Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kozlov Sergey | 14221 | 55.86% | 1 | 1.89% |
Abylay Ospan | 8949 | 35.15% | 14 | 26.42% |
Mauro Carvalho Chehab | 1169 | 4.59% | 14 | 26.42% |
Daniel Scheller | 1038 | 4.08% | 19 | 35.85% |
Colin Ian King | 38 | 0.15% | 1 | 1.89% |
Arnd Bergmann | 35 | 0.14% | 2 | 3.77% |
Jérémy Lefaure | 5 | 0.02% | 1 | 1.89% |
Max Kellermann | 2 | 0.01% | 1 | 1.89% |
Total | 25457 | 53 |
/* * cxd2841er.c * * Sony digital demodulator driver for * CXD2841ER - DVB-S/S2/T/T2/C/C2 * CXD2854ER - DVB-S/S2/T/T2/C/C2, ISDB-T/S * * Copyright 2012 Sony Corporation * Copyright (C) 2014 NetUP Inc. * Copyright (C) 2014 Sergey Kozlov <serjk@netup.ru> * Copyright (C) 2014 Abylay Ospan <aospan@netup.ru> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/module.h> #include <linux/init.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/bitops.h> #include <linux/math64.h> #include <linux/log2.h> #include <linux/dynamic_debug.h> #include <linux/kernel.h> #include <media/dvb_math.h> #include <media/dvb_frontend.h> #include "cxd2841er.h" #include "cxd2841er_priv.h" #define MAX_WRITE_REGSIZE 16 #define LOG2_E_100X 144 #define INTLOG10X100(x) ((u32) (((u64) intlog10(x) * 100) >> 24)) /* DVB-C constellation */ enum sony_dvbc_constellation_t { SONY_DVBC_CONSTELLATION_16QAM, SONY_DVBC_CONSTELLATION_32QAM, SONY_DVBC_CONSTELLATION_64QAM, SONY_DVBC_CONSTELLATION_128QAM, SONY_DVBC_CONSTELLATION_256QAM }; enum cxd2841er_state { STATE_SHUTDOWN = 0, STATE_SLEEP_S, STATE_ACTIVE_S, STATE_SLEEP_TC, STATE_ACTIVE_TC }; struct cxd2841er_priv { struct dvb_frontend frontend; struct i2c_adapter *i2c; u8 i2c_addr_slvx; u8 i2c_addr_slvt; const struct cxd2841er_config *config; enum cxd2841er_state state; u8 system; enum cxd2841er_xtal xtal; enum fe_caps caps; u32 flags; }; static const struct cxd2841er_cnr_data s_cn_data[] = { { 0x033e, 0 }, { 0x0339, 100 }, { 0x0333, 200 }, { 0x032e, 300 }, { 0x0329, 400 }, { 0x0324, 500 }, { 0x031e, 600 }, { 0x0319, 700 }, { 0x0314, 800 }, { 0x030f, 900 }, { 0x030a, 1000 }, { 0x02ff, 1100 }, { 0x02f4, 1200 }, { 0x02e9, 1300 }, { 0x02de, 1400 }, { 0x02d4, 1500 }, { 0x02c9, 1600 }, { 0x02bf, 1700 }, { 0x02b5, 1800 }, { 0x02ab, 1900 }, { 0x02a1, 2000 }, { 0x029b, 2100 }, { 0x0295, 2200 }, { 0x0290, 2300 }, { 0x028a, 2400 }, { 0x0284, 2500 }, { 0x027f, 2600 }, { 0x0279, 2700 }, { 0x0274, 2800 }, { 0x026e, 2900 }, { 0x0269, 3000 }, { 0x0262, 3100 }, { 0x025c, 3200 }, { 0x0255, 3300 }, { 0x024f, 3400 }, { 0x0249, 3500 }, { 0x0242, 3600 }, { 0x023c, 3700 }, { 0x0236, 3800 }, { 0x0230, 3900 }, { 0x022a, 4000 }, { 0x0223, 4100 }, { 0x021c, 4200 }, { 0x0215, 4300 }, { 0x020e, 4400 }, { 0x0207, 4500 }, { 0x0201, 4600 }, { 0x01fa, 4700 }, { 0x01f4, 4800 }, { 0x01ed, 4900 }, { 0x01e7, 5000 }, { 0x01e0, 5100 }, { 0x01d9, 5200 }, { 0x01d2, 5300 }, { 0x01cb, 5400 }, { 0x01c4, 5500 }, { 0x01be, 5600 }, { 0x01b7, 5700 }, { 0x01b1, 5800 }, { 0x01aa, 5900 }, { 0x01a4, 6000 }, { 0x019d, 6100 }, { 0x0196, 6200 }, { 0x018f, 6300 }, { 0x0189, 6400 }, { 0x0182, 6500 }, { 0x017c, 6600 }, { 0x0175, 6700 }, { 0x016f, 6800 }, { 0x0169, 6900 }, { 0x0163, 7000 }, { 0x015c, 7100 }, { 0x0156, 7200 }, { 0x0150, 7300 }, { 0x014a, 7400 }, { 0x0144, 7500 }, { 0x013e, 7600 }, { 0x0138, 7700 }, { 0x0132, 7800 }, { 0x012d, 7900 }, { 0x0127, 8000 }, { 0x0121, 8100 }, { 0x011c, 8200 }, { 0x0116, 8300 }, { 0x0111, 8400 }, { 0x010b, 8500 }, { 0x0106, 8600 }, { 0x0101, 8700 }, { 0x00fc, 8800 }, { 0x00f7, 8900 }, { 0x00f2, 9000 }, { 0x00ee, 9100 }, { 0x00ea, 9200 }, { 0x00e6, 9300 }, { 0x00e2, 9400 }, { 0x00de, 9500 }, { 0x00da, 9600 }, { 0x00d7, 9700 }, { 0x00d3, 9800 }, { 0x00d0, 9900 }, { 0x00cc, 10000 }, { 0x00c7, 10100 }, { 0x00c3, 10200 }, { 0x00bf, 10300 }, { 0x00ba, 10400 }, { 0x00b6, 10500 }, { 0x00b2, 10600 }, { 0x00ae, 10700 }, { 0x00aa, 10800 }, { 0x00a7, 10900 }, { 0x00a3, 11000 }, { 0x009f, 11100 }, { 0x009c, 11200 }, { 0x0098, 11300 }, { 0x0094, 11400 }, { 0x0091, 11500 }, { 0x008e, 11600 }, { 0x008a, 11700 }, { 0x0087, 11800 }, { 0x0084, 11900 }, { 0x0081, 12000 }, { 0x007e, 12100 }, { 0x007b, 12200 }, { 0x0079, 12300 }, { 0x0076, 12400 }, { 0x0073, 12500 }, { 0x0071, 12600 }, { 0x006e, 12700 }, { 0x006c, 12800 }, { 0x0069, 12900 }, { 0x0067, 13000 }, { 0x0065, 13100 }, { 0x0062, 13200 }, { 0x0060, 13300 }, { 0x005e, 13400 }, { 0x005c, 13500 }, { 0x005a, 13600 }, { 0x0058, 13700 }, { 0x0056, 13800 }, { 0x0054, 13900 }, { 0x0052, 14000 }, { 0x0050, 14100 }, { 0x004e, 14200 }, { 0x004c, 14300 }, { 0x004b, 14400 }, { 0x0049, 14500 }, { 0x0047, 14600 }, { 0x0046, 14700 }, { 0x0044, 14800 }, { 0x0043, 14900 }, { 0x0041, 15000 }, { 0x003f, 15100 }, { 0x003e, 15200 }, { 0x003c, 15300 }, { 0x003b, 15400 }, { 0x003a, 15500 }, { 0x0037, 15700 }, { 0x0036, 15800 }, { 0x0034, 15900 }, { 0x0033, 16000 }, { 0x0032, 16100 }, { 0x0031, 16200 }, { 0x0030, 16300 }, { 0x002f, 16400 }, { 0x002e, 16500 }, { 0x002d, 16600 }, { 0x002c, 16700 }, { 0x002b, 16800 }, { 0x002a, 16900 }, { 0x0029, 17000 }, { 0x0028, 17100 }, { 0x0027, 17200 }, { 0x0026, 17300 }, { 0x0025, 17400 }, { 0x0024, 17500 }, { 0x0023, 17600 }, { 0x0022, 17800 }, { 0x0021, 17900 }, { 0x0020, 18000 }, { 0x001f, 18200 }, { 0x001e, 18300 }, { 0x001d, 18500 }, { 0x001c, 18700 }, { 0x001b, 18900 }, { 0x001a, 19000 }, { 0x0019, 19200 }, { 0x0018, 19300 }, { 0x0017, 19500 }, { 0x0016, 19700 }, { 0x0015, 19900 }, { 0x0014, 20000 }, }; static const struct cxd2841er_cnr_data s2_cn_data[] = { { 0x05af, 0 }, { 0x0597, 100 }, { 0x057e, 200 }, { 0x0567, 300 }, { 0x0550, 400 }, { 0x0539, 500 }, { 0x0522, 600 }, { 0x050c, 700 }, { 0x04f6, 800 }, { 0x04e1, 900 }, { 0x04cc, 1000 }, { 0x04b6, 1100 }, { 0x04a1, 1200 }, { 0x048c, 1300 }, { 0x0477, 1400 }, { 0x0463, 1500 }, { 0x044f, 1600 }, { 0x043c, 1700 }, { 0x0428, 1800 }, { 0x0416, 1900 }, { 0x0403, 2000 }, { 0x03ef, 2100 }, { 0x03dc, 2200 }, { 0x03c9, 2300 }, { 0x03b6, 2400 }, { 0x03a4, 2500 }, { 0x0392, 2600 }, { 0x0381, 2700 }, { 0x036f, 2800 }, { 0x035f, 2900 }, { 0x034e, 3000 }, { 0x033d, 3100 }, { 0x032d, 3200 }, { 0x031d, 3300 }, { 0x030d, 3400 }, { 0x02fd, 3500 }, { 0x02ee, 3600 }, { 0x02df, 3700 }, { 0x02d0, 3800 }, { 0x02c2, 3900 }, { 0x02b4, 4000 }, { 0x02a6, 4100 }, { 0x0299, 4200 }, { 0x028c, 4300 }, { 0x027f, 4400 }, { 0x0272, 4500 }, { 0x0265, 4600 }, { 0x0259, 4700 }, { 0x024d, 4800 }, { 0x0241, 4900 }, { 0x0236, 5000 }, { 0x022b, 5100 }, { 0x0220, 5200 }, { 0x0215, 5300 }, { 0x020a, 5400 }, { 0x0200, 5500 }, { 0x01f6, 5600 }, { 0x01ec, 5700 }, { 0x01e2, 5800 }, { 0x01d8, 5900 }, { 0x01cf, 6000 }, { 0x01c6, 6100 }, { 0x01bc, 6200 }, { 0x01b3, 6300 }, { 0x01aa, 6400 }, { 0x01a2, 6500 }, { 0x0199, 6600 }, { 0x0191, 6700 }, { 0x0189, 6800 }, { 0x0181, 6900 }, { 0x0179, 7000 }, { 0x0171, 7100 }, { 0x0169, 7200 }, { 0x0161, 7300 }, { 0x015a, 7400 }, { 0x0153, 7500 }, { 0x014b, 7600 }, { 0x0144, 7700 }, { 0x013d, 7800 }, { 0x0137, 7900 }, { 0x0130, 8000 }, { 0x012a, 8100 }, { 0x0124, 8200 }, { 0x011e, 8300 }, { 0x0118, 8400 }, { 0x0112, 8500 }, { 0x010c, 8600 }, { 0x0107, 8700 }, { 0x0101, 8800 }, { 0x00fc, 8900 }, { 0x00f7, 9000 }, { 0x00f2, 9100 }, { 0x00ec, 9200 }, { 0x00e7, 9300 }, { 0x00e2, 9400 }, { 0x00dd, 9500 }, { 0x00d8, 9600 }, { 0x00d4, 9700 }, { 0x00cf, 9800 }, { 0x00ca, 9900 }, { 0x00c6, 10000 }, { 0x00c2, 10100 }, { 0x00be, 10200 }, { 0x00b9, 10300 }, { 0x00b5, 10400 }, { 0x00b1, 10500 }, { 0x00ae, 10600 }, { 0x00aa, 10700 }, { 0x00a6, 10800 }, { 0x00a3, 10900 }, { 0x009f, 11000 }, { 0x009b, 11100 }, { 0x0098, 11200 }, { 0x0095, 11300 }, { 0x0091, 11400 }, { 0x008e, 11500 }, { 0x008b, 11600 }, { 0x0088, 11700 }, { 0x0085, 11800 }, { 0x0082, 11900 }, { 0x007f, 12000 }, { 0x007c, 12100 }, { 0x007a, 12200 }, { 0x0077, 12300 }, { 0x0074, 12400 }, { 0x0072, 12500 }, { 0x006f, 12600 }, { 0x006d, 12700 }, { 0x006b, 12800 }, { 0x0068, 12900 }, { 0x0066, 13000 }, { 0x0064, 13100 }, { 0x0061, 13200 }, { 0x005f, 13300 }, { 0x005d, 13400 }, { 0x005b, 13500 }, { 0x0059, 13600 }, { 0x0057, 13700 }, { 0x0055, 13800 }, { 0x0053, 13900 }, { 0x0051, 14000 }, { 0x004f, 14100 }, { 0x004e, 14200 }, { 0x004c, 14300 }, { 0x004a, 14400 }, { 0x0049, 14500 }, { 0x0047, 14600 }, { 0x0045, 14700 }, { 0x0044, 14800 }, { 0x0042, 14900 }, { 0x0041, 15000 }, { 0x003f, 15100 }, { 0x003e, 15200 }, { 0x003c, 15300 }, { 0x003b, 15400 }, { 0x003a, 15500 }, { 0x0038, 15600 }, { 0x0037, 15700 }, { 0x0036, 15800 }, { 0x0034, 15900 }, { 0x0033, 16000 }, { 0x0032, 16100 }, { 0x0031, 16200 }, { 0x0030, 16300 }, { 0x002f, 16400 }, { 0x002e, 16500 }, { 0x002d, 16600 }, { 0x002c, 16700 }, { 0x002b, 16800 }, { 0x002a, 16900 }, { 0x0029, 17000 }, { 0x0028, 17100 }, { 0x0027, 17200 }, { 0x0026, 17300 }, { 0x0025, 17400 }, { 0x0024, 17500 }, { 0x0023, 17600 }, { 0x0022, 17800 }, { 0x0021, 17900 }, { 0x0020, 18000 }, { 0x001f, 18200 }, { 0x001e, 18300 }, { 0x001d, 18500 }, { 0x001c, 18700 }, { 0x001b, 18900 }, { 0x001a, 19000 }, { 0x0019, 19200 }, { 0x0018, 19300 }, { 0x0017, 19500 }, { 0x0016, 19700 }, { 0x0015, 19900 }, { 0x0014, 20000 }, }; static int cxd2841er_freeze_regs(struct cxd2841er_priv *priv); static int cxd2841er_unfreeze_regs(struct cxd2841er_priv *priv); static void cxd2841er_i2c_debug(struct cxd2841er_priv *priv, u8 addr, u8 reg, u8 write, const u8 *data, u32 len) { dev_dbg(&priv->i2c->dev, "cxd2841er: I2C %s addr %02x reg 0x%02x size %d data %*ph\n", (write == 0 ? "read" : "write"), addr, reg, len, len, data); } static int cxd2841er_write_regs(struct cxd2841er_priv *priv, u8 addr, u8 reg, const u8 *data, u32 len) { int ret; u8 buf[MAX_WRITE_REGSIZE + 1]; u8 i2c_addr = (addr == I2C_SLVX ? priv->i2c_addr_slvx : priv->i2c_addr_slvt); struct i2c_msg msg[1] = { { .addr = i2c_addr, .flags = 0, .len = len + 1, .buf = buf, } }; if (len + 1 >= sizeof(buf)) { dev_warn(&priv->i2c->dev, "wr reg=%04x: len=%d is too big!\n", reg, len + 1); return -E2BIG; } cxd2841er_i2c_debug(priv, i2c_addr, reg, 1, data, len); buf[0] = reg; memcpy(&buf[1], data, len); ret = i2c_transfer(priv->i2c, msg, 1); if (ret >= 0 && ret != 1) ret = -EIO; if (ret < 0) { dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d addr=%02x reg=%02x len=%d\n", KBUILD_MODNAME, ret, i2c_addr, reg, len); return ret; } return 0; } static int cxd2841er_write_reg(struct cxd2841er_priv *priv, u8 addr, u8 reg, u8 val) { u8 tmp = val; /* see gcc.gnu.org/bugzilla/show_bug.cgi?id=81715 */ return cxd2841er_write_regs(priv, addr, reg, &tmp, 1); } static int cxd2841er_read_regs(struct cxd2841er_priv *priv, u8 addr, u8 reg, u8 *val, u32 len) { int ret; u8 i2c_addr = (addr == I2C_SLVX ? priv->i2c_addr_slvx : priv->i2c_addr_slvt); struct i2c_msg msg[2] = { { .addr = i2c_addr, .flags = 0, .len = 1, .buf = ®, }, { .addr = i2c_addr, .flags = I2C_M_RD, .len = len, .buf = val, } }; ret = i2c_transfer(priv->i2c, msg, 2); if (ret >= 0 && ret != 2) ret = -EIO; if (ret < 0) { dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d addr=%02x reg=%02x\n", KBUILD_MODNAME, ret, i2c_addr, reg); return ret; } cxd2841er_i2c_debug(priv, i2c_addr, reg, 0, val, len); return 0; } static int cxd2841er_read_reg(struct cxd2841er_priv *priv, u8 addr, u8 reg, u8 *val) { return cxd2841er_read_regs(priv, addr, reg, val, 1); } static int cxd2841er_set_reg_bits(struct cxd2841er_priv *priv, u8 addr, u8 reg, u8 data, u8 mask) { int res; u8 rdata; if (mask != 0xff) { res = cxd2841er_read_reg(priv, addr, reg, &rdata); if (res) return res; data = ((data & mask) | (rdata & (mask ^ 0xFF))); } return cxd2841er_write_reg(priv, addr, reg, data); } static u32 cxd2841er_calc_iffreq_xtal(enum cxd2841er_xtal xtal, u32 ifhz) { u64 tmp; tmp = (u64) ifhz * 16777216; do_div(tmp, ((xtal == SONY_XTAL_24000) ? 