Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alan Cox | 6223 | 90.10% | 1 | 4.35% |
Michael Hunold | 531 | 7.69% | 9 | 39.13% |
Andrew Morton | 85 | 1.23% | 1 | 4.35% |
Hans Verkuil | 30 | 0.43% | 2 | 8.70% |
Joe Perches | 15 | 0.22% | 1 | 4.35% |
Adrian Bunk | 6 | 0.09% | 2 | 8.70% |
Mauro Carvalho Chehab | 5 | 0.07% | 2 | 8.70% |
Fabian Frederick | 4 | 0.06% | 1 | 4.35% |
Paul Gortmaker | 3 | 0.04% | 1 | 4.35% |
Johannes Stezenbach | 3 | 0.04% | 1 | 4.35% |
Al Viro | 1 | 0.01% | 1 | 4.35% |
Jan Engelhardt | 1 | 0.01% | 1 | 4.35% |
Total | 6907 | 23 |
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/export.h> #include <media/drv-intf/saa7146_vv.h> static void calculate_output_format_register(struct saa7146_dev* saa, u32 palette, u32* clip_format) { /* clear out the necessary bits */ *clip_format &= 0x0000ffff; /* set these bits new */ *clip_format |= (( ((palette&0xf00)>>8) << 30) | ((palette&0x00f) << 24) | (((palette&0x0f0)>>4) << 16)); } static void calculate_hps_source_and_sync(struct saa7146_dev *dev, int source, int sync, u32* hps_ctrl) { *hps_ctrl &= ~(MASK_30 | MASK_31 | MASK_28); *hps_ctrl |= (source << 30) | (sync << 28); } static void calculate_hxo_and_hyo(struct saa7146_vv *vv, u32* hps_h_scale, u32* hps_ctrl) { int hyo = 0, hxo = 0; hyo = vv->standard->v_offset; hxo = vv->standard->h_offset; *hps_h_scale &= ~(MASK_B0 | 0xf00); *hps_h_scale |= (hxo << 0); *hps_ctrl &= ~(MASK_W0 | MASK_B2); *hps_ctrl |= (hyo << 12); } /* helper functions for the calculation of the horizontal- and vertical scaling registers, clip-format-register etc ... these functions take pointers to the (most-likely read-out original-values) and manipulate them according to the requested changes. */ /* hps_coeff used for CXY and CXUV; scale 1/1 -> scale 1/64 */ static struct { u16 hps_coeff; u16 weight_sum; } hps_h_coeff_tab [] = { {0x00, 2}, {0x02, 4}, {0x00, 4}, {0x06, 8}, {0x02, 8}, {0x08, 8}, {0x00, 8}, {0x1E, 16}, {0x0E, 8}, {0x26, 8}, {0x06, 8}, {0x42, 8}, {0x02, 8}, {0x80, 8}, {0x00, 8}, {0xFE, 16}, {0xFE, 8}, {0x7E, 8}, {0x7E, 8}, {0x3E, 8}, {0x3E, 8}, {0x1E, 8}, {0x1E, 8}, {0x0E, 8}, {0x0E, 8}, {0x06, 8}, {0x06, 8}, {0x02, 8}, {0x02, 8}, {0x00, 8}, {0x00, 8}, {0xFE, 16}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0xFE, 8}, {0x7E, 8}, {0x7E, 8}, {0x3E, 8}, {0x3E, 8}, {0x1E, 8}, {0x1E, 8}, {0x0E, 8}, {0x0E, 8}, {0x06, 8}, {0x06, 8}, {0x02, 8}, {0x02, 8}, {0x00, 8}, {0x00, 8}, {0xFE, 16} }; /* table of attenuation values for horizontal scaling */ static u8 h_attenuation[] = { 1, 2, 4, 8, 2, 4, 8, 16, 0}; /* calculate horizontal scale registers */ static int calculate_h_scale_registers(struct saa7146_dev *dev, int in_x, int out_x, int flip_lr, u32* hps_ctrl, u32* hps_v_gain, u32* hps_h_prescale, u32* hps_h_scale) { /* horizontal prescaler */ u32 dcgx = 0, xpsc = 0, xacm = 0, cxy = 0, cxuv = 0; /* horizontal scaler */ u32 xim = 0, xp = 0, xsci =0; /* vertical scale & gain */ u32 pfuv = 0; /* helper variables */ u32 h_atten = 0, i = 0; if ( 0 == out_x ) { return -EINVAL; } /* mask out vanity-bit */ *hps_ctrl &= ~MASK_29; /* calculate prescale-(xspc)-value: [n .. 1/2) : 1 [1/2 .. 1/3) : 2 [1/3 .. 