 2 | 10.53% |
Kent Overstreet | 31 | 0.45% | 1 | 5.26% |
Christoph Hellwig | 10 | 0.14% | 2 | 10.53% |
Jan Kara | 2 | 0.03% | 1 | 5.26% |
Neil Brown | 1 | 0.01% | 1 | 5.26% |
Total | 6934 | 19 |
/* * Partial Parity Log for closing the RAID5 write hole * Copyright (c) 2017, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/slab.h> #include <linux/crc32c.h> #include <linux/flex_array.h> #include <linux/async_tx.h> #include <linux/raid/md_p.h> #include "md.h" #include "raid5.h" /* * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for * partial parity data. The header contains an array of entries * (struct ppl_header_entry) which describe the logged write requests. * Partial parity for the entries comes after the header, written in the same * sequence as the entries: * * Header * entry0 * ... * entryN * PP data * PP for entry0 * ... * PP for entryN * * An entry describes one or more consecutive stripe_heads, up to a full * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the * number of stripe_heads in the entry and n is the number of modified data * disks. Every stripe_head in the entry must write to the same data disks. * An example of a valid case described by a single entry (writes to the first * stripe of a 4 disk array, 16k chunk size): * * sh->sector dd0 dd1 dd2 ppl * +-----+-----+-----+ * 0 | --- | --- | --- | +----+ * 8 | -W- | -W- | --- | | pp | data_sector = 8 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k * +-----+-----+-----+ +----+ * * data_sector is the first raid sector of the modified data, data_size is the * total size of modified data and pp_size is the size of partial parity for * this entry. Entries for full stripe writes contain no partial parity * (pp_size = 0), they only mark the stripes for which parity should be * recalculated after an unclean shutdown. Every entry holds a checksum of its * partial parity, the header also has a checksum of the header itself. * * A write request is always logged to the PPL instance stored on the parity * disk of the corresponding stripe. For each member disk there is one ppl_log * used to handle logging for this disk, independently from others. They are * grouped in child_logs array in struct ppl_conf, which is assigned to * r5conf->log_private. * * ppl_io_unit represents a full PPL write, header_page contains the ppl_header. * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head * can be appended to the last entry if it meets the conditions for a valid * entry described above, otherwise a new entry is added. Checksums of entries * are calculated incrementally as stripes containing partial parity are being * added. ppl_submit_iounit() calculates the checksum of the header and submits * a bio containing the header page and partial parity pages (sh->ppl_page) for * all stripes of the io_unit. When the PPL write completes, the stripes * associated with the io_unit are released and raid5d starts writing their data * and parity. When all stripes are written, the io_unit is freed and the next * can be submitted. * * An io_unit is used to gather stripes until it is submitted or becomes full * (if the maximum number of entries or size of PPL is reached). Another io_unit * can't be submitted until the previous has completed (PPL and stripe * data+parity is written). The log->io_list tracks all io_units of a log * (for a single member disk). New io_units are added to the end of the list * and the first io_unit is submitted, if it is not submitted already. * The current io_unit accepting new stripes is always at the end of the list. * * If write-back cache is enabled for any of the disks in the array, its data * must be flushed before next io_unit is submitted. */ #define PPL_SPACE_SIZE (128 * 1024) struct ppl_conf { struct mddev *mddev; /* array of child logs, one for each raid disk */ struct ppl_log *child_logs; int count; int block_size; /* the logical block size used for data_sector * in ppl_header_entry */ u32 signature; /* raid array identifier */ atomic64_t seq; /* current log write sequence number */ struct kmem_cache *io_kc; mempool_t io_pool; struct bio_set bs; struct bio_set flush_bs; /* used only for recovery */ int recovered_entries; int mismatch_count; /* stripes to retry if failed to allocate io_unit */ struct list_head no_mem_stripes; spinlock_t no_mem_stripes_lock; }; struct ppl_log { struct ppl_conf *ppl_conf; /* shared between all log instances */ struct md_rdev *rdev; /* array member disk associated with * this log instance */ struct mutex io_mutex; struct ppl_io_unit *current_io; /* current io_unit accepting new data * always at the end of io_list */ spinlock_t io_list_lock; struct list_head io_list; /* all io_units of this log */ sector_t next_io_sector; unsigned int entry_space; bool use_multippl; bool wb_cache_on; unsigned long