48000000 : 41000000)); return (u32) tmp; } static u32 cxd2841er_calc_iffreq(u32 ifhz) { return cxd2841er_calc_iffreq_xtal(SONY_XTAL_20500, ifhz); } static int cxd2841er_get_if_hz(struct cxd2841er_priv *priv, u32 def_hz) { u32 hz; if (priv->frontend.ops.tuner_ops.get_if_frequency && (priv->flags & CXD2841ER_AUTO_IFHZ)) priv->frontend.ops.tuner_ops.get_if_frequency( &priv->frontend, &hz); else hz = def_hz; return hz; } static int cxd2841er_tuner_set(struct dvb_frontend *fe) { struct cxd2841er_priv *priv = fe->demodulator_priv; if ((priv->flags & CXD2841ER_USE_GATECTRL) && fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe); if ((priv->flags & CXD2841ER_USE_GATECTRL) && fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; } static int cxd2841er_dvbs2_set_symbol_rate(struct cxd2841er_priv *priv, u32 symbol_rate) { u32 reg_value = 0; u8 data[3] = {0, 0, 0}; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); /* * regValue = (symbolRateKSps * 2^14 / 1000) + 0.5 * = ((symbolRateKSps * 2^14) + 500) / 1000 * = ((symbolRateKSps * 16384) + 500) / 1000 */ reg_value = DIV_ROUND_CLOSEST(symbol_rate * 16384, 1000); if ((reg_value == 0) || (reg_value > 0xFFFFF)) { dev_err(&priv->i2c->dev, "%s(): reg_value is out of range\n", __func__); return -EINVAL; } data[0] = (u8)((reg_value >> 16) & 0x0F); data[1] = (u8)((reg_value >> 8) & 0xFF); data[2] = (u8)(reg_value & 0xFF); /* Set SLV-T Bank : 0xAE */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xae); cxd2841er_write_regs(priv, I2C_SLVT, 0x20, data, 3); return 0; } static void cxd2841er_set_ts_clock_mode(struct cxd2841er_priv *priv, u8 system); static int cxd2841er_sleep_s_to_active_s(struct cxd2841er_priv *priv, u8 system, u32 symbol_rate) { int ret; u8 data[4] = { 0, 0, 0, 0 }; if (priv->state != STATE_SLEEP_S) { dev_err(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, (int)priv->state); return -EINVAL; } dev_dbg(&priv->i2c->dev, "%s()\n", __func__); cxd2841er_set_ts_clock_mode(priv, SYS_DVBS); /* Set demod mode */ if (system == SYS_DVBS) { data[0] = 0x0A; } else if (system == SYS_DVBS2) { data[0] = 0x0B; } else { dev_err(&priv->i2c->dev, "%s(): invalid delsys %d\n", __func__, system); return -EINVAL; } /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); cxd2841er_write_reg(priv, I2C_SLVX, 0x17, data[0]); /* DVB-S/S2 */ data[0] = 0x00; /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Enable S/S2 auto detection 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2d, data[0]); /* Set SLV-T Bank : 0xAE */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xae); /* Enable S/S2 auto detection 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, data[0]); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Enable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x01); /* Enable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x31, 0x01); /* Enable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x63, 0x16); /* Enable ADC 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x65, 0x3f); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Enable ADC 3 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x00); /* Set SLV-T Bank : 0xA3 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xa3); cxd2841er_write_reg(priv, I2C_SLVT, 0xac, 0x00); data[0] = 0x07; data[1] = 0x3B; data[2] = 0x08; data[3] = 0xC5; /* Set SLV-T Bank : 0xAB */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xab); cxd2841er_write_regs(priv, I2C_SLVT, 0x98, data, 4); data[0] = 0x05; data[1] = 0x80; data[2] = 0x0A; data[3] = 0x80; cxd2841er_write_regs(priv, I2C_SLVT, 0xa8, data, 4); data[0] = 0x0C; data[1] = 0xCC; cxd2841er_write_regs(priv, I2C_SLVT, 0xc3, data, 2); /* Set demod parameter */ ret = cxd2841er_dvbs2_set_symbol_rate(priv, symbol_rate); if (ret != 0) return ret; /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* disable Hi-Z setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x10); /* disable Hi-Z setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0x00); priv->state = STATE_ACTIVE_S; return 0; } static int cxd2841er_sleep_tc_to_active_t_band(struct cxd2841er_priv *priv, u32 bandwidth); static int cxd2841er_sleep_tc_to_active_t2_band(struct cxd2841er_priv *priv, u32 bandwidth); static int cxd2841er_sleep_tc_to_active_c_band(struct cxd2841er_priv *priv, u32 bandwidth); static int cxd2841er_sleep_tc_to_active_i(struct cxd2841er_priv *priv, u32 bandwidth); static int cxd2841er_active_i_to_sleep_tc(struct cxd2841er_priv *priv); static int cxd2841er_sleep_tc_to_shutdown(struct cxd2841er_priv *priv); static int cxd2841er_shutdown_to_sleep_tc(struct cxd2841er_priv *priv); static int cxd2841er_sleep_tc(struct dvb_frontend *fe); static int cxd2841er_retune_active(struct cxd2841er_priv *priv, struct dtv_frontend_properties *p) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_S && priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* disable TS output */ cxd2841er_write_reg(priv, I2C_SLVT, 0xc3, 0x01); if (priv->state == STATE_ACTIVE_S) return cxd2841er_dvbs2_set_symbol_rate( priv, p->symbol_rate / 1000); else if (priv->state == STATE_ACTIVE_TC) { switch (priv->system) { case SYS_DVBT: return cxd2841er_sleep_tc_to_active_t_band( priv, p->bandwidth_hz); case SYS_DVBT2: return cxd2841er_sleep_tc_to_active_t2_band( priv, p->bandwidth_hz); case SYS_DVBC_ANNEX_A: return cxd2841er_sleep_tc_to_active_c_band( priv, p->bandwidth_hz); case SYS_ISDBT: cxd2841er_active_i_to_sleep_tc(priv); cxd2841er_sleep_tc_to_shutdown(priv); cxd2841er_shutdown_to_sleep_tc(priv); return cxd2841er_sleep_tc_to_active_i( priv, p->bandwidth_hz); } } dev_dbg(&priv->i2c->dev, "%s(): invalid delivery system %d\n", __func__, priv->system); return -EINVAL; } static int cxd2841er_active_s_to_sleep_s(struct cxd2841er_priv *priv) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_S) { dev_err(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* disable TS output */ cxd2841er_write_reg(priv, I2C_SLVT, 0xc3, 0x01); /* enable Hi-Z setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x1f); /* enable Hi-Z setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0xff); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* disable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x01); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* disable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x31, 0x00); /* disable ADC 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x63, 0x16); /* disable ADC 3 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x65, 0x27); /* SADC Bias ON */ cxd2841er_write_reg(priv, I2C_SLVT, 0x69, 0x06); /* disable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x00); /* Set SLV-T Bank : 0xAE */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xae); /* disable S/S2 auto detection1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, 0x00); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* disable S/S2 auto detection2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2d, 0x00); priv->state = STATE_SLEEP_S; return 0; } static int cxd2841er_sleep_s_to_shutdown(struct cxd2841er_priv *priv) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_SLEEP_S) { dev_dbg(&priv->i2c->dev, "%s(): invalid demod state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Disable DSQOUT */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x3f); /* Disable DSQIN */ cxd2841er_write_reg(priv, I2C_SLVT, 0x9c, 0x00); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Disable oscillator */ cxd2841er_write_reg(priv, I2C_SLVX, 0x15, 0x01); /* Set demod mode */ cxd2841er_write_reg(priv, I2C_SLVX, 0x17, 0x01); priv->state = STATE_SHUTDOWN; return 0; } static int cxd2841er_sleep_tc_to_shutdown(struct cxd2841er_priv *priv) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_SLEEP_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid demod state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Disable oscillator */ cxd2841er_write_reg(priv, I2C_SLVX, 0x15, 0x01); /* Set demod mode */ cxd2841er_write_reg(priv, I2C_SLVX, 0x17, 0x01); priv->state = STATE_SHUTDOWN; return 0; } static int cxd2841er_active_t_to_sleep_tc(struct cxd2841er_priv *priv) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_err(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* disable TS output */ cxd2841er_write_reg(priv, I2C_SLVT, 0xc3, 0x01); /* enable Hi-Z setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x3f); /* enable Hi-Z setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0xff); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* disable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x01); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Disable ADC 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x43, 0x0a); /* Disable ADC 3 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x0a); /* Disable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, 0x00); /* Disable RF level monitor */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2f, 0x00); /* Disable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x00); priv->state = STATE_SLEEP_TC; return 0; } static int cxd2841er_active_t2_to_sleep_tc(struct cxd2841er_priv *priv) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_err(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* disable TS output */ cxd2841er_write_reg(priv, I2C_SLVT, 0xc3, 0x01); /* enable Hi-Z setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x3f); /* enable Hi-Z setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0xff); /* Cancel DVB-T2 setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x13); cxd2841er_write_reg(priv, I2C_SLVT, 0x83, 0x40); cxd2841er_write_reg(priv, I2C_SLVT, 0x86, 0x21); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x9e, 0x09, 0x0f); cxd2841er_write_reg(priv, I2C_SLVT, 0x9f, 0xfb); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x2a); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x38, 0x00, 0x0f); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x2b); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x11, 0x00, 0x3f); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* disable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x01); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Disable ADC 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x43, 0x0a); /* Disable ADC 3 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x0a); /* Disable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, 0x00); /* Disable RF level monitor */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2f, 0x00); /* Disable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x00); priv->state = STATE_SLEEP_TC; return 0; } static int cxd2841er_active_c_to_sleep_tc(struct cxd2841er_priv *priv) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_err(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* disable TS output */ cxd2841er_write_reg(priv, I2C_SLVT, 0xc3, 0x01); /* enable Hi-Z setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x3f); /* enable Hi-Z setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0xff); /* Cancel DVB-C setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x11); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xa3, 0x00, 0x1f); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* disable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x01); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Disable ADC 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x43, 0x0a); /* Disable ADC 3 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x0a); /* Disable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, 0x00); /* Disable RF level monitor */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2f, 0x00); /* Disable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x00); priv->state = STATE_SLEEP_TC; return 0; } static int cxd2841er_active_i_to_sleep_tc(struct cxd2841er_priv *priv) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_err(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* disable TS output */ cxd2841er_write_reg(priv, I2C_SLVT, 0xc3, 0x01); /* enable Hi-Z setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x3f); /* enable Hi-Z setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0xff); /* TODO: Cancel demod parameter */ /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* disable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x01); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Disable ADC 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x43, 0x0a); /* Disable ADC 3 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x0a); /* Disable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, 0x00); /* Disable RF level monitor */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2f, 0x00); /* Disable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x00); priv->state = STATE_SLEEP_TC; return 0; } static int cxd2841er_shutdown_to_sleep_s(struct cxd2841er_priv *priv) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_SHUTDOWN) { dev_dbg(&priv->i2c->dev, "%s(): invalid demod state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Clear all demodulator registers */ cxd2841er_write_reg(priv, I2C_SLVX, 0x02, 0x00); usleep_range(3000, 5000); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Set demod SW reset */ cxd2841er_write_reg(priv, I2C_SLVX, 0x10, 0x01); switch (priv->xtal) { case SONY_XTAL_20500: cxd2841er_write_reg(priv, I2C_SLVX, 0x14, 0x00); break; case SONY_XTAL_24000: /* Select demod frequency */ cxd2841er_write_reg(priv, I2C_SLVX, 0x12, 0x00); cxd2841er_write_reg(priv, I2C_SLVX, 0x14, 0x03); break; case SONY_XTAL_41000: cxd2841er_write_reg(priv, I2C_SLVX, 0x14, 0x01); break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid demod xtal %d\n", __func__, priv->xtal); return -EINVAL; } /* Set demod mode */ cxd2841er_write_reg(priv, I2C_SLVX, 0x17, 0x0a); /* Clear demod SW reset */ cxd2841er_write_reg(priv, I2C_SLVX, 0x10, 0x00); usleep_range(1000, 2000); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* enable DSQOUT */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x1F); /* enable DSQIN */ cxd2841er_write_reg(priv, I2C_SLVT, 0x9C, 0x40); /* TADC Bias On */ cxd2841er_write_reg(priv, I2C_SLVT, 0x43, 0x0a); cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x0a); /* SADC Bias On */ cxd2841er_write_reg(priv, I2C_SLVT, 0x63, 0x16); cxd2841er_write_reg(priv, I2C_SLVT, 0x65, 0x27); cxd2841er_write_reg(priv, I2C_SLVT, 0x69, 0x06); priv->state = STATE_SLEEP_S; return 0; } static int cxd2841er_shutdown_to_sleep_tc(struct cxd2841er_priv *priv) { u8 data = 0; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_SHUTDOWN) { dev_dbg(&priv->i2c->dev, "%s(): invalid demod state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Clear all demodulator registers */ cxd2841er_write_reg(priv, I2C_SLVX, 0x02, 0x00); usleep_range(3000, 5000); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Set demod SW reset */ cxd2841er_write_reg(priv, I2C_SLVX, 0x10, 0x01); /* Select ADC clock mode */ cxd2841er_write_reg(priv, I2C_SLVX, 0x13, 0x00); switch (priv->xtal) { case SONY_XTAL_20500: data = 0x0; break; case SONY_XTAL_24000: /* Select demod frequency */ cxd2841er_write_reg(priv, I2C_SLVX, 0x12, 0x00); data = 0x3; break; case SONY_XTAL_41000: cxd2841er_write_reg(priv, I2C_SLVX, 0x12, 0x00); data = 0x1; break; } cxd2841er_write_reg(priv, I2C_SLVX, 0x14, data); /* Clear demod SW reset */ cxd2841er_write_reg(priv, I2C_SLVX, 0x10, 0x00); usleep_range(1000, 2000); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* TADC Bias On */ cxd2841er_write_reg(priv, I2C_SLVT, 0x43, 0x0a); cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x0a); /* SADC Bias On */ cxd2841er_write_reg(priv, I2C_SLVT, 0x63, 0x16); cxd2841er_write_reg(priv, I2C_SLVT, 0x65, 0x27); cxd2841er_write_reg(priv, I2C_SLVT, 0x69, 0x06); priv->state = STATE_SLEEP_TC; return 0; } static int cxd2841er_tune_done(struct cxd2841er_priv *priv) { dev_dbg(&priv->i2c->dev, "%s()\n", __func__); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0, 0); /* SW Reset */ cxd2841er_write_reg(priv, I2C_SLVT, 0xfe, 0x01); /* Enable TS output */ cxd2841er_write_reg(priv, I2C_SLVT, 0xc3, 0x00); return 0; } /* Set TS parallel mode */ static void cxd2841er_set_ts_clock_mode(struct cxd2841er_priv *priv, u8 system) { u8 serial_ts, ts_rate_ctrl_off, ts_in_off; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); cxd2841er_read_reg(priv, I2C_SLVT, 0xc4, &serial_ts); cxd2841er_read_reg(priv, I2C_SLVT, 0xd3, &ts_rate_ctrl_off); cxd2841er_read_reg(priv, I2C_SLVT, 0xde, &ts_in_off); dev_dbg(&priv->i2c->dev, "%s(): ser_ts=0x%02x rate_ctrl_off=0x%02x in_off=0x%02x\n", __func__, serial_ts, ts_rate_ctrl_off, ts_in_off); /* * slave Bank Addr Bit default Name * <SLV-T> 00h C4h [1:0] 2'b?? OSERCKMODE */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xc4, ((priv->flags & CXD2841ER_TS_SERIAL) ? 