1/4) : 3 ... */ if (in_x > out_x) { xpsc = in_x / out_x; } else { /* zooming */ xpsc = 1; } /* if flip_lr-bit is set, number of pixels after horizontal prescaling must be < 384 */ if ( 0 != flip_lr ) { /* set vanity bit */ *hps_ctrl |= MASK_29; while (in_x / xpsc >= 384 ) xpsc++; } /* if zooming is wanted, number of pixels after horizontal prescaling must be < 768 */ else { while ( in_x / xpsc >= 768 ) xpsc++; } /* maximum prescale is 64 (p.69) */ if ( xpsc > 64 ) xpsc = 64; /* keep xacm clear*/ xacm = 0; /* set horizontal filter parameters (CXY = CXUV) */ cxy = hps_h_coeff_tab[( (xpsc - 1) < 63 ? (xpsc - 1) : 63 )].hps_coeff; cxuv = cxy; /* calculate and set horizontal fine scale (xsci) */ /* bypass the horizontal scaler ? */ if ( (in_x == out_x) && ( 1 == xpsc ) ) xsci = 0x400; else xsci = ( (1024 * in_x) / (out_x * xpsc) ) + xpsc; /* set start phase for horizontal fine scale (xp) to 0 */ xp = 0; /* set xim, if we bypass the horizontal scaler */ if ( 0x400 == xsci ) xim = 1; else xim = 0; /* if the prescaler is bypassed, enable horizontal accumulation mode (xacm) and clear dcgx */ if( 1 == xpsc ) { xacm = 1; dcgx = 0; } else { xacm = 0; /* get best match in the table of attenuations for horizontal scaling */ h_atten = hps_h_coeff_tab[( (xpsc - 1) < 63 ? (xpsc - 1) : 63 )].weight_sum; for (i = 0; h_attenuation[i] != 0; i++) { if (h_attenuation[i] >= h_atten) break; } dcgx = i; } /* the horizontal scaling increment controls the UV filter to reduce the bandwidth to improve the display quality, so set it ... */ if ( xsci == 0x400) pfuv = 0x00; else if ( xsci < 0x600) pfuv = 0x01; else if ( xsci < 0x680) pfuv = 0x11; else if ( xsci < 0x700) pfuv = 0x22; else pfuv = 0x33; *hps_v_gain &= MASK_W0|MASK_B2; *hps_v_gain |= (pfuv << 24); *hps_h_scale &= ~(MASK_W1 | 0xf000); *hps_h_scale |= (xim << 31) | (xp << 24) | (xsci << 12); *hps_h_prescale |= (dcgx << 27) | ((xpsc-1) << 18) | (xacm << 17) | (cxy << 8) | (cxuv << 0); return 0; } static struct { u16 hps_coeff; u16 weight_sum; } hps_v_coeff_tab [] = { {0x0100, 2}, {0x0102, 4}, {0x0300, 4}, {0x0106, 8}, {0x0502, 8}, {0x0708, 8}, {0x0F00, 8}, {0x011E, 16}, {0x110E, 16}, {0x1926, 16}, {0x3906, 16}, {0x3D42, 16}, {0x7D02, 16}, {0x7F80, 16}, {0xFF00, 16}, {0x01FE, 32}, {0x01FE, 32}, {0x817E, 32}, {0x817E, 32}, {0xC13E, 32}, {0xC13E, 32}, {0xE11E, 32}, {0xE11E, 32}, {0xF10E, 32}, {0xF10E, 32}, {0xF906, 32}, {0xF906, 32}, {0xFD02, 32}, {0xFD02, 32}, {0xFF00, 32}, {0xFF00, 32}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x01FE, 64}, {0x817E, 64}, {0x817E, 64}, {0xC13E, 64}, {0xC13E, 64}, {0xE11E, 64}, {0xE11E, 64}, {0xF10E, 64}, {0xF10E, 64}, {0xF906, 64}, {0xF906, 64}, {0xFD02, 64}, {0xFD02, 64}, {0xFF00, 64}, {0xFF00, 64}, {0x01FE, 128} }; /* table of attenuation values for vertical scaling */ static u16 v_attenuation[] = { 2, 4, 8, 16, 32, 64, 128, 256, 0}; /* calculate vertical scale registers */ static int calculate_v_scale_registers(struct saa7146_dev *dev, enum v4l2_field field, int in_y, int out_y, u32* hps_v_scale, u32* hps_v_gain) { int lpi = 0; /* vertical scaling */ u32 yacm = 0, ysci = 0, yacl = 0, ypo = 0, ype = 0; /* vertical scale & gain */ u32 dcgy = 0, cya_cyb = 0; /* helper variables */ u32 v_atten = 0, i = 0; /* error, if vertical zooming */ if ( in_y < out_y ) { return -EINVAL; } /* linear phase interpolation may be used if scaling is between 1 and 1/2 (both fields used) or scaling is between 1/2 and 1/4 (if only one field is used) */ if (V4L2_FIELD_HAS_BOTH(field)) { if( 2*out_y >= in_y) { lpi = 1; } } else if (field == V4L2_FIELD_TOP || field == V4L2_FIELD_ALTERNATE || field == V4L2_FIELD_BOTTOM) { if( 4*out_y >= in_y ) { lpi = 1; } out_y *= 2; } if( 0 != lpi ) { yacm = 0; yacl = 0; cya_cyb = 0x00ff; /* calculate scaling increment */ if ( in_y > out_y ) ysci = ((1024 * in_y) / (out_y + 1)) - 1024; else ysci = 0; dcgy = 0; /* calculate ype and ypo */ ype = ysci / 16; ypo = ype + (ysci / 64); } else { yacm = 1; /* calculate scaling increment */ ysci = (((10 * 1024 * (in_y - out_y - 1)) / in_y) + 9) / 10; /* calculate ype and ypo */ ypo = ype = ((ysci + 15) / 16); /* the sequence length interval (yacl) has to be set according to the prescale value, e.g. [n .. 