Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Hunold | 1404 | 53.92% | 6 | 26.09% |
Alan Cox | 681 | 26.15% | 3 | 13.04% |
Johannes Stezenbach | 235 | 9.02% | 2 | 8.70% |
Mauro Carvalho Chehab | 126 | 4.84% | 6 | 26.09% |
Andrew de Quincey | 86 | 3.30% | 1 | 4.35% |
Svante Olofsson | 35 | 1.34% | 1 | 4.35% |
Andrew Morton | 18 | 0.69% | 1 | 4.35% |
Patrick Boettcher | 16 | 0.61% | 1 | 4.35% |
Max Kellermann | 2 | 0.08% | 1 | 4.35% |
Matthias Schwarzott | 1 | 0.04% | 1 | 4.35% |
Total | 2604 | 23 |
/* NxtWave Communications - NXT6000 demodulator driver Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org> Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> #include <linux/slab.h> #include <media/dvb_frontend.h> #include "nxt6000_priv.h" #include "nxt6000.h" struct nxt6000_state { struct i2c_adapter* i2c; /* configuration settings */ const struct nxt6000_config* config; struct dvb_frontend frontend; }; static int debug; #define dprintk(fmt, arg...) do { \ if (debug) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), \ __func__, ##arg); \ } while (0) static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data) { u8 buf[] = { reg, data }; struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 }; int ret; if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1) dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret); return (ret != 1) ? -EIO : 0; } static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msgs[] = { {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1}, {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1} }; ret = i2c_transfer(state->i2c, msgs, 2); if (ret != 2) dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret); return b1[0]; } static void nxt6000_reset(struct nxt6000_state* state) { u8 val; val = nxt6000_readreg(state, OFDM_COR_CTL); nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT); nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT); } static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth) { u16 nominal_rate; int result; switch (bandwidth) { case 6000000: nominal_rate = 0x55B7; break; case 7000000: nominal_rate = 0x6400; break; case 8000000: nominal_rate = 0x7249; break; default: return -EINVAL; } if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0) return result; return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF); } static int nxt6000_set_guard_interval(struct nxt6000_state *state, enum fe_guard_interval guard_interval) { switch (guard_interval) { case GUARD_INTERVAL_1_32: return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03)); case GUARD_INTERVAL_1_16: return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03)); case GUARD_INTERVAL_AUTO: case GUARD_INTERVAL_1_8: return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03)); case GUARD_INTERVAL_1_4: return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03)); default: return -EINVAL; } } static int nxt6000_set_inversion(struct nxt6000_state *state, enum fe_spectral_inversion inversion) { switch (inversion) { case INVERSION_OFF: return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00); case INVERSION_ON: return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV); default: return -EINVAL; } } static int nxt6000_set_transmission_mode(struct nxt6000_state *state, enum fe_transmit_mode transmission_mode) { int result; switch (transmission_mode) { case TRANSMISSION_MODE_2K: if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0) return result; return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04)); case TRANSMISSION_MODE_8K: case TRANSMISSION_MODE_AUTO: if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0) return result; return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04)); default: return -EINVAL; } } static void nxt6000_setup(struct dvb_frontend* fe) { struct nxt6000_state* state = fe->demodulator_priv; nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM); nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01); nxt6000_writereg(state, VIT_BERTIME_2, 0x00); // BER Timer = 0x000200 * 256 = 131072 bits nxt6000_writereg(state, VIT_BERTIME_1, 0x02); // nxt6000_writereg(state, VIT_BERTIME_0, 0x00); // nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts nxt6000_writereg(state, VIT_COR_CTL, 0x82); // Enable BER measurement nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 ); nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F)); nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02); nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW); nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06); nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31); nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04); nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */ nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2); nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256); nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49); nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72); nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5); nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2); nxt6000_writereg(state, DIAG_CONFIG, TB_SET); if (state->config->clock_inversion) nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION); else nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0); nxt6000_writereg(state, TS_FORMAT, 0); } static void nxt6000_dump_status(struct nxt6000_state *state) { u8 val; #if 0 pr_info("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT)); pr_info("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS)); pr_info("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT)); pr_info("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT)); pr_info("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1)); pr_info("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2)); pr_info("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3)); pr_info("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4)); pr_info("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1)); pr_info("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2)); #endif pr_info("NXT6000 status:"); val = nxt6000_readreg(state, RS_COR_STAT); pr_cont(" DATA DESCR LOCK: %d,", val & 0x01); pr_cont(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01); val = nxt6000_readreg(state, VIT_SYNC_STATUS); pr_cont(" VITERBI LOCK: %d,", (val >> 7) & 0x01); switch ((val >> 4) & 0x07) { case 0x00: pr_cont(" VITERBI CODERATE: 1/2,"); break; case 0x01: pr_cont(" VITERBI CODERATE: 2/3,"); break; case 0x02: pr_cont(" VITERBI CODERATE: 3/4,"); break; case 0x03: pr_cont(" VITERBI CODERATE: 5/6,"); break; case 0x04: pr_cont(" VITERBI CODERATE: 7/8,"); break; default: pr_cont(" VITERBI CODERATE: Reserved,"); } val = nxt6000_readreg(state, OFDM_COR_STAT); pr_cont(" CHCTrack: %d,", (val >> 7) & 0x01); pr_cont(" TPSLock: %d,", (val >> 6) & 0x01); pr_cont(" SYRLock: %d,", (val >> 5) & 0x01); pr_cont(" AGCLock: %d,", (val >> 4) & 0x01); switch (val & 0x0F) { case 0x00: pr_cont(" CoreState: IDLE,"); break; case 0x02: pr_cont(" CoreState: WAIT_AGC,"); break; case 0x03: pr_cont(" CoreState: WAIT_SYR,"); break; case 0x04: pr_cont(" CoreState: WAIT_PPM,"); break; case 0x01: pr_cont(" CoreState: WAIT_TRL,"); break; case 0x05: pr_cont(" CoreState: WAIT_TPS,"); break; case 0x06: pr_cont(" CoreState: MONITOR_TPS,"); break; default: pr_cont(" CoreState: Reserved,"); } val = nxt6000_readreg(state, OFDM_SYR_STAT); pr_cont(" SYRLock: %d,", (val >> 4) & 0x01); pr_cont(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K"); switch ((val >> 4) & 0x03) { case 0x00: pr_cont(" SYRGuard: 1/32,"); break; case 0x01: pr_cont(" SYRGuard: 1/16,"); break; case 0x02: pr_cont(" SYRGuard: 1/8,"); break; case 0x03: pr_cont(" SYRGuard: 1/4,"); break; } val = nxt6000_readreg(state, OFDM_TPS_RCVD_3); switch ((val >> 4) & 0x07) { case 0x00: pr_cont(" TPSLP: 1/2,"); break; case 0x01: pr_cont(" TPSLP: 2/3,"); break; case 0x02: pr_cont(" TPSLP: 3/4,"); break; case 0x03: pr_cont(" TPSLP: 5/6,"); break; case 0x04: pr_cont(" TPSLP: 7/8,"); break; default: pr_cont(" TPSLP: Reserved,"); } switch (val & 0x07) { case 0x00: pr_cont(" TPSHP: 1/2,"); break; case 0x01: pr_cont(" TPSHP: 2/3,"); break; case 0x02: pr_cont(" TPSHP: 3/4,"); break; case 0x03: pr_cont(" TPSHP: 5/6,"); break; case 0x04: pr_cont(" TPSHP: 7/8,"); break; default: pr_cont(" TPSHP: Reserved,"); } val = nxt6000_readreg(state, OFDM_TPS_RCVD_4); pr_cont(" TPSMode: %s,", val & 0x01 ? "8K" : "2K"); switch ((val >> 4) & 0x03) { case 0x00: pr_cont(" TPSGuard: 1/32,"); break; case 0x01: pr_cont(" TPSGuard: 1/16,"); break; case 