0x01 : 0x00), 0x03); /* * slave Bank Addr Bit default Name * <SLV-T> 00h D1h [1:0] 2'b?? OSERDUTYMODE */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xd1, ((priv->flags & CXD2841ER_TS_SERIAL) ? 0x01 : 0x00), 0x03); /* * slave Bank Addr Bit default Name * <SLV-T> 00h D9h [7:0] 8'h08 OTSCKPERIOD */ cxd2841er_write_reg(priv, I2C_SLVT, 0xd9, 0x08); /* * Disable TS IF Clock * slave Bank Addr Bit default Name * <SLV-T> 00h 32h [0] 1'b1 OREG_CK_TSIF_EN */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x32, 0x00, 0x01); /* * slave Bank Addr Bit default Name * <SLV-T> 00h 33h [1:0] 2'b01 OREG_CKSEL_TSIF */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x33, ((priv->flags & CXD2841ER_TS_SERIAL) ? 0x01 : 0x00), 0x03); /* * Enable TS IF Clock * slave Bank Addr Bit default Name * <SLV-T> 00h 32h [0] 1'b1 OREG_CK_TSIF_EN */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x32, 0x01, 0x01); if (system == SYS_DVBT) { /* Enable parity period for DVB-T */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x66, 0x01, 0x01); } else if (system == SYS_DVBC_ANNEX_A) { /* Enable parity period for DVB-C */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x40); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x66, 0x01, 0x01); } } static u8 cxd2841er_chip_id(struct cxd2841er_priv *priv) { u8 chip_id = 0; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (cxd2841er_write_reg(priv, I2C_SLVT, 0, 0) == 0) cxd2841er_read_reg(priv, I2C_SLVT, 0xfd, &chip_id); else if (cxd2841er_write_reg(priv, I2C_SLVX, 0, 0) == 0) cxd2841er_read_reg(priv, I2C_SLVX, 0xfd, &chip_id); return chip_id; } static int cxd2841er_read_status_s(struct dvb_frontend *fe, enum fe_status *status) { u8 reg = 0; struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); *status = 0; if (priv->state != STATE_ACTIVE_S) { dev_err(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } /* Set SLV-T Bank : 0xA0 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xa0); /* * slave Bank Addr Bit Signal name * <SLV-T> A0h 11h [2] ITSLOCK */ cxd2841er_read_reg(priv, I2C_SLVT, 0x11, ®); if (reg & 0x04) { *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; } dev_dbg(&priv->i2c->dev, "%s(): result 0x%x\n", __func__, *status); return 0; } static int cxd2841er_read_status_t_t2(struct cxd2841er_priv *priv, u8 *sync, u8 *tslock, u8 *unlock) { u8 data = 0; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) return -EINVAL; if (priv->system == SYS_DVBT) { /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); } else { /* Set SLV-T Bank : 0x20 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x20); } cxd2841er_read_reg(priv, I2C_SLVT, 0x10, &data); if ((data & 0x07) == 0x07) { dev_dbg(&priv->i2c->dev, "%s(): invalid hardware state detected\n", __func__); *sync = 0; *tslock = 0; *unlock = 0; } else { *sync = ((data & 0x07) == 0x6 ? 1 : 0); *tslock = ((data & 0x20) ? 1 : 0); *unlock = ((data & 0x10) ? 1 : 0); } return 0; } static int cxd2841er_read_status_c(struct cxd2841er_priv *priv, u8 *tslock) { u8 data; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) return -EINVAL; cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x40); cxd2841er_read_reg(priv, I2C_SLVT, 0x88, &data); if ((data & 0x01) == 0) { *tslock = 0; } else { cxd2841er_read_reg(priv, I2C_SLVT, 0x10, &data); *tslock = ((data & 0x20) ? 1 : 0); } return 0; } static int cxd2841er_read_status_i(struct cxd2841er_priv *priv, u8 *sync, u8 *tslock, u8 *unlock) { u8 data = 0; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) return -EINVAL; /* Set SLV-T Bank : 0x60 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x60); cxd2841er_read_reg(priv, I2C_SLVT, 0x10, &data); dev_dbg(&priv->i2c->dev, "%s(): lock=0x%x\n", __func__, data); *sync = ((data & 0x02) ? 1 : 0); *tslock = ((data & 0x01) ? 1 : 0); *unlock = ((data & 0x10) ? 1 : 0); return 0; } static int cxd2841er_read_status_tc(struct dvb_frontend *fe, enum fe_status *status) { int ret = 0; u8 sync = 0; u8 tslock = 0; u8 unlock = 0; struct cxd2841er_priv *priv = fe->demodulator_priv; *status = 0; if (priv->state == STATE_ACTIVE_TC) { if (priv->system == SYS_DVBT || priv->system == SYS_DVBT2) { ret = cxd2841er_read_status_t_t2( priv, &sync, &tslock, &unlock); if (ret) goto done; if (unlock) goto done; if (sync) *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC; if (tslock) *status |= FE_HAS_LOCK; } else if (priv->system == SYS_ISDBT) { ret = cxd2841er_read_status_i( priv, &sync, &tslock, &unlock); if (ret) goto done; if (unlock) goto done; if (sync) *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC; if (tslock) *status |= FE_HAS_LOCK; } else if (priv->system == SYS_DVBC_ANNEX_A) { ret = cxd2841er_read_status_c(priv, &tslock); if (ret) goto done; if (tslock) *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; } } done: dev_dbg(&priv->i2c->dev, "%s(): status 0x%x\n", __func__, *status); return ret; } static int cxd2841er_get_carrier_offset_s_s2(struct cxd2841er_priv *priv, int *offset) { u8 data[3]; u8 is_hs_mode; s32 cfrl_ctrlval; s32 temp_div, temp_q, temp_r; if (priv->state != STATE_ACTIVE_S) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } /* * Get High Sampling Rate mode * slave Bank Addr Bit Signal name * <SLV-T> A0h 10h [0] ITRL_LOCK */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xa0); cxd2841er_read_reg(priv, I2C_SLVT, 0x10, &data[0]); if (data[0] & 0x01) { /* * slave Bank Addr Bit Signal name * <SLV-T> A0h 50h [4] IHSMODE */ cxd2841er_read_reg(priv, I2C_SLVT, 0x50, &data[0]); is_hs_mode = (data[0] & 0x10 ? 1 : 0); } else { dev_dbg(&priv->i2c->dev, "%s(): unable to detect sampling rate mode\n", __func__); return -EINVAL; } /* * slave Bank Addr Bit Signal name * <SLV-T> A0h 45h [4:0] ICFRL_CTRLVAL[20:16] * <SLV-T> A0h 46h [7:0] ICFRL_CTRLVAL[15:8] * <SLV-T> A0h 47h [7:0] ICFRL_CTRLVAL[7:0] */ cxd2841er_read_regs(priv, I2C_SLVT, 0x45, data, 3); cfrl_ctrlval = sign_extend32((((u32)data[0] & 0x1F) << 16) | (((u32)data[1] & 0xFF) << 8) | ((u32)data[2] & 0xFF), 20); temp_div = (is_hs_mode ? 1048576 : 1572864); if (cfrl_ctrlval > 0) { temp_q = div_s64_rem(97375LL * cfrl_ctrlval, temp_div, &temp_r); } else { temp_q = div_s64_rem(-97375LL * cfrl_ctrlval, temp_div, &temp_r); } if (temp_r >= temp_div / 2) temp_q++; if (cfrl_ctrlval > 0) temp_q *= -1; *offset = temp_q; return 0; } static int cxd2841er_get_carrier_offset_i(struct cxd2841er_priv *priv, u32 bandwidth, int *offset) { u8 data[4]; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } if (priv->system != SYS_ISDBT) { dev_dbg(&priv->i2c->dev, "%s(): invalid delivery system %d\n", __func__, priv->system); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x60); cxd2841er_read_regs(priv, I2C_SLVT, 0x4c, data, sizeof(data)); *offset = -1 * sign_extend32( ((u32)(data[0] & 0x1F) << 24) | ((u32)data[1] << 16) | ((u32)data[2] << 8) | (u32)data[3], 29); switch (bandwidth) { case 6000000: *offset = -1 * ((*offset) * 8/264); break; case 7000000: *offset = -1 * ((*offset) * 8/231); break; case 8000000: *offset = -1 * ((*offset) * 8/198); break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid bandwidth %d\n", __func__, bandwidth); return -EINVAL; } dev_dbg(&priv->i2c->dev, "%s(): bandwidth %d offset %d\n", __func__, bandwidth, *offset); return 0; } static int cxd2841er_get_carrier_offset_t(struct cxd2841er_priv *priv, u32 bandwidth, int *offset) { u8 data[4]; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } if (priv->system != SYS_DVBT) { dev_dbg(&priv->i2c->dev, "%s(): invalid delivery system %d\n", __func__, priv->system); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); cxd2841er_read_regs(priv, I2C_SLVT, 0x4c, data, sizeof(data)); *offset = -1 * sign_extend32( ((u32)(data[0] & 0x1F) << 24) | ((u32)data[1] << 16) | ((u32)data[2] << 8) | (u32)data[3], 29); *offset *= (bandwidth / 1000000); *offset /= 235; return 0; } static int cxd2841er_get_carrier_offset_t2(struct cxd2841er_priv *priv, u32 bandwidth, int *offset) { u8 data[4]; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } if (priv->system != SYS_DVBT2) { dev_dbg(&priv->i2c->dev, "%s(): invalid delivery system %d\n", __func__, priv->system); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x20); cxd2841er_read_regs(priv, I2C_SLVT, 0x4c, data, sizeof(data)); *offset = -1 * sign_extend32( ((u32)(data[0] & 0x0F) << 24) | ((u32)data[1] << 16) | ((u32)data[2] << 8) | (u32)data[3], 27); switch (bandwidth) { case 1712000: *offset /= 582; break; case 5000000: case 6000000: case 7000000: case 8000000: *offset *= (bandwidth / 1000000); *offset /= 940; break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid bandwidth %d\n", __func__, bandwidth); return -EINVAL; } return 0; } static int cxd2841er_get_carrier_offset_c(struct cxd2841er_priv *priv, int *offset) { u8 data[2]; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } if (priv->system != SYS_DVBC_ANNEX_A) { dev_dbg(&priv->i2c->dev, "%s(): invalid delivery system %d\n", __func__, priv->system); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x40); cxd2841er_read_regs(priv, I2C_SLVT, 0x15, data, sizeof(data)); *offset = div_s64(41000LL * sign_extend32((((u32)data[0] & 0x3f) << 8) | (u32)data[1], 13), 16384); return 0; } static int cxd2841er_read_packet_errors_c( struct cxd2841er_priv *priv, u32 *penum) { u8 data[3]; *penum = 0; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x40); cxd2841er_read_regs(priv, I2C_SLVT, 0xea, data, sizeof(data)); if (data[2] & 0x01) *penum = ((u32)data[0] << 8) | (u32)data[1]; return 0; } static int cxd2841er_read_packet_errors_t( struct cxd2841er_priv *priv, u32 *penum) { u8 data[3]; *penum = 0; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); cxd2841er_read_regs(priv, I2C_SLVT, 0xea, data, sizeof(data)); if (data[2] & 0x01) *penum = ((u32)data[0] << 8) | (u32)data[1]; return 0; } static int cxd2841er_read_packet_errors_t2( struct cxd2841er_priv *priv, u32 *penum) { u8 data[3]; *penum = 0; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x24); cxd2841er_read_regs(priv, I2C_SLVT, 0xfd, data, sizeof(data)); if (data[0] & 0x01) *penum = ((u32)data[1] << 8) | (u32)data[2]; return 0; } static int cxd2841er_read_packet_errors_i( struct cxd2841er_priv *priv, u32 *penum) { u8 data[2]; *penum = 0; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x60); cxd2841er_read_regs(priv, I2C_SLVT, 0xA1, data, 1); if (!(data[0] & 0x01)) return 0; /* Layer A */ cxd2841er_read_regs(priv, I2C_SLVT, 0xA2, data, sizeof(data)); *penum = ((u32)data[0] << 8) | (u32)data[1]; /* Layer B */ cxd2841er_read_regs(priv, I2C_SLVT, 0xA4, data, sizeof(data)); *penum += ((u32)data[0] << 8) | (u32)data[1]; /* Layer C */ cxd2841er_read_regs(priv, I2C_SLVT, 0xA6, data, sizeof(data)); *penum += ((u32)data[0] << 8) | (u32)data[1]; return 0; } static int cxd2841er_read_ber_c(struct cxd2841er_priv *priv, u32 *bit_error, u32 *bit_count) { u8 data[3]; u32 bit_err, period_exp; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x40); cxd2841er_read_regs(priv, I2C_SLVT, 0x62, data, sizeof(data)); if (!