disk_flush_bitmap; }; #define PPL_IO_INLINE_BVECS 32 struct ppl_io_unit { struct ppl_log *log; struct page *header_page; /* for ppl_header */ unsigned int entries_count; /* number of entries in ppl_header */ unsigned int pp_size; /* total size current of partial parity */ u64 seq; /* sequence number of this log write */ struct list_head log_sibling; /* log->io_list */ struct list_head stripe_list; /* stripes added to the io_unit */ atomic_t pending_stripes; /* how many stripes not written to raid */ atomic_t pending_flushes; /* how many disk flushes are in progress */ bool submitted; /* true if write to log started */ /* inline bio and its biovec for submitting the iounit */ struct bio bio; struct bio_vec biovec[PPL_IO_INLINE_BVECS]; }; struct dma_async_tx_descriptor * ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu, struct dma_async_tx_descriptor *tx) { int disks = sh->disks; struct page **srcs = flex_array_get(percpu->scribble, 0); int count = 0, pd_idx = sh->pd_idx, i; struct async_submit_ctl submit; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); /* * Partial parity is the XOR of stripe data chunks that are not changed * during the write request. Depending on available data * (read-modify-write vs. reconstruct-write case) we calculate it * differently. */ if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { /* * rmw: xor old data and parity from updated disks * This is calculated earlier by ops_run_prexor5() so just copy * the parity dev page. */ srcs[count++] = sh->dev[pd_idx].page; } else if (sh->reconstruct_state == reconstruct_state_drain_run) { /* rcw: xor data from all not updated disks */ for (i = disks; i--;) { struct r5dev *dev = &sh->dev[i]; if (test_bit(R5_UPTODATE, &dev->flags)) srcs[count++] = dev->page; } } else { return tx; } init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx, NULL, sh, flex_array_get(percpu->scribble, 0) + sizeof(struct page *) * (sh->disks + 2)); if (count == 1) tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE, &submit); else tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE, &submit); return tx; } static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data) { struct kmem_cache *kc = pool_data; struct ppl_io_unit *io; io = kmem_cache_alloc(kc, gfp_mask); if (!io) return NULL; io->header_page = alloc_page(gfp_mask); if (!io->header_page) { kmem_cache_free(kc, io); return NULL; } return io; } static void ppl_io_pool_free(void *element, void *pool_data) { struct kmem_cache *kc = pool_data; struct ppl_io_unit *io = element; __free_page(io->header_page); kmem_cache_free(kc, io); } static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log, struct stripe_head *sh) { struct ppl_conf *ppl_conf = log->ppl_conf; struct ppl_io_unit *io; struct ppl_header *pplhdr; struct page *header_page; io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT); if (!io) return NULL; header_page = io->header_page; memset(io, 0, sizeof(*io)); io->header_page = header_page; io->log = log; INIT_LIST_HEAD(&io->log_sibling); INIT_LIST_HEAD(&io->stripe_list); atomic_set(&io->pending_stripes, 0); atomic_set(&io->pending_flushes, 0); bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS); pplhdr = page_address(io->header_page); clear_page(pplhdr); memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); pplhdr->signature = cpu_to_le32(ppl_conf->signature); io->seq = atomic64_add_return(1, &ppl_conf->seq); pplhdr->generation = cpu_to_le64(io->seq); return io; } static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh) { struct ppl_io_unit *io = log->current_io; struct ppl_header_entry *e = NULL; struct ppl_header *pplhdr; int i; sector_t data_sector = 0; int data_disks = 0; struct r5conf *conf = sh->raid_conf; pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector); /* check if current io_unit is full */ if (io && (io->pp_size == log->entry_space || io->entries_count == PPL_HDR_MAX_ENTRIES)) { pr_debug("%s: add io_unit blocked by seq: %llu\n", __func__, io->seq); io = NULL; } /* add a new unit if there is none or the current is full */ if (!io) { io = ppl_new_iounit(log, sh); if (!io) return -ENOMEM; spin_lock_irq(&log->io_list_lock); list_add_tail(&io->log_sibling, &log->io_list); spin_unlock_irq(&log->io_list_lock); log->current_io = io; } for (i = 0; i < sh->disks; i++) { struct r5dev *dev = &sh->dev[i]; if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) { if (!data_disks || dev->sector < data_sector) data_sector = dev->sector; data_disks++; } } BUG_ON(!data_disks); pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__, io->seq, (unsigned long long)data_sector, data_disks); pplhdr = page_address(io->header_page); if (io->entries_count > 0) { struct ppl_header_entry *last = &pplhdr->entries[io->entries_count - 1]; struct stripe_head *sh_last = list_last_entry( &io->stripe_list, struct stripe_head, log_list); u64 data_sector_last = le64_to_cpu(last->data_sector); u32 data_size_last = le32_to_cpu(last->data_size); /* * Check if we can append the stripe to the last entry. It must * be just after the last logged stripe and write to the same * disks. Use bit shift and logarithm to avoid 64-bit division. */ if ((sh->sector == sh_last->sector + STRIPE_SECTORS) && (data_sector >> ilog2(conf->chunk_sectors) == data_sector_last >> ilog2(conf->chunk_sectors)) && ((data_sector - data_sector_last) * data_disks == data_size_last >> 9)) e = last; } if (!e) { e = &pplhdr->entries[io->entries_count++]; e->data_sector = cpu_to_le64(data_sector); e->parity_disk = cpu_to_le32(sh->pd_idx); e->checksum = cpu_to_le32(~0); } le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT); /* don't write any PP if full stripe write */ if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) { le32_add_cpu(&e->pp_size, PAGE_SIZE); io->pp_size += PAGE_SIZE; e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum), page_address(sh->ppl_page), PAGE_SIZE)); } list_add_tail(&sh->log_list, &io->stripe_list); atomic_inc(&io->pending_stripes); sh->ppl_io = io; return 0; } int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh) { struct ppl_conf *ppl_conf = conf->log_private; struct ppl_io_unit *io = sh->ppl_io; struct ppl_log *log; if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) { clear_bit(STRIPE_LOG_TRAPPED, &sh->state); return -EAGAIN; } log = &ppl_conf->child_logs[sh->pd_idx]; mutex_lock(&log->io_mutex); if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { mutex_unlock(&log->io_mutex); return -EAGAIN; } set_bit(STRIPE_LOG_TRAPPED, &sh->state); clear_bit(STRIPE_DELAYED, &sh->state); atomic_inc(&sh->count); if (ppl_log_stripe(log, sh)) { spin_lock_irq(&ppl_conf->no_mem_stripes_lock); list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes); spin_unlock_irq(&ppl_conf->no_mem_stripes_lock); } mutex_unlock(&log->io_mutex); return 0; } static void ppl_log_endio(struct bio *bio) { struct ppl_io_unit *io = bio->bi_private; struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct stripe_head *sh, *next; pr_debug("%s: seq: %llu\n", __func__, io->seq); if (bio->bi_status) md_error(ppl_conf->mddev, log->rdev); list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { list_del_init(&sh->log_list); set_bit(STRIPE_HANDLE, &sh->state); raid5_release_stripe(sh); } } static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio) { char b[BDEVNAME_SIZE]; pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n", __func__, io->seq, bio->bi_iter.bi_size, (unsigned long long)bio->bi_iter.bi_sector, bio_devname(bio, b)); submit_bio(bio); } static void ppl_submit_iounit(struct ppl_io_unit *io) { struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct ppl_header *pplhdr = page_address(io->header_page); struct bio *bio = &io->bio; struct stripe_head *sh; int i; bio->bi_private = io; if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { ppl_log_endio(bio); return; } for (i = 0; i < io->entries_count; i++) { struct ppl_header_entry *e = &pplhdr->entries[i]; pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n", __func__, io->seq, i, le64_to_cpu(e->data_sector), le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size)); e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >> ilog2(ppl_conf->block_size >> 9)); e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum)); } pplhdr->entries_count = cpu_to_le32(io->entries_count); pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE)); /* Rewind the buffer if current PPL is larger then remaining space */ if (log->use_multippl && log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector < (PPL_HEADER_SIZE + io->pp_size) >> 9) log->next_io_sector = log->rdev->ppl.sector; bio->bi_end_io = ppl_log_endio; bio->bi_opf = REQ_OP_WRITE | REQ_FUA; bio_set_dev(bio, log->rdev->bdev); bio->bi_iter.bi_sector = log->next_io_sector; bio_add_page(bio, io->header_page, PAGE_SIZE, 0); pr_debug("%s: log->current_io_sector: %llu\n", __func__, (unsigned long long)log->next_io_sector); if (log->use_multippl) log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9; WARN_ON(log->disk_flush_bitmap != 0); list_for_each_entry(sh, &io->stripe_list, log_list) { for (i = 0; i < sh->disks; i++) { struct r5dev *dev = &sh->dev[i]; if ((ppl_conf->child_logs[i].wb_cache_on) && (test_bit(R5_Wantwrite, &dev->flags))) { set_bit(i, &log->disk_flush_bitmap); } } /* entries for full stripe writes have no partial parity */ if (test_bit(STRIPE_FULL_WRITE, &sh->state)) continue; if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) { struct bio *prev = bio; bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &ppl_conf->bs); bio->bi_opf = prev->bi_opf; bio_copy_dev(bio, prev); bio->bi_iter.bi_sector = bio_end_sector(prev); bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0); bio_chain(bio, prev); ppl_submit_iounit_bio(io, prev); } } ppl_submit_iounit_bio(io, bio); } static void ppl_submit_current_io(struct ppl_log *log) { struct ppl_io_unit *io; spin_lock_irq(&log->io_list_lock); io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, log_sibling); if (io && io->submitted) io = NULL; spin_unlock_irq(&log->io_list_lock); if (io) { io->submitted = true; if (io == log->current_io) log->current_io = NULL; ppl_submit_iounit(io); } } void ppl_write_stripe_run(struct r5conf *conf) { struct ppl_conf *ppl_conf = conf->log_private; struct ppl_log *log; int i; for (i = 0; i < ppl_conf->count; i++) { log = &ppl_conf->child_logs[i]; mutex_lock(&log->io_mutex); ppl_submit_current_io(log); mutex_unlock(&log->io_mutex); } } static void ppl_io_unit_finished(struct ppl_io_unit *io) { struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct r5conf *conf = ppl_conf->mddev->private; unsigned long flags; pr_debug("%s: seq: %llu\n", __func__, io->seq); local_irq_save(flags); spin_lock(&log->io_list_lock); list_del(&io->log_sibling); spin_unlock(&log->io_list_lock); mempool_free(io, &ppl_conf->io_pool); spin_lock(&ppl_conf->no_mem_stripes_lock); if (!list_empty(&ppl_conf->no_mem_stripes)) { struct stripe_head *sh; sh = list_first_entry(&ppl_conf->no_mem_stripes, struct stripe_head, log_list); list_del_init(&sh->log_list); set_bit(STRIPE_HANDLE, &sh->state); raid5_release_stripe(sh); } spin_unlock(&ppl_conf->no_mem_stripes_lock); local_irq_restore(flags); wake_up(&conf->wait_for_quiescent); } static void ppl_flush_endio(struct bio *bio) { struct ppl_io_unit *io = bio->bi_private; struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct r5conf *conf = ppl_conf->mddev->private; char b[BDEVNAME_SIZE]; pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b)); if (bio->bi_status) { struct md_rdev *rdev; rcu_read_lock(); rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio)); if (rdev) md_error(rdev->mddev, rdev); rcu_read_unlock(); } bio_put(bio); if (atomic_dec_and_test(&io->pending_flushes)) { ppl_io_unit_finished(io); md_wakeup_thread(conf->mddev->thread); } } static void ppl_do_flush(struct ppl_io_unit *io) { struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct r5conf *conf = ppl_conf->mddev->private; int raid_disks = conf->raid_disks; int flushed_disks = 0; int i; atomic_set(&io->pending_flushes, raid_disks); for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) { struct md_rdev *rdev; struct block_device *bdev = NULL; rcu_read_lock(); rdev = rcu_dereference(conf->disks[i].rdev); if (rdev && !test_bit(Faulty, &rdev->flags)) bdev = rdev->bdev; rcu_read_unlock(); if (bdev) { struct bio *bio; char b[BDEVNAME_SIZE]; bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs); bio_set_dev(bio, bdev); bio->bi_private = io; bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; bio->bi_end_io = ppl_flush_endio; pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b)); submit_bio(bio); flushed_disks++; } } log->disk_flush_bitmap = 0; for (i = flushed_disks ; i < raid_disks; i++) { if (atomic_dec_and_test(&io->pending_flushes)) ppl_io_unit_finished(io); } } static inline bool ppl_no_io_unit_submitted(struct r5conf *conf, struct ppl_log *log) { struct ppl_io_unit *io; io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, log_sibling); return !io || !io->submitted; } void ppl_quiesce(struct r5conf *conf, int quiesce) { struct ppl_conf *ppl_conf = conf->log_private; int i; if (quiesce) { for (i = 0; i < ppl_conf->count; i++) { struct ppl_log *log = &ppl_conf->child_logs[i]; spin_lock_irq(&log->io_list_lock); wait_event_lock_irq(conf->wait_for_quiescent, ppl_no_io_unit_submitted(conf, log), log->io_list_lock); spin_unlock_irq(&log->io_list_lock); } } } int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio) { if (bio->bi_iter.bi_size == 0) { bio_endio(bio); return 0; } bio->bi_opf &= ~REQ_PREFLUSH; return -EAGAIN; } void ppl_stripe_write_finished(struct stripe_head *sh) { struct ppl_io_unit *io; io = sh->ppl_io; sh->ppl_io = NULL; if (io && atomic_dec_and_test(&io->pending_stripes)) { if (io->log->disk_flush_bitmap) ppl_do_flush(io); else ppl_io_unit_finished(io); } } static void ppl_xor(int size, struct page *page1, struct page *page2) { struct async_submit_ctl submit; struct dma_async_tx_descriptor *tx; struct page *xor_srcs[] = { page1, page2 }; init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST, NULL, NULL, NULL, NULL); tx = async_xor(page1, xor_srcs, 0, 2, size, &submit); async_tx_quiesce(&tx); } /* * PPL recovery strategy: xor partial parity and data from all modified data * disks within a stripe and write the result as the new stripe parity. If all * stripe data disks are modified (full stripe