0x02: pr_cont(" TPSGuard: 1/8,"); break; case 0x03: pr_cont(" TPSGuard: 1/4,"); break; } /* Strange magic required to gain access to RF_AGC_STATUS */ nxt6000_readreg(state, RF_AGC_VAL_1); val = nxt6000_readreg(state, RF_AGC_STATUS); val = nxt6000_readreg(state, RF_AGC_STATUS); pr_cont(" RF AGC LOCK: %d,", (val >> 4) & 0x01); pr_cont("\n"); } static int nxt6000_read_status(struct dvb_frontend *fe, enum fe_status *status) { u8 core_status; struct nxt6000_state* state = fe->demodulator_priv; *status = 0; core_status = nxt6000_readreg(state, OFDM_COR_STAT); if (core_status & AGCLOCKED) *status |= FE_HAS_SIGNAL; if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK) *status |= FE_HAS_CARRIER; if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC) *status |= FE_HAS_VITERBI; if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS) *status |= FE_HAS_SYNC; if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC))) *status |= FE_HAS_LOCK; if (debug) nxt6000_dump_status(state); return 0; } static int nxt6000_init(struct dvb_frontend* fe) { struct nxt6000_state* state = fe->demodulator_priv; nxt6000_reset(state); nxt6000_setup(fe); return 0; } static int nxt6000_set_frontend(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct nxt6000_state* state = fe->demodulator_priv; int result; if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } result = nxt6000_set_bandwidth(state, p->bandwidth_hz); if (result < 0) return result; result = nxt6000_set_guard_interval(state, p->guard_interval); if (result < 0) return result; result = nxt6000_set_transmission_mode(state, p->transmission_mode); if (result < 0) return result; result = nxt6000_set_inversion(state, p->inversion); if (result < 0) return result; msleep(500); return 0; } static void nxt6000_release(struct dvb_frontend* fe) { struct nxt6000_state* state = fe->demodulator_priv; kfree(state); } static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr) { struct nxt6000_state* state = fe->demodulator_priv; *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8; return 0; } static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber) { struct nxt6000_state* state = fe->demodulator_priv; nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 ); *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) | nxt6000_readreg( state, VIT_BER_0 ); nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts return 0; } static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength) { struct nxt6000_state* state = fe->demodulator_priv; *signal_strength = (short) (511 - (nxt6000_readreg(state, AGC_GAIN_1) + ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8))); return 0; } static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 500; return 0; } static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) { struct nxt6000_state* state = fe->demodulator_priv; if (enable) { return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01); } else { return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00); } } static const struct dvb_frontend_ops nxt6000_ops; struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config, struct i2c_adapter* i2c) { struct nxt6000_state* state = NULL; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; /* check if the demod is there */ if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } static const struct dvb_frontend_ops nxt6000_ops = { .delsys = { SYS_DVBT }, .info = { .name = "NxtWave NXT6000 DVB-T", .frequency_min_hz = 0, .frequency_max_hz = 863250 * kHz, .frequency_stepsize_hz = 62500, /*.frequency_tolerance = *//* FIXME: 12% of SR */ .symbol_rate_min = 0, /* FIXME */ .symbol_rate_max = 9360000, /* FIXME */ .symbol_rate_tolerance = 4000, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, }, .release = nxt6000_release, .init = nxt6000_init, .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl, .get_tune_settings = nxt6000_fe_get_tune_settings, .set_frontend = nxt6000_set_frontend, .read_status = nxt6000_read_status, .read_ber = nxt6000_read_ber, .read_signal_strength = nxt6000_read_signal_strength, .read_snr = nxt6000_read_snr, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver"); MODULE_AUTHOR("Florian Schirmer"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(nxt6000_attach);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1