(data[0] & 0x80)) { dev_dbg(&priv->i2c->dev, "%s(): no valid BER data\n", __func__); return -EINVAL; } bit_err = ((u32)(data[0] & 0x3f) << 16) | ((u32)data[1] << 8) | (u32)data[2]; cxd2841er_read_reg(priv, I2C_SLVT, 0x60, data); period_exp = data[0] & 0x1f; if ((period_exp <= 11) && (bit_err > (1 << period_exp) * 204 * 8)) { dev_dbg(&priv->i2c->dev, "%s(): period_exp(%u) or bit_err(%u) not in range. no valid BER data\n", __func__, period_exp, bit_err); return -EINVAL; } dev_dbg(&priv->i2c->dev, "%s(): period_exp(%u) or bit_err(%u) count=%d\n", __func__, period_exp, bit_err, ((1 << period_exp) * 204 * 8)); *bit_error = bit_err; *bit_count = ((1 << period_exp) * 204 * 8); return 0; } static int cxd2841er_read_ber_i(struct cxd2841er_priv *priv, u32 *bit_error, u32 *bit_count) { u8 data[3]; u8 pktnum[2]; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_freeze_regs(priv); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x60); cxd2841er_read_regs(priv, I2C_SLVT, 0x5B, pktnum, sizeof(pktnum)); cxd2841er_read_regs(priv, I2C_SLVT, 0x16, data, sizeof(data)); cxd2841er_unfreeze_regs(priv); if (!pktnum[0] && !pktnum[1]) { dev_dbg(&priv->i2c->dev, "%s(): no valid BER data\n", __func__); return -EINVAL; } *bit_error = ((u32)(data[0] & 0x7F) << 16) | ((u32)data[1] << 8) | data[2]; *bit_count = ((((u32)pktnum[0] << 8) | pktnum[1]) * 204 * 8); dev_dbg(&priv->i2c->dev, "%s(): bit_error=%u bit_count=%u\n", __func__, *bit_error, *bit_count); return 0; } static int cxd2841er_mon_read_ber_s(struct cxd2841er_priv *priv, u32 *bit_error, u32 *bit_count) { u8 data[11]; /* Set SLV-T Bank : 0xA0 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xa0); /* * slave Bank Addr Bit Signal name * <SLV-T> A0h 35h [0] IFVBER_VALID * <SLV-T> A0h 36h [5:0] IFVBER_BITERR[21:16] * <SLV-T> A0h 37h [7:0] IFVBER_BITERR[15:8] * <SLV-T> A0h 38h [7:0] IFVBER_BITERR[7:0] * <SLV-T> A0h 3Dh [5:0] IFVBER_BITNUM[21:16] * <SLV-T> A0h 3Eh [7:0] IFVBER_BITNUM[15:8] * <SLV-T> A0h 3Fh [7:0] IFVBER_BITNUM[7:0] */ cxd2841er_read_regs(priv, I2C_SLVT, 0x35, data, 11); if (data[0] & 0x01) { *bit_error = ((u32)(data[1] & 0x3F) << 16) | ((u32)(data[2] & 0xFF) << 8) | (u32)(data[3] & 0xFF); *bit_count = ((u32)(data[8] & 0x3F) << 16) | ((u32)(data[9] & 0xFF) << 8) | (u32)(data[10] & 0xFF); if ((*bit_count == 0) || (*bit_error > *bit_count)) { dev_dbg(&priv->i2c->dev, "%s(): invalid bit_error %d, bit_count %d\n", __func__, *bit_error, *bit_count); return -EINVAL; } return 0; } dev_dbg(&priv->i2c->dev, "%s(): no data available\n", __func__); return -EINVAL; } static int cxd2841er_mon_read_ber_s2(struct cxd2841er_priv *priv, u32 *bit_error, u32 *bit_count) { u8 data[5]; u32 period; /* Set SLV-T Bank : 0xB2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xb2); /* * slave Bank Addr Bit Signal name * <SLV-T> B2h 30h [0] IFLBER_VALID * <SLV-T> B2h 31h [3:0] IFLBER_BITERR[27:24] * <SLV-T> B2h 32h [7:0] IFLBER_BITERR[23:16] * <SLV-T> B2h 33h [7:0] IFLBER_BITERR[15:8] * <SLV-T> B2h 34h [7:0] IFLBER_BITERR[7:0] */ cxd2841er_read_regs(priv, I2C_SLVT, 0x30, data, 5); if (data[0] & 0x01) { /* Bit error count */ *bit_error = ((u32)(data[1] & 0x0F) << 24) | ((u32)(data[2] & 0xFF) << 16) | ((u32)(data[3] & 0xFF) << 8) | (u32)(data[4] & 0xFF); /* Set SLV-T Bank : 0xA0 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xa0); cxd2841er_read_reg(priv, I2C_SLVT, 0x7a, data); /* Measurement period */ period = (u32)(1 << (data[0] & 0x0F)); if (period == 0) { dev_dbg(&priv->i2c->dev, "%s(): period is 0\n", __func__); return -EINVAL; } if (*bit_error > (period * 64800)) { dev_dbg(&priv->i2c->dev, "%s(): invalid bit_err 0x%x period 0x%x\n", __func__, *bit_error, period); return -EINVAL; } *bit_count = period * 64800; return 0; } else { dev_dbg(&priv->i2c->dev, "%s(): no data available\n", __func__); } return -EINVAL; } static int cxd2841er_read_ber_t2(struct cxd2841er_priv *priv, u32 *bit_error, u32 *bit_count) { u8 data[4]; u32 period_exp, n_ldpc; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x20); cxd2841er_read_regs(priv, I2C_SLVT, 0x39, data, sizeof(data)); if (!(data[0] & 0x10)) { dev_dbg(&priv->i2c->dev, "%s(): no valid BER data\n", __func__); return -EINVAL; } *bit_error = ((u32)(data[0] & 0x0f) << 24) | ((u32)data[1] << 16) | ((u32)data[2] << 8) | (u32)data[3]; cxd2841er_read_reg(priv, I2C_SLVT, 0x6f, data); period_exp = data[0] & 0x0f; cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x22); cxd2841er_read_reg(priv, I2C_SLVT, 0x5e, data); n_ldpc = ((data[0] & 0x03) == 0 ? 16200 : 64800); if (*bit_error > ((1U << period_exp) * n_ldpc)) { dev_dbg(&priv->i2c->dev, "%s(): invalid BER value\n", __func__); return -EINVAL; } /* * FIXME: the right thing would be to return bit_error untouched, * but, as we don't know the scale returned by the counters, let's * at least preserver BER = bit_error/bit_count. */ if (period_exp >= 4) { *bit_count = (1U << (period_exp - 4)) * (n_ldpc / 200); *bit_error *= 3125ULL; } else { *bit_count = (1U << period_exp) * (n_ldpc / 200); *bit_error *= 50000ULL; } return 0; } static int cxd2841er_read_ber_t(struct cxd2841er_priv *priv, u32 *bit_error, u32 *bit_count) { u8 data[2]; u32 period; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); cxd2841er_read_reg(priv, I2C_SLVT, 0x39, data); if (!(data[0] & 0x01)) { dev_dbg(&priv->i2c->dev, "%s(): no valid BER data\n", __func__); return 0; } cxd2841er_read_regs(priv, I2C_SLVT, 0x22, data, sizeof(data)); *bit_error = ((u32)data[0] << 8) | (u32)data[1]; cxd2841er_read_reg(priv, I2C_SLVT, 0x6f, data); period = ((data[0] & 0x07) == 0) ? 256 : (4096 << (data[0] & 0x07)); /* * FIXME: the right thing would be to return bit_error untouched, * but, as we don't know the scale returned by the counters, let's * at least preserver BER = bit_error/bit_count. */ *bit_count = period / 128; *bit_error *= 78125ULL; return 0; } static int cxd2841er_freeze_regs(struct cxd2841er_priv *priv) { /* * Freeze registers: ensure multiple separate register reads * are from the same snapshot */ cxd2841er_write_reg(priv, I2C_SLVT, 0x01, 0x01); return 0; } static int cxd2841er_unfreeze_regs(struct cxd2841er_priv *priv) { /* * un-freeze registers */ cxd2841er_write_reg(priv, I2C_SLVT, 0x01, 0x00); return 0; } static u32 cxd2841er_dvbs_read_snr(struct cxd2841er_priv *priv, u8 delsys, u32 *snr) { u8 data[3]; u32 res = 0, value; int min_index, max_index, index; static const struct cxd2841er_cnr_data *cn_data; cxd2841er_freeze_regs(priv); /* Set SLV-T Bank : 0xA1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xa1); /* * slave Bank Addr Bit Signal name * <SLV-T> A1h 10h [0] ICPM_QUICKRDY * <SLV-T> A1h 11h [4:0] ICPM_QUICKCNDT[12:8] * <SLV-T> A1h 12h [7:0] ICPM_QUICKCNDT[7:0] */ cxd2841er_read_regs(priv, I2C_SLVT, 0x10, data, 3); cxd2841er_unfreeze_regs(priv); if (data[0] & 0x01) { value = ((u32)(data[1] & 0x1F) << 8) | (u32)(data[2] & 0xFF); min_index = 0; if (delsys == SYS_DVBS) { cn_data = s_cn_data; max_index = ARRAY_SIZE(s_cn_data) - 1; } else { cn_data = s2_cn_data; max_index = ARRAY_SIZE(s2_cn_data) - 1; } if (value >= cn_data[min_index].value) { res = cn_data[min_index].cnr_x1000; goto done; } if (value <= cn_data[max_index].value) { res = cn_data[max_index].cnr_x1000; goto done; } while ((max_index - min_index) > 1) { index = (max_index + min_index) / 2; if (value == cn_data[index].value) { res = cn_data[index].cnr_x1000; goto done; } else if (value > cn_data[index].value) max_index = index; else min_index = index; if ((max_index - min_index) <= 1) { if (value == cn_data[max_index].value) { res = cn_data[max_index].cnr_x1000; goto done; } else { res = cn_data[min_index].cnr_x1000; goto done; } } } } else { dev_dbg(&priv->i2c->dev, "%s(): no data available\n", __func__); return -EINVAL; } done: *snr = res; return 0; } static uint32_t sony_log(uint32_t x) { return (((10000>>8)*(intlog2(x)>>16) + LOG2_E_100X/2)/LOG2_E_100X); } static int cxd2841er_read_snr_c(struct cxd2841er_priv *priv, u32 *snr) { u32 reg; u8 data[2]; enum sony_dvbc_constellation_t qam = SONY_DVBC_CONSTELLATION_16QAM; *snr = 0; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_freeze_regs(priv); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x40); cxd2841er_read_regs(priv, I2C_SLVT, 0x19, data, 1); qam = (enum sony_dvbc_constellation_t) (data[0] & 0x07); cxd2841er_read_regs(priv, I2C_SLVT, 0x4C, data, 2); cxd2841er_unfreeze_regs(priv); reg = ((u32)(data[0]&0x1f) << 8) | (u32)data[1]; if (reg == 0) { dev_dbg(&priv->i2c->dev, "%s(): reg value out of range\n", __func__); return 0; } switch (qam) { case SONY_DVBC_CONSTELLATION_16QAM: case SONY_DVBC_CONSTELLATION_64QAM: case SONY_DVBC_CONSTELLATION_256QAM: /* SNR(dB) = -9.50 * ln(IREG_SNR_ESTIMATE / (24320)) */ if (reg < 126) reg = 126; *snr = -95 * (int32_t)sony_log(reg) + 95941; break; case SONY_DVBC_CONSTELLATION_32QAM: case SONY_DVBC_CONSTELLATION_128QAM: /* SNR(dB) = -8.75 * ln(IREG_SNR_ESTIMATE / (20800)) */ if (reg < 69) reg = 69; *snr = -88 * (int32_t)sony_log(reg) + 86999; break; default: return -EINVAL; } return 0; } static int cxd2841er_read_snr_t(struct cxd2841er_priv *priv, u32 *snr) { u32 reg; u8 data[2]; *snr = 0; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_freeze_regs(priv); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); cxd2841er_read_regs(priv, I2C_SLVT, 0x28, data, sizeof(data)); cxd2841er_unfreeze_regs(priv); reg = ((u32)data[0] << 8) | (u32)data[1]; if (reg == 0) { dev_dbg(&priv->i2c->dev, "%s(): reg value out of range\n", __func__); return 0; } if (reg > 4996) reg = 4996; *snr = 100 * ((INTLOG10X100(reg) - INTLOG10X100(5350 - reg)) + 285); return 0; } static int cxd2841er_read_snr_t2(struct cxd2841er_priv *priv, u32 *snr) { u32 reg; u8 data[2]; *snr = 0; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_freeze_regs(priv); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x20); cxd2841er_read_regs(priv, I2C_SLVT, 0x28, data, sizeof(data)); cxd2841er_unfreeze_regs(priv); reg = ((u32)data[0] << 8) | (u32)data[1]; if (reg == 0) { dev_dbg(&priv->i2c->dev, "%s(): reg value out of range\n", __func__); return 0; } if (reg > 10876) reg = 10876; *snr = 100 * ((INTLOG10X100(reg) - INTLOG10X100(12600 - reg)) + 320); return 0; } static int cxd2841er_read_snr_i(struct cxd2841er_priv *priv, u32 *snr) { u32 reg; u8 data[2]; *snr = 0; if (priv->state != STATE_ACTIVE_TC) { dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } cxd2841er_freeze_regs(priv); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x60); cxd2841er_read_regs(priv, I2C_SLVT, 0x28, data, sizeof(data)); cxd2841er_unfreeze_regs(priv); reg = ((u32)data[0] << 8) | (u32)data[1]; if (reg == 0) { dev_dbg(&priv->i2c->dev, "%s(): reg value out of range\n", __func__); return 0; } *snr = 10000 * (intlog10(reg) >> 24) - 9031; return 0; } static u16 cxd2841er_read_agc_gain_c(struct cxd2841er_priv *priv, u8 delsys) { u8 data[2]; cxd2841er_write_reg( priv, I2C_SLVT, 0x00, 0x40); cxd2841er_read_regs(priv, I2C_SLVT, 0x49, data, 2); dev_dbg(&priv->i2c->dev, "%s(): AGC value=%u\n", __func__, (((u16)data[0] & 0x0F) << 8) | (u16)(data[1] & 0xFF)); return ((((u16)data[0] & 0x0F) << 8) | (u16)(data[1] & 0xFF)) << 4; } static u16 cxd2841er_read_agc_gain_t_t2(struct cxd2841er_priv *priv, u8 delsys) { u8 data[2]; cxd2841er_write_reg( priv, I2C_SLVT, 0x00, (delsys == SYS_DVBT ? 0x10 : 0x20)); cxd2841er_read_regs(priv, I2C_SLVT, 0x26, data, 2); dev_dbg(&priv->i2c->dev, "%s(): AGC value=%u\n", __func__, (((u16)data[0] & 0x0F) << 8) | (u16)(data[1] & 0xFF)); return ((((u16)data[0] & 0x0F) << 8) | (u16)(data[1] & 0xFF)) << 4; } static u16 cxd2841er_read_agc_gain_i(struct cxd2841er_priv *priv, u8 delsys) { u8 data[2]; cxd2841er_write_reg( priv, I2C_SLVT, 0x00, 0x60); cxd2841er_read_regs(priv, I2C_SLVT, 0x26, data, 2); dev_dbg(&priv->i2c->dev, "%s(): AGC value=%u\n", __func__, (((u16)data[0] & 0x0F) << 8) | (u16)(data[1] & 0xFF)); return ((((u16)data[0] & 0x0F) << 8) | (u16)(data[1] & 0xFF)) << 4; } static u16 cxd2841er_read_agc_gain_s(struct cxd2841er_priv *priv) { u8 data[2]; /* Set SLV-T Bank : 0xA0 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xa0); /* * slave Bank Addr Bit Signal name * <SLV-T> A0h 1Fh [4:0] IRFAGC_GAIN[12:8] * <SLV-T> A0h 20h [7:0] IRFAGC_GAIN[7:0] */ cxd2841er_read_regs(priv, I2C_SLVT, 0x1f, data, 2); return ((((u16)data[0] & 0x1F) << 8) | (u16)(data[1] & 0xFF)) << 3; } static void cxd2841er_read_ber(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct cxd2841er_priv *priv = fe->demodulator_priv; u32 ret, bit_error = 0, bit_count = 0; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); switch (p->delivery_system) { case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_B: case SYS_DVBC_ANNEX_C: ret = cxd2841er_read_ber_c(priv, &bit_error, &bit_count); break; case SYS_ISDBT: ret = cxd2841er_read_ber_i(priv, &bit_error, &bit_count); break; case SYS_DVBS: ret = cxd2841er_mon_read_ber_s(priv, &bit_error, &bit_count); break; case SYS_DVBS2: ret = cxd2841er_mon_read_ber_s2(priv, &bit_error, &bit_count); break; case SYS_DVBT: ret = cxd2841er_read_ber_t(priv, &bit_error, &bit_count); break; case SYS_DVBT2: ret = cxd2841er_read_ber_t2(priv, &bit_error, &bit_count); break; default: p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return; } if (!ret) { p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; p->post_bit_error.stat[0].uvalue += bit_error; p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; p->post_bit_count.stat[0].uvalue += bit_count; } else { p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } } static void cxd2841er_read_signal_strength(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct cxd2841er_priv *priv = fe->demodulator_priv; s32 strength; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); switch (p->delivery_system) { case SYS_DVBT: case SYS_DVBT2: strength = cxd2841er_read_agc_gain_t_t2(priv, p->delivery_system); p->strength.stat[0].scale = FE_SCALE_DECIBEL; /* Formula was empirically determinated @ 410 MHz */ p->strength.stat[0].uvalue = strength * 366 / 100 - 89520; break; /* Code moved out of the function */ case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_B: case SYS_DVBC_ANNEX_C: strength = cxd2841er_read_agc_gain_c(priv, p->delivery_system); p->strength.stat[0].scale = FE_SCALE_DECIBEL; /* * Formula was empirically determinated via linear regression, * using frequencies: 