Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hans Verkuil | 3307 | 51.67% | 19 | 44.19% |
Andy Walls | 3061 | 47.83% | 18 | 41.86% |
Joe Perches | 16 | 0.25% | 1 | 2.33% |
Mauro Carvalho Chehab | 9 | 0.14% | 2 | 4.65% |
Laurent Pinchart | 5 | 0.08% | 1 | 2.33% |
Boris Brezillon | 1 | 0.02% | 1 | 2.33% |
Sakari Ailus | 1 | 0.02% | 1 | 2.33% |
Total | 6400 | 43 |
/* * cx18 ADEC audio functions * * Derived from cx25840-core.c * * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl> * Copyright (C) 2008 Andy Walls <awalls@md.metrocast.net> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "cx18-driver.h" #include "cx18-io.h" #include "cx18-cards.h" int cx18_av_write(struct cx18 *cx, u16 addr, u8 value) { u32 reg = 0xc40000 + (addr & ~3); u32 mask = 0xff; int shift = (addr & 3) * 8; u32 x = cx18_read_reg(cx, reg); x = (x & ~(mask << shift)) | ((u32)value << shift); cx18_write_reg(cx, x, reg); return 0; } int cx18_av_write_expect(struct cx18 *cx, u16 addr, u8 value, u8 eval, u8 mask) { u32 reg = 0xc40000 + (addr & ~3); int shift = (addr & 3) * 8; u32 x = cx18_read_reg(cx, reg); x = (x & ~((u32)0xff << shift)) | ((u32)value << shift); cx18_write_reg_expect(cx, x, reg, ((u32)eval << shift), ((u32)mask << shift)); return 0; } int cx18_av_write4(struct cx18 *cx, u16 addr, u32 value) { cx18_write_reg(cx, value, 0xc40000 + addr); return 0; } int cx18_av_write4_expect(struct cx18 *cx, u16 addr, u32 value, u32 eval, u32 mask) { cx18_write_reg_expect(cx, value, 0xc40000 + addr, eval, mask); return 0; } int cx18_av_write4_noretry(struct cx18 *cx, u16 addr, u32 value) { cx18_write_reg_noretry(cx, value, 0xc40000 + addr); return 0; } u8 cx18_av_read(struct cx18 *cx, u16 addr) { u32 x = cx18_read_reg(cx, 0xc40000 + (addr & ~3)); int shift = (addr & 3) * 8; return (x >> shift) & 0xff; } u32 cx18_av_read4(struct cx18 *cx, u16 addr) { return cx18_read_reg(cx, 0xc40000 + addr); } int cx18_av_and_or(struct cx18 *cx, u16 addr, unsigned and_mask, u8 or_value) { return cx18_av_write(cx, addr, (cx18_av_read(cx, addr) & and_mask) | or_value); } int cx18_av_and_or4(struct cx18 *cx, u16 addr, u32 and_mask, u32 or_value) { return cx18_av_write4(cx, addr, (cx18_av_read4(cx, addr) & and_mask) | or_value); } static void cx18_av_init(struct cx18 *cx) { /* * The crystal freq used in calculations in this driver will be * 28.636360 MHz. * Aim to run the PLLs' VCOs near 400 MHz to minimze errors. */ /* * VDCLK Integer = 0x0f, Post Divider = 0x04 * AIMCLK Integer = 0x0e, Post Divider = 0x16 */ cx18_av_write4(cx, CXADEC_PLL_CTRL1, 0x160e040f); /* VDCLK Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz before post divide */ cx18_av_write4(cx, CXADEC_VID_PLL_FRAC, 0x002be2fe); /* AIMCLK Fraction = 0x05227ad */ /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz pre post-div*/ cx18_av_write4(cx, CXADEC_AUX_PLL_FRAC, 0x005227ad); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */ cx18_av_write(cx, CXADEC_I2S_MCLK, 0x56); } static void cx18_av_initialize(struct v4l2_subdev *sd) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); int default_volume; u32 v; cx18_av_loadfw(cx); /* Stop 8051 code execution */ cx18_av_write4_expect(cx, CXADEC_DL_CTL, 0x03000000, 0x03000000, 0x13000000); /* initallize the PLL by toggling sleep bit */ v = cx18_av_read4(cx, CXADEC_HOST_REG1); /* enable sleep mode - register appears to be read only... */ cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v | 1, v, 0xfffe); /* disable sleep mode */ cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v & 0xfffe, v & 0xfffe, 0xffff); /* initialize DLLs */ v = cx18_av_read4(cx, CXADEC_DLL1_DIAG_CTRL) & 0xE1FFFEFF; /* disable FLD */ cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v); /* enable FLD */ cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v | 0x10000100); v = cx18_av_read4(cx, CXADEC_DLL2_DIAG_CTRL) & 0xE1FFFEFF; /* disable FLD */ cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v); /* enable FLD */ cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v | 0x06000100); /* set analog bias currents. Set Vreg to 1.20V. */ cx18_av_write4(cx, CXADEC_AFE_DIAG_CTRL1, 0x000A1802); v = cx18_av_read4(cx, CXADEC_AFE_DIAG_CTRL3) | 1; /* enable TUNE_FIL_RST */ cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, v, v, 0x03009F0F); /* disable TUNE_FIL_RST */ cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, v & 0xFFFFFFFE, v & 0xFFFFFFFE, 0x03009F0F); /* enable 656 output */ cx18_av_and_or4(cx, CXADEC_PIN_CTRL1, ~0, 0x040C00); /* video output drive strength */ cx18_av_and_or4(cx, CXADEC_PIN_CTRL2, ~0, 0x2); /* reset video */ cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0x8000); cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0); /* * Disable Video Auto-config of the Analog Front End and Video PLL. * * Since we only use BT.656 pixel mode, which works for both 525 and 625 * line systems, it's just easier for us to set registers * 0x102 (CXADEC_CHIP_CTRL), 0x104-0x106 (CXADEC_AFE_CTRL), * 0x108-0x109 (CXADEC_PLL_CTRL1), and 0x10c-0x10f (CXADEC_VID_PLL_FRAC) * ourselves, than to run around cleaning up after the auto-config. * * (Note: my CX23418 chip doesn't seem to let the ACFG_DIS bit * get set to 1, but OTOH, it doesn't seem to do AFE and VID PLL * autoconfig either.) * * As a default, also turn off Dual mode for ADC2 and set ADC2 to CH3. */ cx18_av_and_or4(cx, CXADEC_CHIP_CTRL, 0xFFFBFFFF, 0x00120000); /* Setup the Video and and Aux/Audio PLLs */ cx18_av_init(cx); /* set video to auto-detect */ /* Clear bits 11-12 to enable slow locking mode. Set autodetect mode */ /* set the comb notch = 1 */ cx18_av_and_or4(cx, CXADEC_MODE_CTRL, 0xFFF7E7F0, 0x02040800); /* Enable wtw_en in CRUSH_CTRL (Set bit 22) */ /* Enable maj_sel in CRUSH_CTRL (Set bit 20) */ cx18_av_and_or4(cx, CXADEC_CRUSH_CTRL, ~0, 0x00500000); /* Set VGA_TRACK_RANGE to 0x20 */ cx18_av_and_or4(cx, CXADEC_DFE_CTRL2, 0xFFFF00FF, 0x00002000); /* * Initial VBI setup * VIP-1.1, 10 bit mode, enable Raw, disable sliced, * don't clamp raw samples when codes are in use, 1 byte user D-words, * IDID0 has line #, RP code V bit transition on VBLANK, data during * blanking intervals */ cx18_av_write4(cx, CXADEC_OUT_CTRL1, 0x4013252e); /* Set the video input. The setting in MODE_CTRL gets lost when we do the above setup */ /* EncSetSignalStd(dwDevNum, pEnc->dwSigStd); */ /* EncSetVideoInput(dwDevNum, pEnc->VidIndSelection); */ /* * Analog Front End (AFE) * Default to luma on ch1/ADC1, chroma on ch2/ADC2, SIF on ch3/ADC2 * bypass_ch[1-3] use filter * droop_comp_ch[1-3] disable * clamp_en_ch[1-3] disable * aud_in_sel ADC2 * luma_in_sel ADC1 * chroma_in_sel ADC2 * clamp_sel_ch[2-3] midcode * clamp_sel_ch1 video decoder * vga_sel_ch3 audio decoder * vga_sel_ch[1-2] video decoder * half_bw_ch[1-3] disable * +12db_ch[1-3] disable */ cx18_av_and_or4(cx, CXADEC_AFE_CTRL, 