write), no partial parity is * available, so just xor the data disks. * * Recovery of a PPL entry shall occur only if all modified data disks are * available and read from all of them succeeds. * * A PPL entry applies to a stripe, partial parity size for an entry is at most * the size of the chunk. Examples of possible cases for a single entry: * * case 0: single data disk write: * data0 data1 data2 ppl parity * +--------+--------+--------+ +--------------------+ * | ------ | ------ | ------ | +----+ | (no change) | * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | * | ------ | ------ | ------ | +----+ | (no change) | * +--------+--------+--------+ +--------------------+ * pp_size = data_size * * case 1: more than one data disk write: * data0 data1 data2 ppl parity * +--------+--------+--------+ +--------------------+ * | ------ | ------ | ------ | +----+ | (no change) | * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | * | ------ | ------ | ------ | +----+ | (no change) | * +--------+--------+--------+ +--------------------+ * pp_size = data_size / modified_data_disks * * case 2: write to all data disks (also full stripe write): * data0 data1 data2 parity * +--------+--------+--------+ +--------------------+ * | ------ | ------ | ------ | | (no change) | * | -data- | -data- | -data- | --------> | xor all data | * | ------ | ------ | ------ | --------> | (no change) | * | ------ | ------ | ------ | | (no change) | * +--------+--------+--------+ +--------------------+ * pp_size = 0 * * The following cases are possible only in other implementations. The recovery * code can handle them, but they are not generated at runtime because they can * be reduced to cases 0, 1 and 2: * * case 3: * data0 data1 data2 ppl parity * +--------+--------+--------+ +----+ +--------------------+ * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp | * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp | * | -data- | -data- | -data- | | -- | -> | xor all data | * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp | * +--------+--------+--------+ +----+ +--------------------+ * pp_size = chunk_size * * case 4: * data0 data1 data2 ppl parity * +--------+--------+--------+ +----+ +--------------------+ * | ------ | -data- | ------ | | pp | | data1 ^ pp | * | ------ | ------ | ------ | | -- | -> | (no change) | * | ------ | ------ | ------ | | -- | -> | (no change) | * | -data- | ------ | ------ | | pp | | data0 ^ pp | * +--------+--------+--------+ +----+ +--------------------+ * pp_size = chunk_size */ static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e, sector_t ppl_sector) { struct ppl_conf *ppl_conf = log->ppl_conf; struct mddev *mddev = ppl_conf->mddev; struct r5conf *conf = mddev->private; int block_size = ppl_conf->block_size; struct page *page1; struct page *page2; sector_t r_sector_first; sector_t r_sector_last; int strip_sectors; int data_disks; int i; int ret = 0; char b[BDEVNAME_SIZE]; unsigned int pp_size = le32_to_cpu(e->pp_size); unsigned int data_size = le32_to_cpu(e->data_size); page1 = alloc_page(GFP_KERNEL); page2 = alloc_page(GFP_KERNEL); if (!page1 || !page2) { ret = -ENOMEM; goto out; } r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9); if ((pp_size >> 9) < conf->chunk_sectors) { if (pp_size > 0) { data_disks = data_size / pp_size; strip_sectors = pp_size >> 9; } else { data_disks = conf->raid_disks - conf->max_degraded; strip_sectors = (data_size >> 9) / data_disks; } r_sector_last = r_sector_first + (data_disks - 1) * conf->chunk_sectors + strip_sectors; } else { data_disks = conf->raid_disks - conf->max_degraded; strip_sectors = conf->chunk_sectors; r_sector_last = r_sector_first + (data_size >> 9); } pr_debug("%s: array sector first: %llu last: %llu\n", __func__, (unsigned long long)r_sector_first, (unsigned long long)r_sector_last); /* if start and end is 4k aligned, use a 4k block */ if (block_size == 512 && (r_sector_first & (STRIPE_SECTORS - 1)) == 0 && (r_sector_last & (STRIPE_SECTORS - 1)) == 0) block_size = STRIPE_SIZE; /* iterate through blocks in strip */ for (i = 0; i < strip_sectors; i += (block_size >> 9)) { bool update_parity = false; sector_t parity_sector; struct md_rdev *parity_rdev; struct stripe_head sh; int disk; int indent = 0; pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i); indent += 2; memset(page_address(page1), 0, PAGE_SIZE); /* iterate through data member disks */ for (disk = 0; disk < data_disks; disk++) { int dd_idx; struct md_rdev *rdev; sector_t sector; sector_t r_sector = r_sector_first + i + (disk * conf->chunk_sectors); pr_debug("%s:%*s data member disk %d start\n", __func__, indent, "", disk); indent += 2; if (r_sector >= r_sector_last) { pr_debug("%s:%*s array sector %llu doesn't need parity update\n", __func__, indent, "", (unsigned long