175 MHz, 410 MHz and 800 MHz, and a * stream modulated with QAM64 */ p->strength.stat[0].uvalue = strength * 4045 / 1000 - 85224; break; case SYS_ISDBT: strength = cxd2841er_read_agc_gain_i(priv, p->delivery_system); p->strength.stat[0].scale = FE_SCALE_DECIBEL; /* * Formula was empirically determinated via linear regression, * using frequencies: 175 MHz, 410 MHz and 800 MHz. */ p->strength.stat[0].uvalue = strength * 3775 / 1000 - 90185; break; case SYS_DVBS: case SYS_DVBS2: strength = 65535 - cxd2841er_read_agc_gain_s(priv); p->strength.stat[0].scale = FE_SCALE_RELATIVE; p->strength.stat[0].uvalue = strength; break; default: p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; break; } } static void cxd2841er_read_snr(struct dvb_frontend *fe) { u32 tmp = 0; int ret = 0; struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); switch (p->delivery_system) { case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_B: case SYS_DVBC_ANNEX_C: ret = cxd2841er_read_snr_c(priv, &tmp); break; case SYS_DVBT: ret = cxd2841er_read_snr_t(priv, &tmp); break; case SYS_DVBT2: ret = cxd2841er_read_snr_t2(priv, &tmp); break; case SYS_ISDBT: ret = cxd2841er_read_snr_i(priv, &tmp); break; case SYS_DVBS: case SYS_DVBS2: ret = cxd2841er_dvbs_read_snr(priv, p->delivery_system, &tmp); break; default: dev_dbg(&priv->i2c->dev, "%s(): unknown delivery system %d\n", __func__, p->delivery_system); p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return; } dev_dbg(&priv->i2c->dev, "%s(): snr=%d\n", __func__, (int32_t)tmp); if (!ret) { p->cnr.stat[0].scale = FE_SCALE_DECIBEL; p->cnr.stat[0].svalue = tmp; } else { p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } } static void cxd2841er_read_ucblocks(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct cxd2841er_priv *priv = fe->demodulator_priv; u32 ucblocks = 0; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); switch (p->delivery_system) { case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_B: case SYS_DVBC_ANNEX_C: cxd2841er_read_packet_errors_c(priv, &ucblocks); break; case SYS_DVBT: cxd2841er_read_packet_errors_t(priv, &ucblocks); break; case SYS_DVBT2: cxd2841er_read_packet_errors_t2(priv, &ucblocks); break; case SYS_ISDBT: cxd2841er_read_packet_errors_i(priv, &ucblocks); break; default: p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return; } dev_dbg(&priv->i2c->dev, "%s() ucblocks=%u\n", __func__, ucblocks); p->block_error.stat[0].scale = FE_SCALE_COUNTER; p->block_error.stat[0].uvalue = ucblocks; } static int cxd2841er_dvbt2_set_profile( struct cxd2841er_priv *priv, enum cxd2841er_dvbt2_profile_t profile) { u8 tune_mode; u8 seq_not2d_time; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); switch (profile) { case DVBT2_PROFILE_BASE: tune_mode = 0x01; /* Set early unlock time */ seq_not2d_time = (priv->xtal == SONY_XTAL_24000)?0x0E:0x0C; break; case DVBT2_PROFILE_LITE: tune_mode = 0x05; /* Set early unlock time */ seq_not2d_time = (priv->xtal == SONY_XTAL_24000)?0x2E:0x28; break; case DVBT2_PROFILE_ANY: tune_mode = 0x00; /* Set early unlock time */ seq_not2d_time = (priv->xtal == SONY_XTAL_24000)?0x2E:0x28; break; default: return -EINVAL; } /* Set SLV-T Bank : 0x2E */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x2e); /* Set profile and tune mode */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x10, tune_mode, 0x07); /* Set SLV-T Bank : 0x2B */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x2b); /* Set early unlock detection time */ cxd2841er_write_reg(priv, I2C_SLVT, 0x9d, seq_not2d_time); return 0; } static int cxd2841er_dvbt2_set_plp_config(struct cxd2841er_priv *priv, u8 is_auto, u8 plp_id) { if (is_auto) { dev_dbg(&priv->i2c->dev, "%s() using auto PLP selection\n", __func__); } else { dev_dbg(&priv->i2c->dev, "%s() using manual PLP selection, ID %d\n", __func__, plp_id); } /* Set SLV-T Bank : 0x23 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x23); if (!is_auto) { /* Manual PLP selection mode. Set the data PLP Id. */ cxd2841er_write_reg(priv, I2C_SLVT, 0xaf, plp_id); } /* Auto PLP select (Scanning mode = 0x00). Data PLP select = 0x01. */ cxd2841er_write_reg(priv, I2C_SLVT, 0xad, (is_auto ? 0x00 : 0x01)); return 0; } static int cxd2841er_sleep_tc_to_active_t2_band(struct cxd2841er_priv *priv, u32 bandwidth) { u32 iffreq, ifhz; u8 data[MAX_WRITE_REGSIZE]; static const uint8_t nominalRate8bw[3][5] = { /* TRCG Nominal Rate [37:0] */ {0x11, 0xF0, 0x00, 0x00, 0x00}, /* 20.5MHz XTal */ {0x15, 0x00, 0x00, 0x00, 0x00}, /* 24MHz XTal */ {0x11, 0xF0, 0x00, 0x00, 0x00} /* 41MHz XTal */ }; static const uint8_t nominalRate7bw[3][5] = { /* TRCG Nominal Rate [37:0] */ {0x14, 0x80, 0x00, 0x00, 0x00}, /* 20.5MHz XTal */ {0x18, 0x00, 0x00, 0x00, 0x00}, /* 24MHz XTal */ {0x14, 0x80, 0x00, 0x00, 0x00} /* 41MHz XTal */ }; static const uint8_t nominalRate6bw[3][5] = { /* TRCG Nominal Rate [37:0] */ {0x17, 0xEA, 0xAA, 0xAA, 0xAA}, /* 20.5MHz XTal */ {0x1C, 0x00, 0x00, 0x00, 0x00}, /* 24MHz XTal */ {0x17, 0xEA, 0xAA, 0xAA, 0xAA} /* 41MHz XTal */ }; static const uint8_t nominalRate5bw[3][5] = { /* TRCG Nominal Rate [37:0] */ {0x1C, 0xB3, 0x33, 0x33, 0x33}, /* 20.5MHz XTal */ {0x21, 0x99, 0x99, 0x99, 0x99}, /* 24MHz XTal */ {0x1C, 0xB3, 0x33, 0x33, 0x33} /* 41MHz XTal */ }; static const uint8_t nominalRate17bw[3][5] = { /* TRCG Nominal Rate [37:0] */ {0x58, 0xE2, 0xAF, 0xE0, 0xBC}, /* 20.5MHz XTal */ {0x68, 0x0F, 0xA2, 0x32, 0xD0}, /* 24MHz XTal */ {0x58, 0xE2, 0xAF, 0xE0, 0xBC} /* 41MHz XTal */ }; static const uint8_t itbCoef8bw[3][14] = { {0x26, 0xAF, 0x06, 0xCD, 0x13, 0xBB, 0x28, 0xBA, 0x23, 0xA9, 0x1F, 0xA8, 0x2C, 0xC8}, /* 20.5MHz XTal */ {0x2F, 0xBA, 0x28, 0x9B, 0x28, 0x9D, 0x28, 0xA1, 0x29, 0xA5, 0x2A, 0xAC, 0x29, 0xB5}, /* 24MHz XTal */ {0x26, 0xAF, 0x06, 0xCD, 0x13, 0xBB, 0x28, 0xBA, 0x23, 0xA9, 0x1F, 0xA8, 0x2C, 0xC8} /* 41MHz XTal */ }; static const uint8_t itbCoef7bw[3][14] = { {0x2C, 0xBD, 0x02, 0xCF, 0x04, 0xF8, 0x23, 0xA6, 0x29, 0xB0, 0x26, 0xA9, 0x21, 0xA5}, /* 20.5MHz XTal */ {0x30, 0xB1, 0x29, 0x9A, 0x28, 0x9C, 0x28, 0xA0, 0x29, 0xA2, 0x2B, 0xA6, 0x2B, 0xAD}, /* 24MHz XTal */ {0x2C, 0xBD, 0x02, 0xCF, 0x04, 0xF8, 0x23, 0xA6, 0x29, 0xB0, 0x26, 0xA9, 0x21, 0xA5} /* 41MHz XTal */ }; static const uint8_t itbCoef6bw[3][14] = { {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4}, /* 20.5MHz XTal */ {0x31, 0xA8, 0x29, 0x9B, 0x27, 0x9C, 0x28, 0x9E, 0x29, 0xA4, 0x29, 0xA2, 0x29, 0xA8}, /* 24MHz XTal */ {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4} /* 41MHz XTal */ }; static const uint8_t itbCoef5bw[3][14] = { {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4}, /* 20.5MHz XTal */ {0x31, 0xA8, 0x29, 0x9B, 0x27, 0x9C, 0x28, 0x9E, 0x29, 0xA4, 0x29, 0xA2, 0x29, 0xA8}, /* 24MHz XTal */ {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4} /* 41MHz XTal */ }; static const uint8_t itbCoef17bw[3][14] = { {0x25, 0xA0, 0x36, 0x8D, 0x2E, 0x94, 0x28, 0x9B, 0x32, 0x90, 0x2C, 0x9D, 0x29, 0x99}, /* 20.5MHz XTal */ {0x33, 0x8E, 0x2B, 0x97, 0x2D, 0x95, 0x37, 0x8B, 0x30, 0x97, 0x2D, 0x9A, 0x21, 0xA4}, /* 24MHz XTal */ {0x25, 0xA0, 0x36, 0x8D, 0x2E, 0x94, 0x28, 0x9B, 0x32, 0x90, 0x2C, 0x9D, 0x29, 0x99} /* 41MHz XTal */ }; /* Set SLV-T Bank : 0x20 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x20); switch (bandwidth) { case 8000000: /* <Timing Recovery setting> */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate8bw[priv->xtal], 5); /* Set SLV-T Bank : 0x27 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x27); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x7a, 0x00, 0x0f); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* Group delay equaliser settings for * ASCOT2D, ASCOT2E and ASCOT3 tuners */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef8bw[priv->xtal], 14); /* <IF freq setting> */ ifhz = cxd2841er_get_if_hz(priv, 4800000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xD7, 0x00, 0x07); break; case 7000000: /* <Timing Recovery setting> */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate7bw[priv->xtal], 5); /* Set SLV-T Bank : 0x27 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x27); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x7a, 0x00, 0x0f); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* Group delay equaliser settings for * ASCOT2D, ASCOT2E and ASCOT3 tuners */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef7bw[priv->xtal], 14); /* <IF freq setting> */ ifhz = cxd2841er_get_if_hz(priv, 4200000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xD7, 0x02, 0x07); break; case 6000000: /* <Timing Recovery setting> */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate6bw[priv->xtal], 5); /* Set SLV-T Bank : 0x27 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x27); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x7a, 0x00, 0x0f); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* Group delay equaliser settings for * ASCOT2D, ASCOT2E and ASCOT3 tuners */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef6bw[priv->xtal], 14); /* <IF freq setting> */ ifhz = cxd2841er_get_if_hz(priv, 3600000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xD7, 0x04, 0x07); break; case 5000000: /* <Timing Recovery setting> */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate5bw[priv->xtal], 5); /* Set SLV-T Bank : 0x27 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x27); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x7a, 0x00, 0x0f); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* Group delay equaliser settings for * ASCOT2D, ASCOT2E and ASCOT3 tuners */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef5bw[priv->xtal], 14); /* <IF freq setting> */ ifhz = cxd2841er_get_if_hz(priv, 3600000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xD7, 0x06, 0x07); break; case 1712000: /* <Timing Recovery setting> */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate17bw[priv->xtal], 5); /* Set SLV-T Bank : 0x27 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x27); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x7a, 0x03, 0x0f); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* Group delay equaliser settings for * ASCOT2D, ASCOT2E and ASCOT3 tuners */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef17bw[priv->xtal], 14); /* <IF freq setting> */ ifhz = cxd2841er_get_if_hz(priv, 3500000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xD7, 0x03, 0x07); break; default: return -EINVAL; } return 0; } static int cxd2841er_sleep_tc_to_active_t_band( struct cxd2841er_priv *priv, u32 bandwidth) { u8 data[MAX_WRITE_REGSIZE]; u32 iffreq, ifhz; static const u8 nominalRate8bw[3][5] = { /* TRCG Nominal Rate [37:0] */ {0x11, 0xF0, 0x00, 0x00, 0x00}, /* 20.5MHz XTal */ {0x15, 0x00, 0x00, 0x00, 0x00}, /* 24MHz XTal */ {0x11, 0xF0, 0x00, 0x00, 0x00} /* 41MHz XTal */ }; static const u8 nominalRate7bw[3][5] = { /* TRCG Nominal Rate [37:0] */ {0x14, 0x80, 0x00, 0x00, 0x00}, /* 20.5MHz XTal */ {0x18, 0x00, 0x00, 0x00, 0x00}, /* 24MHz XTal */ {0x14, 0x80, 0x00, 0x00, 0x00} /* 41MHz XTal */ }; static const u8 nominalRate6bw[3][5] = { /* TRCG Nominal Rate [37:0] */ {0x17, 0xEA, 0xAA, 0xAA, 0xAA}, /* 20.5MHz XTal */ {0x1C, 0x00, 0x00, 0x00, 0x00}, /* 24MHz XTal */ {0x17, 0xEA, 0xAA, 0xAA, 0xAA} /* 41MHz XTal */ }; static const u8 nominalRate5bw[3][5] = { /* TRCG Nominal Rate [37:0] */ {0x1C, 0xB3, 0x33, 0x33, 0x33}, /* 20.5MHz XTal */ {0x21, 0x99, 0x99, 0x99, 0x99}, /* 24MHz XTal */ {0x1C, 0xB3, 0x33, 0x33, 0x33} /* 41MHz XTal */ }; static const u8 itbCoef8bw[3][14] = { {0x26, 0xAF, 0x06, 0xCD, 0x13, 0xBB, 0x28, 0xBA, 0x23, 0xA9, 0x1F, 0xA8, 0x2C, 0xC8}, /* 20.5MHz XTal */ {0x2F, 0xBA, 0x28, 0x9B, 0x28, 0x9D, 0x28, 0xA1, 0x29, 0xA5, 0x2A, 0xAC, 0x29, 0xB5}, /* 24MHz XTal */ {0x26, 0xAF, 0x06, 0xCD, 0x13, 0xBB, 0x28, 0xBA, 0x23, 0xA9, 0x1F, 0xA8, 0x2C, 0xC8} /* 41MHz XTal */ }; static const u8 itbCoef7bw[3][14] = { {0x2C, 0xBD, 0x02, 0xCF, 0x04, 0xF8, 0x23, 0xA6, 0x29, 0xB0, 0x26, 0xA9, 0x21, 0xA5}, /* 20.5MHz XTal */ {0x30, 0xB1, 0x29, 0x9A, 0x28, 0x9C, 0x28, 0xA0, 0x29, 0xA2, 0x2B, 0xA6, 0x2B, 0xAD}, /* 24MHz XTal */ {0x2C, 0xBD, 0x02, 0xCF, 0x04, 0xF8, 0x23, 0xA6, 0x29, 0xB0, 0x26, 0xA9, 0x21, 0xA5} /* 41MHz XTal */ }; static const u8 itbCoef6bw[3][14] = { {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4}, /* 20.5MHz XTal */ {0x31, 0xA8, 0x29, 0x9B, 0x27, 0x9C, 0x28, 0x9E, 0x29, 0xA4, 0x29, 0xA2, 0x29, 0xA8}, /* 24MHz XTal */ {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4} /* 41MHz XTal */ }; static const u8 itbCoef5bw[3][14] = { {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4}, /* 20.5MHz XTal */ {0x31, 0xA8, 0x29, 0x9B, 0x27, 0x9C, 0x28, 0x9E, 0x29, 0xA4, 0x29, 0xA2, 0x29, 0xA8}, /* 24MHz XTal */ {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4} /* 41MHz XTal */ }; /* Set SLV-T Bank : 0x13 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x13); /* Echo performance optimization setting */ data[0] = 0x01; data[1] = 0x14; cxd2841er_write_regs(priv, I2C_SLVT, 0x9C, data, 2); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); switch (bandwidth) { case 8000000: /* <Timing Recovery setting> */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate8bw[priv->xtal], 5); /* Group delay equaliser settings for * ASCOT2D, ASCOT2E and ASCOT3 tuners */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef8bw[priv->xtal], 14); /* <IF freq setting> */ ifhz = cxd2841er_get_if_hz(priv, 4800000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xD7, 0x00, 