0xFF000000, 0x00005D00); /* if(dwEnable && dw3DCombAvailable) { */ /* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x7728021F); */ /* } else { */ /* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x6628021F); */ /* } */ cx18_av_write4(cx, CXADEC_SRC_COMB_CFG, 0x6628021F); default_volume = cx18_av_read(cx, 0x8d4); /* * Enforce the legacy volume scale mapping limits to avoid * -ERANGE errors when initializing the volume control */ if (default_volume > 228) { /* Bottom out at -96 dB, v4l2 vol range 0x2e00-0x2fff */ default_volume = 228; cx18_av_write(cx, 0x8d4, 228); } else if (default_volume < 20) { /* Top out at + 8 dB, v4l2 vol range 0xfe00-0xffff */ default_volume = 20; cx18_av_write(cx, 0x8d4, 20); } default_volume = (((228 - default_volume) >> 1) + 23) << 9; state->volume->cur.val = state->volume->default_value = default_volume; v4l2_ctrl_handler_setup(&state->hdl); } static int cx18_av_reset(struct v4l2_subdev *sd, u32 val) { cx18_av_initialize(sd); return 0; } static int cx18_av_load_fw(struct v4l2_subdev *sd) { struct cx18_av_state *state = to_cx18_av_state(sd); if (!state->is_initialized) { /* initialize on first use */ state->is_initialized = 1; cx18_av_initialize(sd); } return 0; } void cx18_av_std_setup(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd = &state->sd; v4l2_std_id std = state->std; /* * Video ADC crystal clock to pixel clock SRC decimation ratio * 28.636360 MHz/13.5 Mpps * 256 = 0x21f.07b */ const int src_decimation = 0x21f; int hblank, hactive, burst, vblank, vactive, sc; int vblank656; int luma_lpf, uv_lpf, comb; u32 pll_int, pll_frac, pll_post; /* datasheet startup, step 8d */ if (std & ~V4L2_STD_NTSC) cx18_av_write(cx, 0x49f, 0x11); else cx18_av_write(cx, 0x49f, 0x14); /* * Note: At the end of a field, there are 3 sets of half line duration * (double horizontal rate) pulses: * * 5 (625) or 6 (525) half-lines to blank for the vertical retrace * 5 (625) or 6 (525) vertical sync pulses of half line duration * 5 (625) or 6 (525) half-lines of equalization pulses */ if (std & V4L2_STD_625_50) { /* * The following relationships of half line counts should hold: * 625 = vblank656 + vactive * 10 = vblank656 - vblank = vsync pulses + equalization pulses * * vblank656: half lines after line 625/mid-313 of blanked video * vblank: half lines, after line 5/317, of blanked video * vactive: half lines of active video + * 5 half lines after the end of active video * * As far as I can tell: * vblank656 starts counting from the falling edge of the first * vsync pulse (start of line 1 or mid-313) * vblank starts counting from the after the 5 vsync pulses and * 5 or 4 equalization pulses (start of line 6 or 318) * * For 625 line systems the driver will extract VBI information * from lines 6-23 and lines 318-335 (but the slicer can only * handle 17 lines, not the 18 in the vblank region). * In addition, we need vblank656 and vblank to be one whole * line longer, to cover line 24 and 336, so the SAV/EAV RP * codes get generated such that the encoder can actually * extract line 23 & 335 (WSS). We'll lose 1 line in each field * at the top of the screen. * * It appears the 5 half lines that happen after active * video must be included in vactive (579 instead of 574), * otherwise the colors get badly displayed in various regions * of the screen. I guess the chroma comb filter gets confused * without them (at least when a PVR-350 is the PAL