1/2) : 0 [1/2 .. 1/3) : 1 [1/3 .. 1/4) : 2 ... */ if ( ysci < 512) { yacl = 0; } else { yacl = ( ysci / (1024 - ysci) ); } /* get filter coefficients for cya, cyb from table hps_v_coeff_tab */ cya_cyb = hps_v_coeff_tab[ (yacl < 63 ? yacl : 63 ) ].hps_coeff; /* get best match in the table of attenuations for vertical scaling */ v_atten = hps_v_coeff_tab[ (yacl < 63 ? yacl : 63 ) ].weight_sum; for (i = 0; v_attenuation[i] != 0; i++) { if (v_attenuation[i] >= v_atten) break; } dcgy = i; } /* ypo and ype swapped in spec ? */ *hps_v_scale |= (yacm << 31) | (ysci << 21) | (yacl << 15) | (ypo << 8 ) | (ype << 1); *hps_v_gain &= ~(MASK_W0|MASK_B2); *hps_v_gain |= (dcgy << 16) | (cya_cyb << 0); return 0; } /* simple bubble-sort algorithm with duplicate elimination */ static int sort_and_eliminate(u32* values, int* count) { int low = 0, high = 0, top = 0; int cur = 0, next = 0; /* sanity checks */ if( (0 > *count) || (NULL == values) ) { return -EINVAL; } /* bubble sort the first @count items of the array @values */ for( top = *count; top > 0; top--) { for( low = 0, high = 1; high < top; low++, high++) { if( values[low] > values[high] ) swap(values[low], values[high]); } } /* remove duplicate items */ for( cur = 0, next = 1; next < *count; next++) { if( values[cur] != values[next]) values[++cur] = values[next]; } *count = cur + 1; return 0; } static void calculate_clipping_registers_rect(struct saa7146_dev *dev, struct saa7146_fh *fh, struct saa7146_video_dma *vdma2, u32* clip_format, u32* arbtr_ctrl, enum v4l2_field field) { struct saa7146_vv *vv = dev->vv_data; __le32 *clipping = vv->d_clipping.cpu_addr; int width = vv->ov.win.w.width; int height = vv->ov.win.w.height; int clipcount = vv->ov.nclips; u32 line_list[32]; u32 pixel_list[32]; int numdwords = 0; int i = 0, j = 0; int cnt_line = 0, cnt_pixel = 0; int x[32], y[32], w[32], h[32]; /* clear out memory */ memset(&line_list[0], 0x00, sizeof(u32)*32); memset(&pixel_list[0], 0x00, sizeof(u32)*32); memset(clipping, 0x00, SAA7146_CLIPPING_MEM); /* fill the line and pixel-lists */ for(i = 0; i < clipcount; i++) { int l = 0, r = 0, t = 0, b = 0; x[i] = vv->ov.clips[i].c.left; y[i] = vv->ov.clips[i].c.top; w[i] = vv->ov.clips[i].c.width; h[i] = vv->ov.clips[i].c.height; if( w[i] < 0) { x[i] += w[i]; w[i] = -w[i]; } if( h[i] < 0) { y[i] += h[i]; h[i] = -h[i]; } if( x[i] < 0) { w[i] += x[i]; x[i] = 0; } if( y[i] < 0) { h[i] += y[i]; y[i] = 0; } if( 0 != vv->vflip ) { y[i] = height - y[i] - h[i]; } l = x[i]; r = x[i]+w[i]; t = y[i]; b = y[i]+h[i]; /* insert left/right coordinates */ pixel_list[ 2*i ] = min_t(int, l, width); pixel_list[(2*i)+1] = min_t(int, r, width); /* insert top/bottom coordinates */ line_list[ 2*i ] = min_t(int, t, height); line_list[(2*i)+1] = min_t(int, b, height); } /* sort and eliminate lists */ cnt_line = cnt_pixel = 2*clipcount; sort_and_eliminate( &pixel_list[0], &cnt_pixel ); sort_and_eliminate( &line_list[0], &cnt_line ); /* calculate the number of used u32s */ numdwords = max_t(int, (cnt_line+1), (cnt_pixel+1))*2; numdwords = max_t(int, 4, numdwords); numdwords = min_t(int, 64, numdwords); /* fill up cliptable */ for(i = 0; i < cnt_pixel; i++) { clipping[2*i] |= cpu_to_le32(pixel_list[i] << 16); } for(i = 0; i < cnt_line; i++) { clipping[(2*i)+1] |= cpu_to_le32(line_list[i] << 16); } /* fill up cliptable with the display infos */ for(j = 0; j < clipcount; j++) { for(i = 0; i < cnt_pixel; i++) { if( x[j] < 0) x[j] = 0; if( pixel_list[i] < (x[j] + w[j])) { if ( pixel_list[i] >= x[j] ) { clipping[2*i] |= cpu_to_le32(1 << j); } } } for(i = 0; i < cnt_line; i++) { if( y[j] < 0) y[j] = 