0x07); /* Demod core latency setting */ if (priv->xtal == SONY_XTAL_24000) { data[0] = 0x15; data[1] = 0x28; } else { data[0] = 0x01; data[1] = 0xE0; } cxd2841er_write_regs(priv, I2C_SLVT, 0xD9, data, 2); /* Notch filter setting */ data[0] = 0x01; data[1] = 0x02; cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x17); cxd2841er_write_regs(priv, I2C_SLVT, 0x38, data, 2); break; case 7000000: /* <Timing Recovery setting> */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate7bw[priv->xtal], 5); /* Group delay equaliser settings for * ASCOT2D, ASCOT2E and ASCOT3 tuners */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef7bw[priv->xtal], 14); /* <IF freq setting> */ ifhz = cxd2841er_get_if_hz(priv, 4200000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xD7, 0x02, 0x07); /* Demod core latency setting */ if (priv->xtal == SONY_XTAL_24000) { data[0] = 0x1F; data[1] = 0xF8; } else { data[0] = 0x12; data[1] = 0xF8; } cxd2841er_write_regs(priv, I2C_SLVT, 0xD9, data, 2); /* Notch filter setting */ data[0] = 0x00; data[1] = 0x03; cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x17); cxd2841er_write_regs(priv, I2C_SLVT, 0x38, data, 2); break; case 6000000: /* <Timing Recovery setting> */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate6bw[priv->xtal], 5); /* Group delay equaliser settings for * ASCOT2D, ASCOT2E and ASCOT3 tuners */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef6bw[priv->xtal], 14); /* <IF freq setting> */ ifhz = cxd2841er_get_if_hz(priv, 3600000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xD7, 0x04, 0x07); /* Demod core latency setting */ if (priv->xtal == SONY_XTAL_24000) { data[0] = 0x25; data[1] = 0x4C; } else { data[0] = 0x1F; data[1] = 0xDC; } cxd2841er_write_regs(priv, I2C_SLVT, 0xD9, data, 2); /* Notch filter setting */ data[0] = 0x00; data[1] = 0x03; cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x17); cxd2841er_write_regs(priv, I2C_SLVT, 0x38, data, 2); break; case 5000000: /* <Timing Recovery setting> */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate5bw[priv->xtal], 5); /* Group delay equaliser settings for * ASCOT2D, ASCOT2E and ASCOT3 tuners */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef5bw[priv->xtal], 14); /* <IF freq setting> */ ifhz = cxd2841er_get_if_hz(priv, 3600000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xD7, 0x06, 0x07); /* Demod core latency setting */ if (priv->xtal == SONY_XTAL_24000) { data[0] = 0x2C; data[1] = 0xC2; } else { data[0] = 0x26; data[1] = 0x3C; } cxd2841er_write_regs(priv, I2C_SLVT, 0xD9, data, 2); /* Notch filter setting */ data[0] = 0x00; data[1] = 0x03; cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x17); cxd2841er_write_regs(priv, I2C_SLVT, 0x38, data, 2); break; } return 0; } static int cxd2841er_sleep_tc_to_active_i_band( struct cxd2841er_priv *priv, u32 bandwidth) { u32 iffreq, ifhz; u8 data[3]; /* TRCG Nominal Rate */ static const u8 nominalRate8bw[3][5] = { {0x00, 0x00, 0x00, 0x00, 0x00}, /* 20.5MHz XTal */ {0x11, 0xB8, 0x00, 0x00, 0x00}, /* 24MHz XTal */ {0x00, 0x00, 0x00, 0x00, 0x00} /* 41MHz XTal */ }; static const u8 nominalRate7bw[3][5] = { {0x00, 0x00, 0x00, 0x00, 0x00}, /* 20.5MHz XTal */ {0x14, 0x40, 0x00, 0x00, 0x00}, /* 24MHz XTal */ {0x00, 0x00, 0x00, 0x00, 0x00} /* 41MHz XTal */ }; static const u8 nominalRate6bw[3][5] = { {0x14, 0x2E, 0x00, 0x00, 0x00}, /* 20.5MHz XTal */ {0x17, 0xA0, 0x00, 0x00, 0x00}, /* 24MHz XTal */ {0x14, 0x2E, 0x00, 0x00, 0x00} /* 41MHz XTal */ }; static const u8 itbCoef8bw[3][14] = { {0x00}, /* 20.5MHz XTal */ {0x2F, 0xBA, 0x28, 0x9B, 0x28, 0x9D, 0x28, 0xA1, 0x29, 0xA5, 0x2A, 0xAC, 0x29, 0xB5}, /* 24MHz Xtal */ {0x0}, /* 41MHz XTal */ }; static const u8 itbCoef7bw[3][14] = { {0x00}, /* 20.5MHz XTal */ {0x30, 0xB1, 0x29, 0x9A, 0x28, 0x9C, 0x28, 0xA0, 0x29, 0xA2, 0x2B, 0xA6, 0x2B, 0xAD}, /* 24MHz Xtal */ {0x00}, /* 41MHz XTal */ }; static const u8 itbCoef6bw[3][14] = { {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4}, /* 20.5MHz XTal */ {0x31, 0xA8, 0x29, 0x9B, 0x27, 0x9C, 0x28, 0x9E, 0x29, 0xA4, 0x29, 0xA2, 0x29, 0xA8}, /* 24MHz Xtal */ {0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4}, /* 41MHz XTal */ }; dev_dbg(&priv->i2c->dev, "%s() bandwidth=%u\n", __func__, bandwidth); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* 20.5/41MHz Xtal support is not available * on ISDB-T 7MHzBW and 8MHzBW */ if (priv->xtal != SONY_XTAL_24000 && bandwidth > 6000000) { dev_err(&priv->i2c->dev, "%s(): bandwidth %d supported only for 24MHz xtal\n", __func__, bandwidth); return -EINVAL; } switch (bandwidth) { case 8000000: /* TRCG Nominal Rate */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate8bw[priv->xtal], 5); /* Group delay equaliser settings for ASCOT tuners optimized */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef8bw[priv->xtal], 14); /* IF freq setting */ ifhz = cxd2841er_get_if_hz(priv, 4750000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xd7, 0x0, 0x7); /* Demod core latency setting */ data[0] = 0x13; data[1] = 0xFC; cxd2841er_write_regs(priv, I2C_SLVT, 0xD9, data, 2); /* Acquisition optimization setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x12); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x71, 0x03, 0x07); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x15); cxd2841er_write_reg(priv, I2C_SLVT, 0xBE, 0x03); break; case 7000000: /* TRCG Nominal Rate */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate7bw[priv->xtal], 5); /* Group delay equaliser settings for ASCOT tuners optimized */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef7bw[priv->xtal], 14); /* IF freq setting */ ifhz = cxd2841er_get_if_hz(priv, 4150000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xd7, 0x02, 0x7); /* Demod core latency setting */ data[0] = 0x1A; data[1] = 0xFA; cxd2841er_write_regs(priv, I2C_SLVT, 0xD9, data, 2); /* Acquisition optimization setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x12); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x71, 0x03, 0x07); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x15); cxd2841er_write_reg(priv, I2C_SLVT, 0xBE, 0x02); break; case 6000000: /* TRCG Nominal Rate */ cxd2841er_write_regs(priv, I2C_SLVT, 0x9F, nominalRate6bw[priv->xtal], 5); /* Group delay equaliser settings for ASCOT tuners optimized */ if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs(priv, I2C_SLVT, 0xA6, itbCoef6bw[priv->xtal], 14); /* IF freq setting */ ifhz = cxd2841er_get_if_hz(priv, 3550000); iffreq = cxd2841er_calc_iffreq_xtal(priv->xtal, ifhz); data[0] = (u8) ((iffreq >> 16) & 0xff); data[1] = (u8)((iffreq >> 8) & 0xff); data[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xB6, data, 3); /* System bandwidth setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xd7, 0x04, 0x7); /* Demod core latency setting */ if (priv->xtal == SONY_XTAL_24000) { data[0] = 0x1F; data[1] = 0x79; } else { data[0] = 0x1A; data[1] = 0xE2; } cxd2841er_write_regs(priv, I2C_SLVT, 0xD9, data, 2); /* Acquisition optimization setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x12); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x71, 0x07, 0x07); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x15); cxd2841er_write_reg(priv, I2C_SLVT, 0xBE, 0x02); break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid bandwidth %d\n", __func__, bandwidth); return -EINVAL; } return 0; } static int cxd2841er_sleep_tc_to_active_c_band(struct cxd2841er_priv *priv, u32 bandwidth) { u8 bw7_8mhz_b10_a6[] = { 0x2D, 0xC7, 0x04, 0xF4, 0x07, 0xC5, 0x2A, 0xB8, 0x27, 0x9E, 0x27, 0xA4, 0x29, 0xAB }; u8 bw6mhz_b10_a6[] = { 0x27, 0xA7, 0x28, 0xB3, 0x02, 0xF0, 0x01, 0xE8, 0x00, 0xCF, 0x00, 0xE6, 0x23, 0xA4 }; u8 b10_b6[3]; u32 iffreq, ifhz; if (bandwidth != 6000000 && bandwidth != 7000000 && bandwidth != 8000000) { dev_info(&priv->i2c->dev, "%s(): unsupported bandwidth %d. Forcing 8Mhz!\n", __func__, bandwidth); bandwidth = 8000000; } dev_dbg(&priv->i2c->dev, "%s() bw=%d\n", __func__, bandwidth); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); switch (bandwidth) { case 8000000: case 7000000: if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs( priv, I2C_SLVT, 0xa6, bw7_8mhz_b10_a6, sizeof(bw7_8mhz_b10_a6)); ifhz = cxd2841er_get_if_hz(priv, 4900000); iffreq = cxd2841er_calc_iffreq(ifhz); break; case 6000000: if (priv->flags & CXD2841ER_ASCOT) cxd2841er_write_regs( priv, I2C_SLVT, 0xa6, bw6mhz_b10_a6, sizeof(bw6mhz_b10_a6)); ifhz = cxd2841er_get_if_hz(priv, 3700000); iffreq = cxd2841er_calc_iffreq(ifhz); break; default: dev_err(&priv->i2c->dev, "%s(): unsupported bandwidth %d\n", __func__, bandwidth); return -EINVAL; } /* <IF freq setting> */ b10_b6[0] = (u8) ((iffreq >> 16) & 0xff); b10_b6[1] = (u8)((iffreq >> 8) & 0xff); b10_b6[2] = (u8)(iffreq & 0xff); cxd2841er_write_regs(priv, I2C_SLVT, 0xb6, b10_b6, sizeof(b10_b6)); /* Set SLV-T Bank : 0x11 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x11); switch (bandwidth) { case 8000000: case 7000000: cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xa3, 0x00, 0x1f); break; case 6000000: cxd2841er_set_reg_bits( priv, I2C_SLVT, 0xa3, 0x14, 0x1f); break; } /* Set SLV-T Bank : 0x40 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x40); switch (bandwidth) { case 8000000: cxd2841er_set_reg_bits( priv, I2C_SLVT, 0x26, 0x0b, 0x0f); cxd2841er_write_reg(priv, I2C_SLVT, 0x27, 0x3e); break; case 7000000: cxd2841er_set_reg_bits( priv, I2C_SLVT, 0x26, 0x09, 0x0f); cxd2841er_write_reg(priv, I2C_SLVT, 0x27, 0xd6); break; case 6000000: cxd2841er_set_reg_bits( priv, I2C_SLVT, 0x26, 0x08, 0x0f); cxd2841er_write_reg(priv, I2C_SLVT, 0x27, 0x6e); break; } return 0; } static int cxd2841er_sleep_tc_to_active_t(struct cxd2841er_priv *priv, u32 bandwidth) { u8 data[2] = { 0x09, 0x54 }; u8 data24m[3] = {0xDC, 0x6C, 0x00}; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); cxd2841er_set_ts_clock_mode(priv, SYS_DVBT); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Set demod mode */ cxd2841er_write_reg(priv, I2C_SLVX, 0x17, 0x01); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Enable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x01); /* Disable RF level monitor */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2f, 0x00); /* Enable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, 0x00); /* Enable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x1a); /* Enable ADC 2 & 3 */ if (priv->xtal == SONY_XTAL_41000) { data[0] = 0x0A; data[1] = 0xD4; } cxd2841er_write_regs(priv, I2C_SLVT, 0x43, data, 2); /* Enable ADC 4 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x00); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* IFAGC gain settings */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xd2, 0x0c, 0x1f); /* Set SLV-T Bank : 0x11 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x11); /* BBAGC TARGET level setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x6a, 0x50); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* ASCOT setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xa5, ((priv->flags & CXD2841ER_ASCOT) ? 0x01 : 0x00), 0x01); /* Set SLV-T Bank : 0x18 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x18); /* Pre-RS BER moniter setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x36, 0x40, 0x07); /* FEC Auto Recovery setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x30, 0x01, 0x01); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x31, 0x01, 0x01); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* TSIF setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xce, 0x01, 0x01); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xcf, 0x01, 0x01); if (priv->xtal == SONY_XTAL_24000) { /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); cxd2841er_write_reg(priv, I2C_SLVT, 0xBF, 0x60); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x18); cxd2841er_write_regs(priv, I2C_SLVT, 0x24, data24m, 3); } cxd2841er_sleep_tc_to_active_t_band(priv, bandwidth); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Disable HiZ Setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x28); /* Disable HiZ Setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0x00); priv->state = STATE_ACTIVE_TC; return 0; } static int cxd2841er_sleep_tc_to_active_t2(struct cxd2841er_priv *priv, u32 bandwidth) { u8 data[MAX_WRITE_REGSIZE]; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); cxd2841er_set_ts_clock_mode(priv, SYS_DVBT2); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Set demod mode */ cxd2841er_write_reg(priv, I2C_SLVX, 0x17, 0x02); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Enable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x01); /* Disable RF level monitor */ cxd2841er_write_reg(priv, I2C_SLVT, 0x59, 0x00); cxd2841er_write_reg(priv, I2C_SLVT, 0x2f, 0x00); /* Enable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, 0x00); /* Enable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x1a); if (priv->xtal == SONY_XTAL_41000) { data[0] = 0x0A; data[1] = 0xD4; } else { data[0] = 0x09; data[1] = 0x54; } cxd2841er_write_regs(priv, I2C_SLVT, 0x43, data, 2); /* Enable ADC 4 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x00); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* IFAGC gain settings */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xd2, 0x0c, 0x1f); /* Set SLV-T Bank : 0x11 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x11); /* BBAGC TARGET level setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x6a, 0x50); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* ASCOT setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xa5, ((priv->flags & CXD2841ER_ASCOT) ? 