source). */ vblank656 = 48; /* lines 1 - 24 & 313 - 336 */ vblank = 38; /* lines 6 - 24 & 318 - 336 */ vactive = 579; /* lines 24 - 313 & 337 - 626 */ /* * For a 13.5 Mpps clock and 15,625 Hz line rate, a line is * is 864 pixels = 720 active + 144 blanking. ITU-R BT.601 * specifies 12 luma clock periods or ~ 0.9 * 13.5 Mpps after * the end of active video to start a horizontal line, so that * leaves 132 pixels of hblank to ignore. */ hblank = 132; hactive = 720; /* * Burst gate delay (for 625 line systems) * Hsync leading edge to color burst rise = 5.6 us * Color burst width = 2.25 us * Gate width = 4 pixel clocks * (5.6 us + 2.25/2 us) * 13.5 Mpps + 4/2 clocks = 92.79 clocks */ burst = 93; luma_lpf = 2; if (std & V4L2_STD_PAL) { uv_lpf = 1; comb = 0x20; /* sc = 4433618.75 * src_decimation/28636360 * 2^13 */ sc = 688700; } else if (std == V4L2_STD_PAL_Nc) { uv_lpf = 1; comb = 0x20; /* sc = 3582056.25 * src_decimation/28636360 * 2^13 */ sc = 556422; } else { /* SECAM */ uv_lpf = 0; comb = 0; /* (fr + fb)/2 = (4406260 + 4250000)/2 = 4328130 */ /* sc = 4328130 * src_decimation/28636360 * 2^13 */ sc = 672314; } } else { /* * The following relationships of half line counts should hold: * 525 = prevsync + vblank656 + vactive * 12 = vblank656 - vblank = vsync pulses + equalization pulses * * prevsync: 6 half-lines before the vsync pulses * vblank656: half lines, after line 3/mid-266, of blanked video * vblank: half lines, after line 9/272, of blanked video * vactive: half lines of active video * * As far as I can tell: * vblank656 starts counting from the falling edge of the first * vsync pulse (start of line 4 or mid-266) * vblank starts counting from the after the 6 vsync pulses and * 6 or 5 equalization pulses (start of line 10 or 272) * * For 525 line systems the driver will extract VBI information * from lines 10-21 and lines 273-284. */ vblank656 = 38; /* lines 4 - 22 & 266 - 284 */ vblank = 26; /* lines 10 - 22 & 272 - 284 */ vactive = 481; /* lines 23 - 263 & 285 - 525 */ /* * For a 13.5 Mpps clock and 15,734.26 Hz line rate, a line is * is 858 pixels = 720 active + 138 blanking. The Hsync leading * edge should happen 1.2 us * 13.5 Mpps ~= 16 pixels after the * end of active video, leaving 122 pixels of hblank to ignore * before active video starts. */ hactive = 720; hblank = 122; luma_lpf = 1; uv_lpf = 1; /* * Burst gate delay (for 525 line systems) * Hsync leading edge to color burst rise = 5.3 us * Color burst width = 2.5 us * Gate width = 4 pixel clocks * (5.3 us + 2.5/2 us) * 13.5 Mpps + 4/2 clocks = 90.425 clocks */ if (std == V4L2_STD_PAL_60) { burst = 90; luma_lpf = 2; comb = 0x20; /* sc = 4433618.75 * src_decimation/28636360 * 2^13 */ sc = 688700; } else if (std == V4L2_STD_PAL_M) { /* The 97 needs to be verified against PAL-M timings */ burst = 97; comb = 0x20; /* sc = 3575611.49 * src_decimation/28636360 * 2^13 */ sc = 555421; } else { burst = 90; comb = 0x66; /* sc = 3579545.45.. * src_decimation/28636360 * 2^13 */ sc = 556032; } } /* DEBUG: Displays configured PLL frequency */ pll_int = cx18_av_read(cx, 0x108); pll_frac = cx18_av_read4(cx, 0x10c) & 0x1ffffff; pll_post = cx18_av_read(cx, 0x109); CX18_DEBUG_INFO_DEV(sd, "PLL regs = int: %u, frac: %u, post: %u\n", pll_int, pll_frac, pll_post); if (pll_post) { int fsc, pll; u64 tmp; pll = (28636360L * ((((u64)pll_int) << 25) + pll_frac)) >> 25; pll /= pll_post; CX18_DEBUG_INFO_DEV(sd, "Video PLL = %d.