0; if( line_list[i] < (y[j] + h[j]) ) { if( line_list[i] >= y[j] ) { clipping[(2*i)+1] |= cpu_to_le32(1 << j); } } } } /* adjust arbitration control register */ *arbtr_ctrl &= 0xffff00ff; *arbtr_ctrl |= 0x00001c00; vdma2->base_even = vv->d_clipping.dma_handle; vdma2->base_odd = vv->d_clipping.dma_handle; vdma2->prot_addr = vv->d_clipping.dma_handle+((sizeof(u32))*(numdwords)); vdma2->base_page = 0x04; vdma2->pitch = 0x00; vdma2->num_line_byte = (0 << 16 | (sizeof(u32))*(numdwords-1) ); /* set clipping-mode. this depends on the field(s) used */ *clip_format &= 0xfffffff7; if (V4L2_FIELD_HAS_BOTH(field)) { *clip_format |= 0x00000008; } else { *clip_format |= 0x00000000; } } /* disable clipping */ static void saa7146_disable_clipping(struct saa7146_dev *dev) { u32 clip_format = saa7146_read(dev, CLIP_FORMAT_CTRL); /* mask out relevant bits (=lower word)*/ clip_format &= MASK_W1; /* upload clipping-registers*/ saa7146_write(dev, CLIP_FORMAT_CTRL,clip_format); saa7146_write(dev, MC2, (MASK_05 | MASK_21)); /* disable video dma2 */ saa7146_write(dev, MC1, MASK_21); } static void saa7146_set_clipping_rect(struct saa7146_fh *fh) { struct saa7146_dev *dev = fh->dev; struct saa7146_vv *vv = dev->vv_data; enum v4l2_field field = vv->ov.win.field; struct saa7146_video_dma vdma2; u32 clip_format; u32 arbtr_ctrl; /* check clipcount, disable clipping if clipcount == 0*/ if (vv->ov.nclips == 0) { saa7146_disable_clipping(dev); return; } clip_format = saa7146_read(dev, CLIP_FORMAT_CTRL); arbtr_ctrl = saa7146_read(dev, PCI_BT_V1); calculate_clipping_registers_rect(dev, fh, &vdma2, &clip_format, &arbtr_ctrl, field); /* set clipping format */ clip_format &= 0xffff0008; clip_format |= (SAA7146_CLIPPING_RECT << 4); /* prepare video dma2 */ saa7146_write(dev, BASE_EVEN2, vdma2.base_even); saa7146_write(dev, BASE_ODD2, vdma2.base_odd); saa7146_write(dev, PROT_ADDR2, vdma2.prot_addr); saa7146_write(dev, BASE_PAGE2, vdma2.base_page); saa7146_write(dev, PITCH2, vdma2.pitch); saa7146_write(dev, NUM_LINE_BYTE2, vdma2.num_line_byte); /* prepare the rest */ saa7146_write(dev, CLIP_FORMAT_CTRL,clip_format); saa7146_write(dev, PCI_BT_V1, arbtr_ctrl); /* upload clip_control-register, clipping-registers, enable video dma2 */ saa7146_write(dev, MC2, (MASK_05 | MASK_21 | MASK_03 | MASK_19)); saa7146_write(dev, MC1, (MASK_05 | MASK_21)); } static void saa7146_set_window(struct saa7146_dev *dev, int width, int height, enum v4l2_field field) { struct saa7146_vv *vv = dev->vv_data; int source = vv->current_hps_source; int sync = vv->current_hps_sync; u32 hps_v_scale = 0, hps_v_gain = 0, hps_ctrl = 0, hps_h_prescale = 0, hps_h_scale = 0; /* set vertical scale */ hps_v_scale = 0; /* all bits get set by the function-call */ hps_v_gain = 0; /* fixme: saa7146_read(dev, HPS_V_GAIN);*/ calculate_v_scale_registers(dev, field, vv->standard->v_field*2, height, &hps_v_scale, &hps_v_gain); /* set horizontal scale */ hps_ctrl = 0; hps_h_prescale = 0; /* all bits get set in the function */ hps_h_scale = 0; calculate_h_scale_registers(dev, vv->standard->h_pixels, width, vv->hflip, &hps_ctrl, &hps_v_gain, &hps_h_prescale, &hps_h_scale); /* set hyo and hxo */ calculate_hxo_and_hyo(vv, &hps_h_scale, &hps_ctrl); calculate_hps_source_and_sync(dev, source, sync, &hps_ctrl); /* write out new register contents */ saa7146_write(dev, HPS_V_SCALE, hps_v_scale); saa7146_write(dev, HPS_V_GAIN, hps_v_gain); saa7146_write(dev, HPS_CTRL, hps_ctrl); saa7146_write(dev, HPS_H_PRESCALE,hps_h_prescale); saa7146_write(dev, HPS_H_SCALE, hps_h_scale); /* upload shadow-ram registers */ saa7146_write(dev, MC2, (MASK_05 | MASK_06 | MASK_21 | MASK_22) ); } /* calculate the new memory offsets for a desired position */ static void