0x01 : 0x00), 0x01); /* Set SLV-T Bank : 0x20 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x20); /* Acquisition optimization setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x8b, 0x3c); /* Set SLV-T Bank : 0x2b */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x2b); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x76, 0x20, 0x70); /* Set SLV-T Bank : 0x23 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x23); /* L1 Control setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xE6, 0x00, 0x03); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* TSIF setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xce, 0x01, 0x01); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xcf, 0x01, 0x01); /* DVB-T2 initial setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x13); cxd2841er_write_reg(priv, I2C_SLVT, 0x83, 0x10); cxd2841er_write_reg(priv, I2C_SLVT, 0x86, 0x34); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x9e, 0x09, 0x0f); cxd2841er_write_reg(priv, I2C_SLVT, 0x9f, 0xd8); /* Set SLV-T Bank : 0x2a */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x2a); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x38, 0x04, 0x0f); /* Set SLV-T Bank : 0x2b */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x2b); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x11, 0x20, 0x3f); /* 24MHz Xtal setting */ if (priv->xtal == SONY_XTAL_24000) { /* Set SLV-T Bank : 0x11 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x11); data[0] = 0xEB; data[1] = 0x03; data[2] = 0x3B; cxd2841er_write_regs(priv, I2C_SLVT, 0x33, data, 3); /* Set SLV-T Bank : 0x20 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x20); data[0] = 0x5E; data[1] = 0x5E; data[2] = 0x47; cxd2841er_write_regs(priv, I2C_SLVT, 0x95, data, 3); cxd2841er_write_reg(priv, I2C_SLVT, 0x99, 0x18); data[0] = 0x3F; data[1] = 0xFF; cxd2841er_write_regs(priv, I2C_SLVT, 0xD9, data, 2); /* Set SLV-T Bank : 0x24 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x24); data[0] = 0x0B; data[1] = 0x72; cxd2841er_write_regs(priv, I2C_SLVT, 0x34, data, 2); data[0] = 0x93; data[1] = 0xF3; data[2] = 0x00; cxd2841er_write_regs(priv, I2C_SLVT, 0xD2, data, 3); data[0] = 0x05; data[1] = 0xB8; data[2] = 0xD8; cxd2841er_write_regs(priv, I2C_SLVT, 0xDD, data, 3); cxd2841er_write_reg(priv, I2C_SLVT, 0xE0, 0x00); /* Set SLV-T Bank : 0x25 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x25); cxd2841er_write_reg(priv, I2C_SLVT, 0xED, 0x60); /* Set SLV-T Bank : 0x27 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x27); cxd2841er_write_reg(priv, I2C_SLVT, 0xFA, 0x34); /* Set SLV-T Bank : 0x2B */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x2B); cxd2841er_write_reg(priv, I2C_SLVT, 0x4B, 0x2F); cxd2841er_write_reg(priv, I2C_SLVT, 0x9E, 0x0E); /* Set SLV-T Bank : 0x2D */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x2D); data[0] = 0x89; data[1] = 0x89; cxd2841er_write_regs(priv, I2C_SLVT, 0x24, data, 2); /* Set SLV-T Bank : 0x5E */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x5E); data[0] = 0x24; data[1] = 0x95; cxd2841er_write_regs(priv, I2C_SLVT, 0x8C, data, 2); } cxd2841er_sleep_tc_to_active_t2_band(priv, bandwidth); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Disable HiZ Setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x28); /* Disable HiZ Setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0x00); priv->state = STATE_ACTIVE_TC; return 0; } /* ISDB-Tb part */ static int cxd2841er_sleep_tc_to_active_i(struct cxd2841er_priv *priv, u32 bandwidth) { u8 data[2] = { 0x09, 0x54 }; u8 data24m[2] = {0x60, 0x00}; u8 data24m2[3] = {0xB7, 0x1B, 0x00}; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); cxd2841er_set_ts_clock_mode(priv, SYS_DVBT); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Set demod mode */ cxd2841er_write_reg(priv, I2C_SLVX, 0x17, 0x06); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Enable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x01); /* Enable RF level monitor */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2f, 0x01); cxd2841er_write_reg(priv, I2C_SLVT, 0x59, 0x01); /* Enable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, 0x00); /* Enable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x1a); /* xtal freq 20.5MHz or 24M */ cxd2841er_write_regs(priv, I2C_SLVT, 0x43, data, 2); /* Enable ADC 4 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x00); /* ASCOT setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xa5, ((priv->flags & CXD2841ER_ASCOT) ? 0x01 : 0x00), 0x01); /* FEC Auto Recovery setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x30, 0x01, 0x01); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x31, 0x00, 0x01); /* ISDB-T initial setting */ /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xce, 0x00, 0x01); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xcf, 0x00, 0x01); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x69, 0x04, 0x07); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x6B, 0x03, 0x07); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x9D, 0x50, 0xFF); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xD3, 0x06, 0x1F); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xED, 0x00, 0x01); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xE2, 0xCE, 0x80); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xF2, 0x13, 0x10); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xDE, 0x2E, 0x3F); /* Set SLV-T Bank : 0x15 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x15); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xDE, 0x02, 0x03); /* Set SLV-T Bank : 0x1E */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x1E); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x73, 0x68, 0xFF); /* Set SLV-T Bank : 0x63 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x63); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0x81, 0x00, 0x01); /* for xtal 24MHz */ /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); cxd2841er_write_regs(priv, I2C_SLVT, 0xBF, data24m, 2); /* Set SLV-T Bank : 0x60 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x60); cxd2841er_write_regs(priv, I2C_SLVT, 0xA8, data24m2, 3); cxd2841er_sleep_tc_to_active_i_band(priv, bandwidth); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Disable HiZ Setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x28); /* Disable HiZ Setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0x00); priv->state = STATE_ACTIVE_TC; return 0; } static int cxd2841er_sleep_tc_to_active_c(struct cxd2841er_priv *priv, u32 bandwidth) { u8 data[2] = { 0x09, 0x54 }; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); cxd2841er_set_ts_clock_mode(priv, SYS_DVBC_ANNEX_A); /* Set SLV-X Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x00, 0x00); /* Set demod mode */ cxd2841er_write_reg(priv, I2C_SLVX, 0x17, 0x04); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Enable demod clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x2c, 0x01); /* Disable RF level monitor */ cxd2841er_write_reg(priv, I2C_SLVT, 0x59, 0x00); cxd2841er_write_reg(priv, I2C_SLVT, 0x2f, 0x00); /* Enable ADC clock */ cxd2841er_write_reg(priv, I2C_SLVT, 0x30, 0x00); /* Enable ADC 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x41, 0x1a); /* xtal freq 20.5MHz */ cxd2841er_write_regs(priv, I2C_SLVT, 0x43, data, 2); /* Enable ADC 4 */ cxd2841er_write_reg(priv, I2C_SLVX, 0x18, 0x00); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* IFAGC gain settings */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xd2, 0x09, 0x1f); /* Set SLV-T Bank : 0x11 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x11); /* BBAGC TARGET level setting */ cxd2841er_write_reg(priv, I2C_SLVT, 0x6a, 0x48); /* Set SLV-T Bank : 0x10 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); /* ASCOT setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xa5, ((priv->flags & CXD2841ER_ASCOT) ? 0x01 : 0x00), 0x01); /* Set SLV-T Bank : 0x40 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x40); /* Demod setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xc3, 0x00, 0x04); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* TSIF setting */ cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xce, 0x01, 0x01); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xcf, 0x01, 0x01); cxd2841er_sleep_tc_to_active_c_band(priv, bandwidth); /* Set SLV-T Bank : 0x00 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); /* Disable HiZ Setting 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x80, 0x28); /* Disable HiZ Setting 2 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x81, 0x00); priv->state = STATE_ACTIVE_TC; return 0; } static int cxd2841er_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p) { enum fe_status status = 0; struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state == STATE_ACTIVE_S) cxd2841er_read_status_s(fe, &status); else if (priv->state == STATE_ACTIVE_TC) cxd2841er_read_status_tc(fe, &status); if (priv->state == STATE_ACTIVE_TC || priv->state == STATE_ACTIVE_S) cxd2841er_read_signal_strength(fe); else p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; if (status & FE_HAS_LOCK) { cxd2841er_read_snr(fe); cxd2841er_read_ucblocks(fe); cxd2841er_read_ber(fe); } else { p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } return 0; } static int cxd2841er_set_frontend_s(struct dvb_frontend *fe) { int ret = 0, i, timeout, carr_offset; enum fe_status status; struct cxd2841er_priv *priv = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u32 symbol_rate = p->symbol_rate/1000; dev_dbg(&priv->i2c->dev, "%s(): %s frequency=%d symbol_rate=%d xtal=%d\n", __func__, (p->delivery_system == SYS_DVBS ? "DVB-S" : "DVB-S2"), p->frequency, symbol_rate, priv->xtal); if (priv->flags & CXD2841ER_EARLY_TUNE) cxd2841er_tuner_set(fe); switch (priv->state) { case STATE_SLEEP_S: ret = cxd2841er_sleep_s_to_active_s( priv, p->delivery_system, symbol_rate); break; case STATE_ACTIVE_S: ret = cxd2841er_retune_active(priv, p); break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); ret = -EINVAL; goto done; } if (ret) { dev_dbg(&priv->i2c->dev, "%s(): tune failed\n", __func__); goto done; } if (!(priv->flags & CXD2841ER_EARLY_TUNE)) cxd2841er_tuner_set(fe); cxd2841er_tune_done(priv); timeout = ((3000000 + (symbol_rate - 1)) / symbol_rate) + 150; i = 0; do { usleep_range(CXD2841ER_DVBS_POLLING_INVL*1000, (CXD2841ER_DVBS_POLLING_INVL + 2) * 1000); cxd2841er_read_status_s(fe, &status); if (status & FE_HAS_LOCK) break; i++; } while (i < timeout / CXD2841ER_DVBS_POLLING_INVL); if (status & FE_HAS_LOCK) { if (cxd2841er_get_carrier_offset_s_s2( priv, &carr_offset)) { ret = -EINVAL; goto done; } dev_dbg(&priv->i2c->dev, "%s(): carrier_offset=%d\n", __func__, carr_offset); } done: /* Reset stats */ p->strength.stat[0].scale = FE_SCALE_RELATIVE; p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return ret; } static int cxd2841er_set_frontend_tc(struct dvb_frontend *fe) { int ret = 0, timeout; enum fe_status status; struct cxd2841er_priv *priv = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; dev_dbg(&priv->i2c->dev, "%s() delivery_system=%d bandwidth_hz=%d\n", __func__, p->delivery_system, p->bandwidth_hz); if (priv->flags & CXD2841ER_EARLY_TUNE) cxd2841er_tuner_set(fe); /* deconfigure/put demod to sleep on delsys switch if active */ if (priv->state == STATE_ACTIVE_TC && priv->system != p->delivery_system) { dev_dbg(&priv->i2c->dev, "%s(): old_delsys=%d, new_delsys=%d -> sleep\n", __func__, priv->system, p->delivery_system); cxd2841er_sleep_tc(fe); } if (p->delivery_system == SYS_DVBT) { priv->system = SYS_DVBT; switch (priv->state) { case STATE_SLEEP_TC: ret = cxd2841er_sleep_tc_to_active_t( priv, p->bandwidth_hz); break; case STATE_ACTIVE_TC: ret = cxd2841er_retune_active(priv, p); break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); ret = -EINVAL; } } else if (p->delivery_system == SYS_DVBT2) { priv->system = SYS_DVBT2; cxd2841er_dvbt2_set_plp_config(priv, (int)(p->stream_id > 255), p->stream_id); cxd2841er_dvbt2_set_profile(priv, DVBT2_PROFILE_BASE); switch (priv->state) { case STATE_SLEEP_TC: ret = cxd2841er_sleep_tc_to_active_t2(priv, p->bandwidth_hz); break; case STATE_ACTIVE_TC: ret = cxd2841er_retune_active(priv, p); break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); ret = -EINVAL; } } else if (p->delivery_system == SYS_ISDBT) { priv->system = SYS_ISDBT; switch (priv->state) { case STATE_SLEEP_TC: ret = cxd2841er_sleep_tc_to_active_i( priv, p->bandwidth_hz); break; case STATE_ACTIVE_TC: ret = cxd2841er_retune_active(priv, p); break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); ret = -EINVAL; } } else if (p->delivery_system == SYS_DVBC_ANNEX_A || p->delivery_system == SYS_DVBC_ANNEX_C) { priv->system = SYS_DVBC_ANNEX_A; /* correct bandwidth */ if (p->bandwidth_hz != 6000000 && p->bandwidth_hz != 7000000 && p->bandwidth_hz != 8000000) { p->bandwidth_hz = 8000000; dev_dbg(&priv->i2c->dev, "%s(): forcing bandwidth to %d\n", __func__, p->bandwidth_hz); } switch (priv->state) { case STATE_SLEEP_TC: ret = cxd2841er_sleep_tc_to_active_c( priv, p->bandwidth_hz); break; case STATE_ACTIVE_TC: ret = cxd2841er_retune_active(priv, p); break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); ret = -EINVAL; } } else { dev_dbg(&priv->i2c->dev, "%s(): invalid delivery system %d\n", __func__, p->delivery_system); ret = -EINVAL; } if (ret) goto done; if (!