%06d MHz\n", pll / 1000000, pll % 1000000); CX18_DEBUG_INFO_DEV(sd, "Pixel rate = %d.%06d Mpixel/sec\n", pll / 8000000, (pll / 8) % 1000000); CX18_DEBUG_INFO_DEV(sd, "ADC XTAL/pixel clock decimation ratio = %d.%03d\n", src_decimation / 256, ((src_decimation % 256) * 1000) / 256); tmp = 28636360 * (u64) sc; do_div(tmp, src_decimation); fsc = tmp >> 13; CX18_DEBUG_INFO_DEV(sd, "Chroma sub-carrier initial freq = %d.%06d MHz\n", fsc / 1000000, fsc % 1000000); CX18_DEBUG_INFO_DEV(sd, "hblank %i, hactive %i, vblank %i, vactive %i, vblank656 %i, src_dec %i, burst 0x%02x, luma_lpf %i, uv_lpf %i, comb 0x%02x, sc 0x%06x\n", hblank, hactive, vblank, vactive, vblank656, src_decimation, burst, luma_lpf, uv_lpf, comb, sc); } /* Sets horizontal blanking delay and active lines */ cx18_av_write(cx, 0x470, hblank); cx18_av_write(cx, 0x471, (((hblank >> 8) & 0x3) | (hactive << 4)) & 0xff); cx18_av_write(cx, 0x472, hactive >> 4); /* Sets burst gate delay */ cx18_av_write(cx, 0x473, burst); /* Sets vertical blanking delay and active duration */ cx18_av_write(cx, 0x474, vblank); cx18_av_write(cx, 0x475, (((vblank >> 8) & 0x3) | (vactive << 4)) & 0xff); cx18_av_write(cx, 0x476, vactive >> 4); cx18_av_write(cx, 0x477, vblank656); /* Sets src decimation rate */ cx18_av_write(cx, 0x478, src_decimation & 0xff); cx18_av_write(cx, 0x479, (src_decimation >> 8) & 0xff); /* Sets Luma and UV Low pass filters */ cx18_av_write(cx, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30)); /* Enables comb filters */ cx18_av_write(cx, 0x47b, comb); /* Sets SC Step*/ cx18_av_write(cx, 0x47c, sc); cx18_av_write(cx, 0x47d, (sc >> 8) & 0xff); cx18_av_write(cx, 0x47e, (sc >> 16) & 0xff); if (std & V4L2_STD_625_50) { state->slicer_line_delay = 1; state->slicer_line_offset = (6 + state->slicer_line_delay - 2); } else { state->slicer_line_delay = 0; state->slicer_line_offset = (10 + state->slicer_line_delay - 2); } cx18_av_write(cx, 0x47f, state->slicer_line_delay); } static void input_change(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; v4l2_std_id std = state->std; u8 v; /* Follow step 8c and 8d of section 3.16 in the cx18_av datasheet */ cx18_av_write(cx, 0x49f, (std & V4L2_STD_NTSC) ? 0x14 : 0x11); cx18_av_and_or(cx, 0x401, ~0x60, 0); cx18_av_and_or(cx, 0x401, ~0x60, 0x60); if (std & V4L2_STD_525_60) { if (std == V4L2_STD_NTSC_M_JP) { /* Japan uses EIAJ audio standard */ cx18_av_write_expect(cx, 0x808, 0xf7, 0xf7, 0xff); cx18_av_write_expect(cx, 0x80b, 0x02, 0x02, 0x3f); } else if (std == V4L2_STD_NTSC_M_KR) { /* South Korea uses A2 audio standard */ cx18_av_write_expect(cx, 0x808, 0xf8, 0xf8, 0xff); cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f); } else { /* Others use the BTSC audio standard */ cx18_av_write_expect(cx, 0x808, 0xf6, 0xf6, 0xff); cx18_av_write_expect(cx, 0x80b, 0x01, 0x01, 0x3f); } } else if (std & V4L2_STD_PAL) { /* Follow tuner change procedure for PAL */ cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff); cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f); } else if (std & V4L2_STD_SECAM) { /* Select autodetect for SECAM */ cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff); cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f); } v = cx18_av_read(cx, 0x803); if (v & 0x10) { /* restart audio decoder microcontroller */ v &= ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); v |= 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } static int cx18_av_s_frequency(struct v4l2_subdev *sd, const struct v4l2_frequency *freq) { struct cx18 *cx = v4l2_get_subdevdata(sd); input_change(cx); return 0; } static int set_input(struct cx18 *cx, enum cx18_av_video_input vid_input, enum cx18_av_audio_input aud_input) { struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd = &state->sd; enum analog_signal_type { NONE, CVBS, Y, C, SIF, Pb, Pr } ch[3] = {NONE, NONE, NONE}; u8 afe_mux_cfg; u8 adc2_cfg; u8 input_mode; u32 afe_cfg; int i; CX18_DEBUG_INFO_DEV(sd, "decoder set video input %d, audio input %d\n", vid_input, aud_input); if (vid_input >= CX18_AV_COMPOSITE1 && vid_input <= CX18_AV_COMPOSITE8) { afe_mux_cfg = 0xf0 + (vid_input - CX18_AV_COMPOSITE1); ch[0] = CVBS; input_mode = 0x0; } else if (vid_input >= CX18_AV_COMPONENT_LUMA1) { int luma = vid_input & 0xf000; int r_chroma = vid_input & 0xf0000; int b_chroma = vid_input & 0xf00000; if ((vid_input & ~0xfff000) || luma < CX18_AV_COMPONENT_LUMA1 || luma > CX18_AV_COMPONENT_LUMA8 || r_chroma < CX18_AV_COMPONENT_R_CHROMA4 || r_chroma > CX18_AV_COMPONENT_R_CHROMA6 || b_chroma < CX18_AV_COMPONENT_B_CHROMA7 || b_chroma > CX18_AV_COMPONENT_B_CHROMA8) { CX18_ERR_DEV(sd, "0x%06x is not a valid video input!\n", vid_input); return -EINVAL; } afe_mux_cfg = (luma - CX18_AV_COMPONENT_LUMA1) >> 12; ch[0] = Y; afe_mux_cfg |= (r_chroma - CX18_AV_COMPONENT_R_CHROMA4) >> 12; ch[1] = Pr; afe_mux_cfg |= (b_chroma - CX18_AV_COMPONENT_B_CHROMA7) >> 14; ch[2] = Pb; input_mode = 0x6; } else { int luma = vid_input & 0xf0; int chroma = vid_input & 0xf00; if ((vid_input & ~0xff0) || luma < CX18_AV_SVIDEO_LUMA1 || luma > CX18_AV_SVIDEO_LUMA8 || chroma < CX18_AV_SVIDEO_CHROMA4 || chroma > CX18_AV_SVIDEO_CHROMA8) { CX18_ERR_DEV(sd, "0x%06x is not a valid video input!\n", vid_input); return -EINVAL; } afe_mux_cfg = 0xf0 + ((luma - CX18_AV_SVIDEO_LUMA1) >> 4); ch[0] = Y; if (chroma >= CX18_AV_SVIDEO_CHROMA7) { afe_mux_cfg &= 0x3f; afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA7) >> 2; ch[2] = C; } else { afe_mux_cfg &= 0xcf; afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA4) >> 4; ch[1] = C; } input_mode = 0x2; } switch (aud_input) { case CX18_AV_AUDIO_SERIAL1: case CX18_AV_AUDIO_SERIAL2: /* do nothing, use serial audio input */ break; case CX18_AV_AUDIO4: afe_mux_cfg &= ~0x30; ch[1] = SIF; break; case CX18_AV_AUDIO5: afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x10; ch[1] = SIF; break; case CX18_AV_AUDIO6: afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x20; ch[1] = SIF; break; case CX18_AV_AUDIO7: afe_mux_cfg &= ~0xc0; ch[2] = SIF; break; case CX18_AV_AUDIO8: afe_mux_cfg = (afe_mux_cfg & ~0xc0) | 0x40; ch[2] = SIF; break; default: CX18_ERR_DEV(sd, "0x%04x is not a valid audio input!\n", aud_input); return -EINVAL; } /* Set up analog front end multiplexers */ cx18_av_write_expect(cx, 0x103, afe_mux_cfg, afe_mux_cfg, 0xf7); /* Set INPUT_MODE to Composite, S-Video, or Component */ cx18_av_and_or(cx, 0x401, ~0x6, input_mode); /* Set CH_SEL_ADC2 to 1 if input comes from CH3 */ adc2_cfg = cx18_av_read(cx, 0x102); if (ch[2] == NONE) adc2_cfg &= ~0x2; /* No sig on CH3, set ADC2 to CH2 for input */ else adc2_cfg |= 0x2; /* Signal on CH3, set ADC2 to CH3 for input */ /* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2 and CH3 */ if (ch[1] != NONE && ch[2] != NONE) adc2_cfg |= 0x4; /* Set dual mode */ else adc2_cfg &= ~0x4; /* Clear dual