long)r_sector); indent -= 2; continue; } update_parity = true; /* map raid sector to member disk */ sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, NULL); pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n", __func__, indent, "", (unsigned long long)r_sector, dd_idx, (unsigned long long)sector); rdev = conf->disks[dd_idx].rdev; if (!rdev || (!test_bit(In_sync, &rdev->flags) && sector >= rdev->recovery_offset)) { pr_debug("%s:%*s data member disk %d missing\n", __func__, indent, "", dd_idx); update_parity = false; break; } pr_debug("%s:%*s reading data member disk %s sector %llu\n", __func__, indent, "", bdevname(rdev->bdev, b), (unsigned long long)sector); if (!sync_page_io(rdev, sector, block_size, page2, REQ_OP_READ, 0, false)) { md_error(mddev, rdev); pr_debug("%s:%*s read failed!\n", __func__, indent, ""); ret = -EIO; goto out; } ppl_xor(block_size, page1, page2); indent -= 2; } if (!update_parity) continue; if (pp_size > 0) { pr_debug("%s:%*s reading pp disk sector %llu\n", __func__, indent, "", (unsigned long long)(ppl_sector + i)); if (!sync_page_io(log->rdev, ppl_sector - log->rdev->data_offset + i, block_size, page2, REQ_OP_READ, 0, false)) { pr_debug("%s:%*s read failed!\n", __func__, indent, ""); md_error(mddev, log->rdev); ret = -EIO; goto out; } ppl_xor(block_size, page1, page2); } /* map raid sector to parity disk */ parity_sector = raid5_compute_sector(conf, r_sector_first + i, 0, &disk, &sh); BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk)); parity_rdev = conf->disks[sh.pd_idx].rdev; BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev); pr_debug("%s:%*s write parity at sector %llu, disk %s\n", __func__, indent, "", (unsigned long long)parity_sector, bdevname(parity_rdev->bdev, b)); if (!sync_page_io(parity_rdev, parity_sector, block_size, page1, REQ_OP_WRITE, 0, false)) { pr_debug("%s:%*s parity write error!\n", __func__, indent, ""); md_error(mddev, parity_rdev); ret = -EIO; goto out; } } out: if (page1) __free_page(page1); if (page2) __free_page(page2); return ret; } static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr, sector_t offset) { struct ppl_conf *ppl_conf = log->ppl_conf; struct md_rdev *rdev = log->rdev; struct mddev *mddev = rdev->mddev; sector_t ppl_sector = rdev->ppl.sector + offset + (PPL_HEADER_SIZE >> 9); struct page *page; int i; int ret = 0; page = alloc_page(GFP_KERNEL); if (!page) return -ENOMEM; /* iterate through all PPL entries saved */ for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) { struct ppl_header_entry *e = &pplhdr->entries[i]; u32 pp_size = le32_to_cpu(e->pp_size); sector_t sector = ppl_sector; int ppl_entry_sectors = pp_size >> 9; u32 crc, crc_stored; pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n", __func__, rdev->raid_disk, i, (unsigned long long)ppl_sector, pp_size); crc = ~0; crc_stored = le32_to_cpu(e->checksum); /* read parial parity for this entry and calculate its checksum */ while (pp_size) { int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size; if (!sync_page_io(rdev, sector - rdev->data_offset, s, page, REQ_OP_READ, 0, false)) { md_error(mddev, rdev); ret = -EIO; goto out; } crc = crc32c_le(crc, page_address(page), s); pp_size -= s; sector += s >> 9; } crc = ~crc; if (crc != crc_stored) { /* * Don't recover this entry if the checksum does not * match, but keep going and try to recover other * entries. */ pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n", __func__, crc_stored, crc); ppl_conf->mismatch_count++; } else { ret = ppl_recover_entry(log, e, ppl_sector); if (ret) goto out; ppl_conf->recovered_entries++; } ppl_sector += ppl_entry_sectors; } /* flush the disk cache after recovery if necessary */ ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL); out: __free_page(page); return ret; } static int ppl_write_empty_header(struct ppl_log *log) { struct page *page; struct ppl_header *pplhdr; struct md_rdev *rdev = log->rdev; int ret = 0; pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__, rdev->raid_disk, (unsigned long long)rdev->ppl.sector); page = alloc_page(GFP_NOIO | __GFP_ZERO); if (!page) return -ENOMEM; pplhdr = page_address(page); /* zero out PPL space to avoid collision with old PPLs */ blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector, log->rdev->ppl.size, GFP_NOIO, 0); memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); pplhdr->signature = cpu_to_le32(log->ppl_conf->signature); pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE)); if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC | REQ_FUA, 0, false)) { md_error(rdev->mddev, rdev); ret = -EIO; } __free_page(page); return ret; } static int ppl_load_distributed(struct ppl_log *log) { struct ppl_conf *ppl_conf = log->ppl_conf; struct md_rdev *rdev = log->rdev; struct mddev *mddev = rdev->mddev; struct page *page, *page2, *tmp; struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL; u32 crc, crc_stored; u32 signature; int ret = 0, i; sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0; pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk); /* read PPL headers, find the recent one */ page = alloc_page(GFP_KERNEL); if (!page) return -ENOMEM; page2 = alloc_page(GFP_KERNEL); if (!page2) { __free_page(page); return -ENOMEM; } /* searching ppl area for latest ppl */ while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) { if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset + pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { md_error(mddev, rdev); ret = -EIO; /* if not able to read - don't recover any PPL */ pplhdr = NULL; break; } pplhdr = page_address(page); /* check header validity */ crc_stored = le32_to_cpu(pplhdr->checksum); pplhdr->checksum = 0; crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE); if (crc_stored != crc) { pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n", __func__, crc_stored, crc, (unsigned long long)pplhdr_offset); pplhdr = prev_pplhdr; pplhdr_offset = prev_pplhdr_offset; break; } signature = le32_to_cpu(pplhdr->signature); if (mddev->external) { /* * For external metadata the header signature is set and * validated in userspace. */ ppl_conf->signature = signature; } else if (ppl_conf->signature != signature) { pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n", __func__, signature, ppl_conf->signature, (unsigned long long)pplhdr_offset); pplhdr = prev_pplhdr; pplhdr_offset = prev_pplhdr_offset; break; } if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) > le64_to_cpu(pplhdr->generation)) { /* previous was newest */ pplhdr = prev_pplhdr; pplhdr_offset = prev_pplhdr_offset; break; } prev_pplhdr_offset = pplhdr_offset; prev_pplhdr = pplhdr; tmp = page; page = page2; page2 = tmp; /* calculate next potential ppl offset */ for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) pplhdr_offset += le32_to_cpu(pplhdr->entries[i].pp_size) >> 9; pplhdr_offset += PPL_HEADER_SIZE >> 9; } /* no valid ppl found */ if (!pplhdr) ppl_conf->mismatch_count++; else pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n", __func__, (unsigned long long)pplhdr_offset, le64_to_cpu(pplhdr->generation)); /* attempt to recover from log if we are starting a dirty array */ if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector) ret = ppl_recover(log, pplhdr, pplhdr_offset); /* write empty header if we are starting the array */ if (!ret && !mddev->pers) ret = ppl_write_empty_header(log); __free_page(page); __free_page(page2); pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", __func__, ret, ppl_conf->mismatch_count, ppl_conf->recovered_entries); return ret; } static int ppl_load(struct ppl_conf *ppl_conf) { int ret = 0; u32 signature = 0; bool signature_set = false; int i; for (i = 0; i < ppl_conf->count; i++) { struct ppl_log *log = &ppl_conf->child_logs[i]; /* skip missing drive */ if (!log->rdev) continue; ret = ppl_load_distributed(log); if (ret) break; /* * For external metadata we can't check if the signature is * correct on a single drive, but we can check if it is the same * on all drives. */ if (ppl_conf->mddev->external) { if (!signature_set) { signature = ppl_conf->signature; signature_set = true; } else if (signature != ppl_conf->signature) { pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n", mdname(ppl_conf->mddev)); ret = -EINVAL; break; } } } pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", __func__, ret, ppl_conf->mismatch_count, ppl_conf->recovered_entries); return ret; } static void __ppl_exit_log(struct ppl_conf *ppl_conf) { clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags); kfree(ppl_conf->child_logs); bioset_exit(&ppl_conf->bs); bioset_exit(&ppl_conf->flush_bs); mempool_exit(&ppl_conf->io_pool); kmem_cache_destroy(ppl_conf->io_kc); kfree(ppl_conf); } void ppl_exit_log(struct r5conf *conf) { struct ppl_conf *ppl_conf = conf->log_private; if (ppl_conf) { __ppl_exit_log(ppl_conf); conf->log_private = NULL; } } static int ppl_validate_rdev(struct md_rdev *rdev) { char b[BDEVNAME_SIZE]; int ppl_data_sectors; int ppl_size_new; /* * The configured PPL size must be enough to store * the header and (at the very least) partial parity * for one stripe. Round it down to ensure the data * space is cleanly divisible by stripe size. */ ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9); if (ppl_data_sectors > 0) ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS); if (ppl_data_sectors <= 0) { pr_warn("md/raid:%s: PPL space too small on %s\n", mdname(rdev->mddev), bdevname(rdev->bdev, b)); return -ENOSPC; } ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9); if ((rdev->ppl.sector < rdev->data_offset && rdev->ppl.sector + ppl_size_new > rdev->data_offset) || (rdev->ppl.sector >= rdev->data_offset && rdev->data_offset + rdev->sectors > rdev->ppl.sector)) { pr_warn("md/raid:%s: PPL space overlaps with data on %s\n", mdname(rdev->mddev), bdevname(rdev->bdev, b)); return -EINVAL; } if (!rdev->mddev->external && ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) || (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) { pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n", mdname(rdev->mddev), bdevname(rdev->bdev, b)); return -EINVAL; } rdev->ppl.size = ppl_size_new; return 0; } static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev) { struct request_queue *q; if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE + PPL_HEADER_SIZE) * 2) { log->use_multippl = true; set_bit(MD_HAS_MULTIPLE_PPLS, &log->ppl_conf->mddev->flags); log->entry_space = PPL_SPACE_SIZE; } else { log->use_multippl = false; log->entry_space = (log->rdev->ppl.size << 9) - PPL_HEADER_SIZE; } log->next_io_sector = rdev->ppl.sector; q = bdev_get_queue(rdev->bdev); if (test_bit(QUEUE_FLAG_WC, &q->queue_flags)) log->wb_cache_on = true; } int ppl_init_log(struct r5conf *conf) { struct ppl_conf *ppl_conf; struct mddev *mddev = conf->mddev; int ret = 0; int max_disks; int i; pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n", mdname(conf->mddev)); if (PAGE_SIZE != 4096) return -EINVAL; if (mddev->level != 5) { pr_warn("md/raid:%s PPL is not compatible with raid level %d\n", mdname(mddev), mddev->level); return -EINVAL; } if (mddev->bitmap_info.file || mddev->bitmap_info.offset) { pr_warn("md/raid:%s PPL is not compatible with bitmap\n", mdname(mddev)); return -EINVAL; } if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { pr_warn("md/raid:%s PPL is not compatible with journal\n", mdname(mddev)); return -EINVAL; } max_disks = FIELD_SIZEOF(struct ppl_log, disk_flush_bitmap) * BITS_PER_BYTE; if (conf->raid_disks > max_disks) { pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n", mdname(mddev), max_disks); return -EINVAL; } ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL); if (!ppl_conf) return -ENOMEM; ppl_conf->mddev = mddev; ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0); if (!ppl_conf->io_kc) { ret = -ENOMEM; goto err; } ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc, ppl_io_pool_free, ppl_conf->io_kc); if (ret) goto err; ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS); if (ret) goto err; ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0); if (ret) goto err; ppl_conf->count = conf->raid_disks; ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log), GFP_KERNEL); if (!ppl_conf->child_logs) { ret = -ENOMEM; goto err; } atomic64_set(&ppl_conf->seq, 0); INIT_LIST_HEAD(&ppl_conf->no_mem_stripes); spin_lock_init(&ppl_conf->no_mem_stripes_lock); if (!mddev->external) { ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid)); ppl_conf->block_size = 512; } else { ppl_conf->block_size = queue_logical_block_size(mddev->queue); } for (i = 0; i < ppl_conf->count; i++) { struct ppl_log *log = &ppl_conf->child_logs[i]; struct md_rdev *rdev = conf->disks[i].rdev; mutex_init(&log->io_mutex); spin_lock_init(&log->io_list_lock); INIT_LIST_HEAD(&log->io_list); log->ppl_conf = ppl_conf; log->rdev = rdev; if (rdev) { ret = ppl_validate_rdev(rdev); if (ret) goto err; ppl_init_child_log(log, rdev); } } /* load and possibly recover the logs from the member disks */ ret = ppl_load(ppl_conf); if (ret) { goto err; } else if (!mddev->pers && mddev->recovery_cp == 0 && ppl_conf->recovered_entries > 0 && ppl_conf->mismatch_count == 0) { /* * If we are starting a dirty array and the recovery succeeds * without any issues, set the array as clean. */ mddev->recovery_cp = MaxSector; set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); } else if (mddev->pers && ppl_conf->mismatch_count > 0) { /* no mismatch allowed when enabling PPL for a running array */ ret = -EINVAL; goto err; } conf->log_private = ppl_conf; set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); return 0; err: __ppl_exit_log(ppl_conf); return ret; } int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add) { struct ppl_conf *ppl_conf = conf->log_private; struct ppl_log *log; int ret = 0; char b[BDEVNAME_SIZE]; if (!rdev) return -EINVAL; pr_debug("%s: disk: %d operation: %s dev: %s\n", __func__, rdev->raid_disk, add ? "add" : "remove", bdevname(rdev->bdev, b)); if (rdev->raid_disk < 0) return 0; if (rdev->raid_disk >= ppl_conf->count) return -ENODEV; log = &ppl_conf->child_logs[rdev->raid_disk]; mutex_lock(&log->io_mutex); if (add) { ret = ppl_validate_rdev(rdev); if (!ret) { log->rdev = rdev; ret = ppl_write_empty_header(log); ppl_init_child_log(log, rdev); } } else { log->rdev = NULL; } mutex_unlock(&log->io_mutex); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1