(priv->flags & CXD2841ER_EARLY_TUNE)) cxd2841er_tuner_set(fe); cxd2841er_tune_done(priv); if (priv->flags & CXD2841ER_NO_WAIT_LOCK) goto done; timeout = 2500; while (timeout > 0) { ret = cxd2841er_read_status_tc(fe, &status); if (ret) goto done; if (status & FE_HAS_LOCK) break; msleep(20); timeout -= 20; } if (timeout < 0) dev_dbg(&priv->i2c->dev, "%s(): LOCK wait timeout\n", __func__); done: return ret; } static int cxd2841er_tune_s(struct dvb_frontend *fe, bool re_tune, unsigned int mode_flags, unsigned int *delay, enum fe_status *status) { int ret, carrier_offset; struct cxd2841er_priv *priv = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; dev_dbg(&priv->i2c->dev, "%s() re_tune=%d\n", __func__, re_tune); if (re_tune) { ret = cxd2841er_set_frontend_s(fe); if (ret) return ret; cxd2841er_read_status_s(fe, status); if (*status & FE_HAS_LOCK) { if (cxd2841er_get_carrier_offset_s_s2( priv, &carrier_offset)) return -EINVAL; p->frequency += carrier_offset; ret = cxd2841er_set_frontend_s(fe); if (ret) return ret; } } *delay = HZ / 5; return cxd2841er_read_status_s(fe, status); } static int cxd2841er_tune_tc(struct dvb_frontend *fe, bool re_tune, unsigned int mode_flags, unsigned int *delay, enum fe_status *status) { int ret, carrier_offset; struct cxd2841er_priv *priv = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; dev_dbg(&priv->i2c->dev, "%s(): re_tune %d bandwidth=%d\n", __func__, re_tune, p->bandwidth_hz); if (re_tune) { ret = cxd2841er_set_frontend_tc(fe); if (ret) return ret; cxd2841er_read_status_tc(fe, status); if (*status & FE_HAS_LOCK) { switch (priv->system) { case SYS_ISDBT: ret = cxd2841er_get_carrier_offset_i( priv, p->bandwidth_hz, &carrier_offset); if (ret) return ret; break; case SYS_DVBT: ret = cxd2841er_get_carrier_offset_t( priv, p->bandwidth_hz, &carrier_offset); if (ret) return ret; break; case SYS_DVBT2: ret = cxd2841er_get_carrier_offset_t2( priv, p->bandwidth_hz, &carrier_offset); if (ret) return ret; break; case SYS_DVBC_ANNEX_A: ret = cxd2841er_get_carrier_offset_c( priv, &carrier_offset); if (ret) return ret; break; default: dev_dbg(&priv->i2c->dev, "%s(): invalid delivery system %d\n", __func__, priv->system); return -EINVAL; } dev_dbg(&priv->i2c->dev, "%s(): carrier offset %d\n", __func__, carrier_offset); p->frequency += carrier_offset; ret = cxd2841er_set_frontend_tc(fe); if (ret) return ret; } } *delay = HZ / 5; return cxd2841er_read_status_tc(fe, status); } static int cxd2841er_sleep_s(struct dvb_frontend *fe) { struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); cxd2841er_active_s_to_sleep_s(fe->demodulator_priv); cxd2841er_sleep_s_to_shutdown(fe->demodulator_priv); return 0; } static int cxd2841er_sleep_tc(struct dvb_frontend *fe) { struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (priv->state == STATE_ACTIVE_TC) { switch (priv->system) { case SYS_DVBT: cxd2841er_active_t_to_sleep_tc(priv); break; case SYS_DVBT2: cxd2841er_active_t2_to_sleep_tc(priv); break; case SYS_ISDBT: cxd2841er_active_i_to_sleep_tc(priv); break; case SYS_DVBC_ANNEX_A: cxd2841er_active_c_to_sleep_tc(priv); break; default: dev_warn(&priv->i2c->dev, "%s(): unknown delivery system %d\n", __func__, priv->system); } } if (priv->state != STATE_SLEEP_TC) { dev_err(&priv->i2c->dev, "%s(): invalid state %d\n", __func__, priv->state); return -EINVAL; } return 0; } static int cxd2841er_shutdown_tc(struct dvb_frontend *fe) { struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); if (!cxd2841er_sleep_tc(fe)) cxd2841er_sleep_tc_to_shutdown(priv); return 0; } static int cxd2841er_send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst) { u8 data; struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s(): burst mode %s\n", __func__, (burst == SEC_MINI_A ? "A" : "B")); if (priv->state != STATE_SLEEP_S && priv->state != STATE_ACTIVE_S) { dev_err(&priv->i2c->dev, "%s(): invalid demod state %d\n", __func__, priv->state); return -EINVAL; } data = (burst == SEC_MINI_A ? 0 : 1); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xbb); cxd2841er_write_reg(priv, I2C_SLVT, 0x34, 0x01); cxd2841er_write_reg(priv, I2C_SLVT, 0x35, data); return 0; } static int cxd2841er_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) { u8 data; struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s(): tone %s\n", __func__, (tone == SEC_TONE_ON ? "On" : "Off")); if (priv->state != STATE_SLEEP_S && priv->state != STATE_ACTIVE_S) { dev_err(&priv->i2c->dev, "%s(): invalid demod state %d\n", __func__, priv->state); return -EINVAL; } data = (tone == SEC_TONE_ON ? 1 : 0); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xbb); cxd2841er_write_reg(priv, I2C_SLVT, 0x36, data); return 0; } static int cxd2841er_send_diseqc_msg(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *cmd) { int i; u8 data[12]; struct cxd2841er_priv *priv = fe->demodulator_priv; if (priv->state != STATE_SLEEP_S && priv->state != STATE_ACTIVE_S) { dev_err(&priv->i2c->dev, "%s(): invalid demod state %d\n", __func__, priv->state); return -EINVAL; } dev_dbg(&priv->i2c->dev, "%s(): cmd->len %d\n", __func__, cmd->msg_len); cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xbb); /* DiDEqC enable */ cxd2841er_write_reg(priv, I2C_SLVT, 0x33, 0x01); /* cmd1 length & data */ cxd2841er_write_reg(priv, I2C_SLVT, 0x3d, cmd->msg_len); memset(data, 0, sizeof(data)); for (i = 0; i < cmd->msg_len && i < sizeof(data); i++) data[i] = cmd->msg[i]; cxd2841er_write_regs(priv, I2C_SLVT, 0x3e, data, sizeof(data)); /* repeat count for cmd1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x37, 1); /* repeat count for cmd2: always 0 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x38, 0); /* start transmit */ cxd2841er_write_reg(priv, I2C_SLVT, 0x32, 0x01); /* wait for 1 sec timeout */ for (i = 0; i < 50; i++) { cxd2841er_read_reg(priv, I2C_SLVT, 0x10, data); if (!data[0]) { dev_dbg(&priv->i2c->dev, "%s(): DiSEqC cmd has been sent\n", __func__); return 0; } msleep(20); } dev_dbg(&priv->i2c->dev, "%s(): DiSEqC cmd transmit timeout\n", __func__); return -ETIMEDOUT; } static void cxd2841er_release(struct dvb_frontend *fe) { struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); kfree(priv); } static int cxd2841er_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s(): enable=%d\n", __func__, enable); cxd2841er_set_reg_bits( priv, I2C_SLVX, 0x8, (enable ? 0x01 : 0x00), 0x01); return 0; } static enum dvbfe_algo cxd2841er_get_algo(struct dvb_frontend *fe) { struct cxd2841er_priv *priv = fe->demodulator_priv; dev_dbg(&priv->i2c->dev, "%s()\n", __func__); return DVBFE_ALGO_HW; } static void cxd2841er_init_stats(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; p->strength.len = 1; p->strength.stat[0].scale = FE_SCALE_RELATIVE; p->cnr.len = 1; p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_error.len = 1; p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_error.len = 1; p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_count.len = 1; p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } static int cxd2841er_init_s(struct dvb_frontend *fe) { struct cxd2841er_priv *priv = fe->demodulator_priv; /* sanity. force demod to SHUTDOWN state */ if (priv->state == STATE_SLEEP_S) { dev_dbg(&priv->i2c->dev, "%s() forcing sleep->shutdown\n", __func__); cxd2841er_sleep_s_to_shutdown(priv); } else if (priv->state == STATE_ACTIVE_S) { dev_dbg(&priv->i2c->dev, "%s() forcing active->sleep->shutdown\n", __func__); cxd2841er_active_s_to_sleep_s(priv); cxd2841er_sleep_s_to_shutdown(priv); } dev_dbg(&priv->i2c->dev, "%s()\n", __func__); cxd2841er_shutdown_to_sleep_s(priv); /* SONY_DEMOD_CONFIG_SAT_IFAGCNEG set to 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0xa0); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xb9, 0x01, 0x01); cxd2841er_init_stats(fe); return 0; } static int cxd2841er_init_tc(struct dvb_frontend *fe) { struct cxd2841er_priv *priv = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; dev_dbg(&priv->i2c->dev, "%s() bandwidth_hz=%d\n", __func__, p->bandwidth_hz); cxd2841er_shutdown_to_sleep_tc(priv); /* SONY_DEMOD_CONFIG_IFAGCNEG = 1 (0 for NO_AGCNEG */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x10); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xcb, ((priv->flags & CXD2841ER_NO_AGCNEG) ? 0x00 : 0x40), 0x40); /* SONY_DEMOD_CONFIG_IFAGC_ADC_FS = 0 */ cxd2841er_write_reg(priv, I2C_SLVT, 0xcd, 0x50); /* SONY_DEMOD_CONFIG_PARALLEL_SEL = 1 */ cxd2841er_write_reg(priv, I2C_SLVT, 0x00, 0x00); cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xc4, ((priv->flags & CXD2841ER_TS_SERIAL) ? 0x80 : 0x00), 0x80); /* clear TSCFG bits 3+4 */ if (priv->flags & CXD2841ER_TSBITS) cxd2841er_set_reg_bits(priv, I2C_SLVT, 0xc4, 0x00, 0x18); cxd2841er_init_stats(fe); return 0; } static const struct dvb_frontend_ops cxd2841er_dvbs_s2_ops; static struct dvb_frontend_ops cxd2841er_t_c_ops; static struct dvb_frontend *cxd2841er_attach(struct cxd2841er_config *cfg, struct i2c_adapter *i2c, u8 system) { u8 chip_id = 0; const char *type; const char *name; struct cxd2841er_priv *priv = NULL; /* allocate memory for the internal state */ priv = kzalloc(sizeof(struct cxd2841er_priv), GFP_KERNEL); if (!priv) return NULL; priv->i2c = i2c; priv->config = cfg; priv->i2c_addr_slvx = (cfg->i2c_addr + 4) >> 1; priv->i2c_addr_slvt = (cfg->i2c_addr) >> 1; priv->xtal = cfg->xtal; priv->flags = cfg->flags; priv->frontend.demodulator_priv = priv; dev_info(&priv->i2c->dev, "%s(): I2C adapter %p SLVX addr %x SLVT addr %x\n", __func__, priv->i2c, priv->i2c_addr_slvx, priv->i2c_addr_slvt); chip_id = cxd2841er_chip_id(priv); switch (chip_id) { case CXD2837ER_CHIP_ID: snprintf(cxd2841er_t_c_ops.info.name, 128, "Sony CXD2837ER DVB-T/T2/C demodulator"); name = "CXD2837ER"; type = "C/T/T2"; break; case CXD2838ER_CHIP_ID: snprintf(cxd2841er_t_c_ops.info.name, 128, "Sony CXD2838ER ISDB-T demodulator"); cxd2841er_t_c_ops.delsys[0] = SYS_ISDBT; cxd2841er_t_c_ops.delsys[1] = SYS_UNDEFINED; cxd2841er_t_c_ops.delsys[2] = SYS_UNDEFINED; name = "CXD2838ER"; type = "ISDB-T"; break; case CXD2841ER_CHIP_ID: snprintf(cxd2841er_t_c_ops.info.name, 128, "Sony CXD2841ER DVB-T/T2/C demodulator"); name = "CXD2841ER"; type = "T/T2/C/ISDB-T"; break; case CXD2843ER_CHIP_ID: snprintf(cxd2841er_t_c_ops.info.name, 128, "Sony CXD2843ER DVB-T/T2/C/C2 demodulator"); name = "CXD2843ER"; type = "C/C2/T/T2"; break; case CXD2854ER_CHIP_ID: snprintf(cxd2841er_t_c_ops.info.name, 128, "Sony CXD2854ER DVB-T/T2/C and ISDB-T demodulator"); cxd2841er_t_c_ops.delsys[3] = SYS_ISDBT; name = "CXD2854ER"; type = "C/C2/T/T2/ISDB-T"; break; default: dev_err(&priv->i2c->dev, "%s(): invalid chip ID 0x%02x\n", __func__, chip_id); priv->frontend.demodulator_priv = NULL; kfree(priv); return NULL; } /* create dvb_frontend */ if (system == SYS_DVBS) { memcpy(&priv->frontend.ops, &cxd2841er_dvbs_s2_ops, sizeof(struct dvb_frontend_ops)); type = "S/S2"; } else { memcpy(&priv->frontend.ops, &cxd2841er_t_c_ops, sizeof(struct dvb_frontend_ops)); } dev_info(&priv->i2c->dev, "%s(): attaching %s DVB-%s frontend\n", __func__, name, type); dev_info(&priv->i2c->dev, "%s(): chip ID 0x%02x OK.\n", __func__, chip_id); return &priv->frontend; } struct dvb_frontend *cxd2841er_attach_s(struct cxd2841er_config *cfg, struct i2c_adapter *i2c) { return cxd2841er_attach(cfg, i2c, SYS_DVBS); } EXPORT_SYMBOL(cxd2841er_attach_s); struct dvb_frontend *cxd2841er_attach_t_c(struct cxd2841er_config *cfg, struct i2c_adapter *i2c) { return cxd2841er_attach(cfg, i2c, 0); } EXPORT_SYMBOL(cxd2841er_attach_t_c); static const struct dvb_frontend_ops cxd2841er_dvbs_s2_ops = { .delsys = { SYS_DVBS, SYS_DVBS2 }, .info = { .name = "Sony CXD2841ER DVB-S/S2 demodulator", .frequency_min_hz = 500 * MHz, .frequency_max_hz = 2500 * MHz, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .symbol_rate_tolerance = 500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO | FE_CAN_QPSK, }, .init = cxd2841er_init_s, .sleep = cxd2841er_sleep_s, .release = cxd2841er_release, .set_frontend = cxd2841er_set_frontend_s, .get_frontend = cxd2841er_get_frontend, .read_status = cxd2841er_read_status_s, .i2c_gate_ctrl = cxd2841er_i2c_gate_ctrl, .get_frontend_algo = cxd2841er_get_algo, .set_tone = cxd2841er_set_tone, .diseqc_send_burst = cxd2841er_send_burst, .diseqc_send_master_cmd = cxd2841er_send_diseqc_msg, .tune = cxd2841er_tune_s }; static struct dvb_frontend_ops cxd2841er_t_c_ops = { .delsys = { SYS_DVBT, SYS_DVBT2, SYS_DVBC_ANNEX_A }, .info = { .name = "", /* will set in attach function */ .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 | FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_MUTE_TS | FE_CAN_2G_MODULATION, .frequency_min_hz = 42 * MHz, .frequency_max_hz = 1002 * MHz, .symbol_rate_min = 870000, .symbol_rate_max = 11700000 }, .init = cxd2841er_init_tc, .sleep = cxd2841er_shutdown_tc, .release = cxd2841er_release, .set_frontend = cxd2841er_set_frontend_tc, .get_frontend = cxd2841er_get_frontend, .read_status = cxd2841er_read_status_tc, .tune = cxd2841er_tune_tc, .i2c_gate_ctrl = cxd2841er_i2c_gate_ctrl, .get_frontend_algo = cxd2841er_get_algo }; MODULE_DESCRIPTION("Sony CXD2837/38/41/43/54ER DVB-C/C2/T/T2/S/S2 demodulator driver"); MODULE_AUTHOR("Sergey Kozlov <serjk@netup.ru>, Abylay Ospan <aospan@netup.ru>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1