saa7146_set_position(struct saa7146_dev *dev, int w_x, int w_y, int w_height, enum v4l2_field field, u32 pixelformat) { struct saa7146_vv *vv = dev->vv_data; struct saa7146_format *sfmt = saa7146_format_by_fourcc(dev, pixelformat); int b_depth = vv->ov_fmt->depth; int b_bpl = vv->ov_fb.fmt.bytesperline; /* The unsigned long cast is to remove a 64-bit compile warning since it looks like a 64-bit address is cast to a 32-bit value, even though the base pointer is really a 32-bit physical address that goes into a 32-bit DMA register. FIXME: might not work on some 64-bit platforms, but see the FIXME in struct v4l2_framebuffer (videodev2.h) for that. */ u32 base = (u32)(unsigned long)vv->ov_fb.base; struct saa7146_video_dma vdma1; /* calculate memory offsets for picture, look if we shall top-down-flip */ vdma1.pitch = 2*b_bpl; if ( 0 == vv->vflip ) { vdma1.base_even = base + (w_y * (vdma1.pitch/2)) + (w_x * (b_depth / 8)); vdma1.base_odd = vdma1.base_even + (vdma1.pitch / 2); vdma1.prot_addr = vdma1.base_even + (w_height * (vdma1.pitch / 2)); } else { vdma1.base_even = base + ((w_y+w_height) * (vdma1.pitch/2)) + (w_x * (b_depth / 8)); vdma1.base_odd = vdma1.base_even - (vdma1.pitch / 2); vdma1.prot_addr = vdma1.base_odd - (w_height * (vdma1.pitch / 2)); } if (V4L2_FIELD_HAS_BOTH(field)) { } else if (field == V4L2_FIELD_ALTERNATE) { /* fixme */ vdma1.base_odd = vdma1.prot_addr; vdma1.pitch /= 2; } else if (field == V4L2_FIELD_TOP) { vdma1.base_odd = vdma1.prot_addr; vdma1.pitch /= 2; } else if (field == V4L2_FIELD_BOTTOM) { vdma1.base_odd = vdma1.base_even; vdma1.base_even = vdma1.prot_addr; vdma1.pitch /= 2; } if ( 0 != vv->vflip ) { vdma1.pitch *= -1; } vdma1.base_page = sfmt->swap; vdma1.num_line_byte = (vv->standard->v_field<<16)+vv->standard->h_pixels; saa7146_write_out_dma(dev, 1, &vdma1); } static void saa7146_set_output_format(struct saa7146_dev *dev, unsigned long palette) { u32 clip_format = saa7146_read(dev, CLIP_FORMAT_CTRL); /* call helper function */ calculate_output_format_register(dev,palette,&clip_format); /* update the hps registers */ saa7146_write(dev, CLIP_FORMAT_CTRL, clip_format); saa7146_write(dev, MC2, (MASK_05 | MASK_21)); } /* select input-source */ void saa7146_set_hps_source_and_sync(struct saa7146_dev *dev, int source, int sync) { struct saa7146_vv *vv = dev->vv_data; u32 hps_ctrl = 0; /* read old state */ hps_ctrl = saa7146_read(dev, HPS_CTRL); hps_ctrl &= ~( MASK_31 | MASK_30 | MASK_28 ); hps_ctrl |= (source << 30) | (sync << 28); /* write back & upload register */ saa7146_write(dev, HPS_CTRL, hps_ctrl); saa7146_write(dev, MC2, (MASK_05 | MASK_21)); vv->current_hps_source = source; vv->current_hps_sync = sync; } EXPORT_SYMBOL_GPL(saa7146_set_hps_source_and_sync); int saa7146_enable_overlay(struct saa7146_fh *fh) { struct saa7146_dev *dev = fh->dev; struct saa7146_vv *vv = dev->vv_data; saa7146_set_window(dev, vv->ov.win.w.width, vv->ov.win.w.height, vv->ov.win.field); saa7146_set_position(dev, vv->ov.win.w.left, vv->ov.win.w.top, vv->ov.win.w.height, vv->ov.win.field, vv->ov_fmt->pixelformat); saa7146_set_output_format(dev, vv->ov_fmt->trans); saa7146_set_clipping_rect(fh); /* enable video dma1 */ saa7146_write(dev, MC1, (MASK_06 | MASK_22)); return 0; } void saa7146_disable_overlay(struct saa7146_fh *fh) { struct saa7146_dev *dev = fh->dev; /* disable clipping + video dma1 */ saa7146_disable_clipping(dev); saa7146_write(dev, MC1, MASK_22); } void saa7146_write_out_dma(struct saa7146_dev* dev, int which, struct saa7146_video_dma* vdma) { int where = 0; if( which < 1 || which > 3) { return; } /* calculate starting address */ where = (which-1)*0x18; saa7146_write(dev, where, vdma->base_odd); saa7146_write(dev, where+0x04, vdma->base_even); saa7146_write(dev, where+0x08, vdma->prot_addr); saa7146_write(dev, where+0x0c, vdma->pitch); saa7146_write(dev, where+0x10, vdma->base_page); saa7146_write(dev, where+0x14, vdma->num_line_byte); /* upload */ saa7146_write(dev, MC2, (MASK_02<<(which-1))|(MASK_18<<(which-1))); /* printk("vdma%d.base_even: 0x%08x\n", which,vdma->base_even); printk("vdma%d.base_odd: 0x%08x\n", which,vdma->base_odd); printk("vdma%d.prot_addr: 0x%08x\n", which,vdma->prot_addr); printk("vdma%d.base_page: 0x%08x\n", which,vdma->base_page); printk("vdma%d.pitch: 0x%08x\n", which,vdma->pitch); printk("vdma%d.num_line_byte: 0x%08x\n", which,vdma->num_line_byte); */ } static int calculate_video_dma_grab_packed(struct saa7146_dev* dev, struct saa7146_buf *buf) { struct saa7146_vv *vv = dev->vv_data; struct saa7146_video_dma vdma1; struct saa7146_format *sfmt = saa7146_format_by_fourcc(dev,buf->fmt->pixelformat); int width = buf->fmt->width; int height = buf->fmt->height; int bytesperline = buf->fmt->bytesperline; enum v4l2_field field = buf->fmt->field; int depth = sfmt->depth; DEB_CAP("[size=%dx%d,fields=%s]\n", width, height, v4l2_field_names[field]); if( bytesperline != 0) { vdma1.pitch = bytesperline*2; } else { vdma1.pitch = (width*depth*2)/8; } vdma1.num_line_byte = ((vv->standard->v_field<<16) + vv->standard->h_pixels); vdma1.base_page = buf->pt[0].dma | ME1 | sfmt->swap; if( 0 != vv->vflip ) { vdma1.prot_addr = buf->pt[0].offset; vdma1.base_even = buf->pt[0].offset+(vdma1.pitch/2)*height; vdma1.base_odd = vdma1.base_even - (vdma1.pitch/2); } else { vdma1.base_even = buf->pt[0].offset; vdma1.base_odd = vdma1.base_even + (vdma1.pitch/2); vdma1.prot_addr = buf->pt[0].offset+(vdma1.pitch/2)*height; } if (V4L2_FIELD_HAS_BOTH(field)) { } else if (field == V4L2_FIELD_ALTERNATE) { /* fixme */ if ( vv->last_field == V4L2_FIELD_TOP ) { vdma1.base_odd = vdma1.prot_addr; vdma1.pitch /= 2; } else if ( vv->last_field == V4L2_FIELD_BOTTOM ) { vdma1.base_odd = vdma1.base_even; vdma1.base_even = vdma1.prot_addr; vdma1.pitch /= 2; } } else if (field == V4L2_FIELD_TOP) { vdma1.base_odd = vdma1.prot_addr; vdma1.pitch /= 2; } else if (field == V4L2_FIELD_BOTTOM) { vdma1.base_odd = vdma1.base_even; vdma1.base_even = vdma1.prot_addr; vdma1.pitch /= 2; } if( 0 != vv->vflip ) { vdma1.pitch *= -1; } saa7146_write_out_dma(dev, 1, &vdma1); return 0; } static int calc_planar_422(struct saa7146_vv *vv, struct saa7146_buf *buf, struct saa7146_video_dma *vdma2, struct saa7146_video_dma *vdma3) { int height = buf->fmt->height; int width = buf->fmt->width; vdma2->pitch = width; vdma3->pitch = width; /* fixme: look at bytesperline! */ if( 0 != vv->vflip ) { vdma2->prot_addr = buf->pt[1].offset; vdma2->base_even = ((vdma2->pitch/2)*height)+buf->pt[1].offset; vdma2->base_odd = vdma2->base_even - (vdma2->pitch/2); vdma3->prot_addr = buf->pt[2].offset; vdma3->base_even = ((vdma3->pitch/2)*height)+buf->pt[2].offset; vdma3->base_odd = vdma3->base_even - (vdma3->pitch/2); } else { vdma3->base_even = buf->pt[2].offset; vdma3->base_odd = vdma3->base_even + (vdma3->pitch/2); vdma3->prot_addr = (vdma3->pitch/2)*height+buf->pt[2].offset; vdma2->base_even = buf->pt[1].offset; vdma2->base_odd = vdma2->base_even + (vdma2->pitch/2); vdma2->prot_addr = (vdma2->pitch/2)*height+buf->pt[1].offset; } return 0; } static int calc_planar_420(struct saa7146_vv *vv, struct saa7146_buf *buf, struct saa7146_video_dma *vdma2, struct saa7146_video_dma *vdma3) { int height = buf->fmt->height; int width = buf->fmt->width; vdma2->pitch = width/2; vdma3->pitch = width/2; if( 0 != vv->vflip ) { vdma2->prot_addr = buf->pt[2].offset; vdma2->base_even = ((vdma2->pitch/2)*height)+buf->pt[2].offset; vdma2->base_odd = vdma2->base_even - (vdma2->pitch/2); vdma3->prot_addr = buf->pt[1].offset; vdma3->base_even = ((vdma3->pitch/2)*height)+buf->pt[1].offset; vdma3->base_odd = vdma3->base_even - (vdma3->pitch/2); } else { vdma3->base_even = buf->pt[2].offset; vdma3->base_odd = vdma3->base_even + (vdma3->pitch); vdma3->prot_addr = (vdma3->pitch/2)*height+buf->pt[2].offset; vdma2->base_even = buf->pt[1].offset; vdma2->base_odd = vdma2->base_even + (vdma2->pitch); vdma2->prot_addr = (vdma2->pitch/2)*height+buf->pt[1].offset; } return 0; } static int calculate_video_dma_grab_planar(struct saa7146_dev* dev, struct saa7146_buf *buf) { struct saa7146_vv *vv = dev->vv_data; struct saa7146_video_dma vdma1; struct saa7146_video_dma vdma2; struct saa7146_video_dma vdma3; struct saa7146_format *sfmt = saa7146_format_by_fourcc(dev,buf->fmt->pixelformat); int width = buf->fmt->width; int height = buf->fmt->height; enum v4l2_field field = buf->fmt->field; BUG_ON(0 == buf->pt[0].dma); BUG_ON(0 == buf->pt[1].dma); BUG_ON(0 == buf->pt[2].dma); DEB_CAP("[size=%dx%d,fields=%s]\n", width, height, v4l2_field_names[field]); /* fixme: look at bytesperline! */ /* fixme: what happens for user space buffers here?. The offsets are most likely wrong, this version here only works for page-aligned buffers, modifications to the pagetable-functions are necessary...*/ vdma1.pitch = width*2; vdma1.num_line_byte = ((vv->standard->v_field<<16) + vv->standard->h_pixels); vdma1.base_page = buf->pt[0].dma | ME1; if( 0 != vv->vflip ) { vdma1.prot_addr = buf->pt[0].offset; vdma1.base_even = ((vdma1.pitch/2)*height)+buf->pt[0].offset; vdma1.base_odd = vdma1.base_even - (vdma1.pitch/2); } else { vdma1.base_even = buf->pt[0].offset; vdma1.base_odd = vdma1.base_even + (vdma1.pitch/2); vdma1.prot_addr = (vdma1.pitch/2)*height+buf->pt[0].offset; } vdma2.num_line_byte = 0; /* unused */ vdma2.base_page = buf->pt[1].dma | ME1; vdma3.num_line_byte = 0; /* unused */ vdma3.base_page = buf->pt[2].dma | ME1; switch( sfmt->depth ) { case 12: { calc_planar_420(vv,buf,&vdma2,&vdma3); break; } case 16: { calc_planar_422(vv,buf,&vdma2,&vdma3); break; } default: { return -1; } } if (V4L2_FIELD_HAS_BOTH(field)) { } else if (field == V4L2_FIELD_ALTERNATE) { /* fixme */ vdma1.base_odd = vdma1.prot_addr; vdma1.pitch /= 2; vdma2.base_odd = vdma2.prot_addr; vdma2.pitch /= 2; vdma3.base_odd = vdma3.prot_addr; vdma3.pitch /= 2; } else if (field == V4L2_FIELD_TOP) { vdma1.base_odd = vdma1.prot_addr; vdma1.pitch /= 2; vdma2.base_odd = vdma2.prot_addr; vdma2.pitch /= 2; vdma3.base_odd = vdma3.prot_addr; vdma3.pitch /= 2; } else if (field == V4L2_FIELD_BOTTOM) { vdma1.base_odd = vdma1.base_even; vdma1.base_even = vdma1.prot_addr; vdma1.pitch /= 2; vdma2.base_odd = vdma2.base_even; vdma2.base_even = vdma2.prot_addr; vdma2.pitch /= 2; vdma3.base_odd = vdma3.base_even; vdma3.base_even = vdma3.prot_addr; vdma3.pitch /= 2; } if( 0 != vv->vflip ) { vdma1.pitch *= -1; vdma2.pitch *= -1; vdma3.pitch *= -1; } saa7146_write_out_dma(dev, 1, &vdma1); if( (sfmt->flags & FORMAT_BYTE_SWAP) != 0 ) { saa7146_write_out_dma(dev, 3, &vdma2); saa7146_write_out_dma(dev, 2, &vdma3); } else { saa7146_write_out_dma(dev, 2, &vdma2); saa7146_write_out_dma(dev, 3, &vdma3); } return 0; } static void program_capture_engine(struct saa7146_dev *dev, int planar) { struct saa7146_vv *vv = dev->vv_data; int count = 0; unsigned long e_wait = vv->current_hps_sync == SAA7146_HPS_SYNC_PORT_A ? CMD_E_FID_A : CMD_E_FID_B; unsigned long o_wait = vv->current_hps_sync == SAA7146_HPS_SYNC_PORT_A ? CMD_O_FID_A : CMD_O_FID_B; /* wait for o_fid_a/b / e_fid_a/b toggle only if rps register 0 is not set*/ WRITE_RPS0(CMD_PAUSE | CMD_OAN | CMD_SIG0 | o_wait); WRITE_RPS0(CMD_PAUSE | CMD_OAN | CMD_SIG0 | e_wait); /* set rps register 0 */ WRITE_RPS0(CMD_WR_REG | (1 << 8) | (MC2/4)); WRITE_RPS0(MASK_27 | MASK_11); /* turn on video-dma1 */ WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4)); WRITE_RPS0(MASK_06 | MASK_22); /* => mask */ WRITE_RPS0(MASK_06 | MASK_22); /* => values */ if( 0 != planar ) { /* turn on video-dma2 */ WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4)); WRITE_RPS0(MASK_05 | MASK_21); /* => mask */ WRITE_RPS0(MASK_05 | MASK_21); /* => values */ /* turn on video-dma3 */ WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4)); WRITE_RPS0(MASK_04 | MASK_20); /* => mask */ WRITE_RPS0(MASK_04 | MASK_20); /* => values */ } /* wait for o_fid_a/b / e_fid_a/b toggle */ if ( vv->last_field == V4L2_FIELD_INTERLACED ) { WRITE_RPS0(CMD_PAUSE | o_wait); WRITE_RPS0(CMD_PAUSE | e_wait); } else if ( vv->last_field == V4L2_FIELD_TOP ) { WRITE_RPS0(CMD_PAUSE | (vv->current_hps_sync == SAA7146_HPS_SYNC_PORT_A ? MASK_10 : MASK_09)); WRITE_RPS0(CMD_PAUSE | o_wait); } else if ( vv->last_field == V4L2_FIELD_BOTTOM ) { WRITE_RPS0(CMD_PAUSE | (vv->current_hps_sync == SAA7146_HPS_SYNC_PORT_A ? MASK_10 : MASK_09)); WRITE_RPS0(CMD_PAUSE | e_wait); } /* turn off video-dma1 */ WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4)); WRITE_RPS0(MASK_22 | MASK_06); /* => mask */ WRITE_RPS0(MASK_22); /* => values */ if( 0 != planar ) { /* turn off video-dma2 */ WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4)); WRITE_RPS0(MASK_05 | MASK_21); /* => mask */ WRITE_RPS0(MASK_21); /* => values */ /* turn off video-dma3 */ WRITE_RPS0(CMD_WR_REG_MASK | (MC1/4)); WRITE_RPS0(MASK_04 | MASK_20); /* => mask */ WRITE_RPS0(MASK_20); /* => values */ } /* generate interrupt */ WRITE_RPS0(CMD_INTERRUPT); /* stop */ WRITE_RPS0(CMD_STOP); } void saa7146_set_capture(struct saa7146_dev *dev, struct saa7146_buf *buf, struct saa7146_buf *next) { struct saa7146_format *sfmt = saa7146_format_by_fourcc(dev,buf->fmt->pixelformat); struct saa7146_vv *vv = dev->vv_data; u32 vdma1_prot_addr; DEB_CAP("buf:%p, next:%p\n", buf, next); vdma1_prot_addr = saa7146_read(dev, PROT_ADDR1); if( 0 == vdma1_prot_addr ) { /* clear out beginning of streaming bit (rps register 0)*/ DEB_CAP("forcing sync to new frame\n"); saa7146_write(dev, MC2, MASK_27 ); } saa7146_set_window(dev, buf->fmt->width, buf->fmt->height, buf->fmt->field); saa7146_set_output_format(dev, sfmt->trans); saa7146_disable_clipping(dev); if ( vv->last_field == V4L2_FIELD_INTERLACED ) { } else if ( vv->last_field == V4L2_FIELD_TOP ) { vv->last_field = V4L2_FIELD_BOTTOM; } else if ( vv->last_field == V4L2_FIELD_BOTTOM ) { vv->last_field = V4L2_FIELD_TOP; } if( 0 != IS_PLANAR(sfmt->trans)) { calculate_video_dma_grab_planar(dev, buf); program_capture_engine(dev,1); } else { calculate_video_dma_grab_packed(dev, buf); program_capture_engine(dev,0); } /* printk("vdma%d.base_even: 0x%08x\n", 1,saa7146_read(dev,BASE_EVEN1)); printk("vdma%d.base_odd: 0x%08x\n", 1,saa7146_read(dev,BASE_ODD1)); printk("vdma%d.prot_addr: 0x%08x\n", 1,saa7146_read(dev,PROT_ADDR1)); printk("vdma%d.base_page: 0x%08x\n", 1,saa7146_read(dev,BASE_PAGE1)); printk("vdma%d.pitch: 0x%08x\n", 1,saa7146_read(dev,PITCH1)); printk("vdma%d.num_line_byte: 0x%08x\n", 1,saa7146_read(dev,NUM_LINE_BYTE1)); printk("vdma%d => vptr : 0x%08x\n", 1,saa7146_read(dev,PCI_VDP1)); */ /* write the address of the rps-program */ saa7146_write(dev, RPS_ADDR0, dev->d_rps0.dma_handle); /* turn on rps */ saa7146_write(dev, MC1, (MASK_12 | MASK_28)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1