mode */ cx18_av_write_expect(cx, 0x102, adc2_cfg, adc2_cfg, 0x17); /* Configure the analog front end */ afe_cfg = cx18_av_read4(cx, CXADEC_AFE_CTRL); afe_cfg &= 0xff000000; afe_cfg |= 0x00005000; /* CHROMA_IN, AUD_IN: ADC2; LUMA_IN: ADC1 */ if (ch[1] != NONE && ch[2] != NONE) afe_cfg |= 0x00000030; /* half_bw_ch[2-3] since in dual mode */ for (i = 0; i < 3; i++) { switch (ch[i]) { default: case NONE: /* CLAMP_SEL = Fixed to midcode clamp level */ afe_cfg |= (0x00000200 << i); break; case CVBS: case Y: if (i > 0) afe_cfg |= 0x00002000; /* LUMA_IN_SEL: ADC2 */ break; case C: case Pb: case Pr: /* CLAMP_SEL = Fixed to midcode clamp level */ afe_cfg |= (0x00000200 << i); if (i == 0 && ch[i] == C) afe_cfg &= ~0x00001000; /* CHROMA_IN_SEL ADC1 */ break; case SIF: /* * VGA_GAIN_SEL = Audio Decoder * CLAMP_SEL = Fixed to midcode clamp level */ afe_cfg |= (0x00000240 << i); if (i == 0) afe_cfg &= ~0x00004000; /* AUD_IN_SEL ADC1 */ break; } } cx18_av_write4(cx, CXADEC_AFE_CTRL, afe_cfg); state->vid_input = vid_input; state->aud_input = aud_input; cx18_av_audio_set_path(cx); input_change(cx); return 0; } static int cx18_av_s_video_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); return set_input(cx, input, state->aud_input); } static int cx18_av_s_audio_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); return set_input(cx, state->vid_input, input); } static int cx18_av_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); u8 vpres; u8 mode; int val = 0; if (state->radio) return 0; vpres = cx18_av_read(cx, 0x40e) & 0x20; vt->signal = vpres ? 0xffff : 0x0; vt->capability |= V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 | V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP; mode = cx18_av_read(cx, 0x804); /* get rxsubchans and audmode */ if ((mode & 0xf) == 1) val |= V4L2_TUNER_SUB_STEREO; else val |= V4L2_TUNER_SUB_MONO; if (mode == 2 || mode == 4) val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2; if (mode & 0x10) val |= V4L2_TUNER_SUB_SAP; vt->rxsubchans = val; vt->audmode = state->audmode; return 0; } static int cx18_av_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *vt) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); u8 v; if (state->radio) return 0; v = cx18_av_read(cx, 0x809); v &= ~0xf; switch (vt->audmode) { case V4L2_TUNER_MODE_MONO: /* mono -> mono stereo -> mono bilingual -> lang1 */ break; case V4L2_TUNER_MODE_STEREO: case V4L2_TUNER_MODE_LANG1: /* mono -> mono stereo -> stereo bilingual -> lang1 */ v |= 0x4; break; case V4L2_TUNER_MODE_LANG1_LANG2: /* mono -> mono stereo -> stereo bilingual -> lang1/lang2 */ v |= 0x7; break; case V4L2_TUNER_MODE_LANG2: /* mono -> mono stereo -> stereo bilingual -> lang2 */ v |= 0x1; break; default: return -EINVAL; } cx18_av_write_expect(cx, 0x809, v, v, 0xff); state->audmode = vt->audmode; return 0; } static int cx18_av_s_std(struct v4l2_subdev *sd, v4l2_std_id norm) { struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); u8 fmt = 0; /* zero is autodetect */ u8 pal_m = 0; if (state->radio == 0 && state->std == norm) return 0; state->radio = 0; state->std = norm; /* First tests should be against specific std */ if (state->std == V4L2_STD_NTSC_M_JP) { fmt = 0x2; } else if (state->std == V4L2_STD_NTSC_443) { fmt = 0x3; } else if (state->std == V4L2_STD_PAL_M) { pal_m = 1; fmt = 0x5; } else if (state->std == V4L2_STD_PAL_N) { fmt = 0x6; } else if (state->std == V4L2_STD_PAL_Nc) { fmt = 0x7; } else if (state->std == V4L2_STD_PAL_60) { fmt = 0x8; } else { /* Then, test against generic ones */ if (state->std & V4L2_STD_NTSC) fmt = 0x1; else if (state->std & V4L2_STD_PAL) fmt = 0x4; else if (state->std & V4L2_STD_SECAM) fmt = 0xc; } CX18_DEBUG_INFO_DEV(sd, "changing video std to fmt %i\n", fmt); /* Follow step 9 of section 3.16 in the cx18_av datasheet. Without this PAL may display a vertical ghosting effect. This happens for example with the Yuan MPC622. */ if (fmt >= 4 && fmt < 8) { /* Set format to NTSC-M */ cx18_av_and_or(cx, 0x400, ~0xf, 1); /* Turn off LCOMB */ cx18_av_and_or(cx, 0x47b, ~6, 0); } cx18_av_and_or(cx, 0x400, ~0x2f, fmt | 0x20); cx18_av_and_or(cx, 0x403, ~0x3, pal_m); cx18_av_std_setup(cx); input_change(cx); return 0; } static int cx18_av_s_radio(struct v4l2_subdev *sd) { struct cx18_av_state *state = to_cx18_av_state(sd); state->radio = 1; return 0; } static int cx18_av_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct cx18 *cx = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: cx18_av_write(cx, 0x414, ctrl->val - 128); break; case V4L2_CID_CONTRAST: cx18_av_write(cx, 0x415, ctrl->val << 1); break; case V4L2_CID_SATURATION: cx18_av_write(cx, 0x420, ctrl->val << 1); cx18_av_write(cx, 0x421, ctrl->val << 1); break; case V4L2_CID_HUE: cx18_av_write(cx, 0x422, ctrl->val); break; default: return -EINVAL; } return 0; } static int cx18_av_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *fmt = &format->format; struct cx18_av_state *state = to_cx18_av_state(sd); struct cx18 *cx = v4l2_get_subdevdata(sd); int HSC, VSC, Vsrc, Hsrc, filter, Vlines; int is_50Hz = !(state->std & V4L2_STD_525_60); if (format->pad || fmt->code != MEDIA_BUS_FMT_FIXED) return -EINVAL; fmt->field = V4L2_FIELD_INTERLACED; fmt->colorspace = V4L2_COLORSPACE_SMPTE170M; Vsrc = (cx18_av_read(cx, 0x476) & 0x3f) << 4; Vsrc |= (cx18_av_read(cx, 0x475) & 0xf0) >> 4; Hsrc = (cx18_av_read(cx, 0x472) & 0x3f) << 4; Hsrc |= (cx18_av_read(cx, 0x471) & 0xf0) >> 4; /* * This adjustment reflects the excess of vactive, set in * cx18_av_std_setup(), above standard values: * * 480 + 1 for 60 Hz systems * 576 + 3 for 50 Hz systems */ Vlines = fmt->height + (is_50Hz ? 3 : 1); /* * Invalid height and width scaling requests are: * 1. width less than 1/16 of the source width * 2. width greater than the source width * 3. height less than 1/8 of the source height * 4. height greater than the source height */ if ((fmt->width * 16 < Hsrc) || (Hsrc < fmt->width) || (Vlines * 8 < Vsrc) || (Vsrc < Vlines)) { CX18_ERR_DEV(sd, "%dx%d is not a valid size!\n", fmt->width, fmt->height); return -ERANGE; } if (format->which == V4L2_SUBDEV_FORMAT_TRY) return 0; HSC = (Hsrc * (1 << 20)) / fmt->width - (1 << 20); VSC = (1 << 16) - (Vsrc * (1 << 9) / Vlines - (1 << 9)); VSC &= 0x1fff; if (fmt->width >= 385) filter = 0; else if (fmt->width > 192) filter = 1; else if (fmt->width > 96) filter = 2; else filter = 3; CX18_DEBUG_INFO_DEV(sd, "decoder set size %dx%d -> scale %ux%u\n", fmt->width, fmt->height, HSC, VSC); /* HSCALE=HSC */ cx18_av_write(cx, 0x418, HSC & 0xff); cx18_av_write(cx, 0x419, (HSC >> 8) & 0xff); cx18_av_write(cx, 0x41a, HSC >> 16); /* VSCALE=VSC */ cx18_av_write(cx, 0x41c, VSC & 0xff); cx18_av_write(cx, 0x41d, VSC >> 8); /* VS_INTRLACE=1 VFILT=filter */ cx18_av_write(cx, 0x41e, 0x8 | filter); return 0; } static int cx18_av_s_stream(struct v4l2_subdev *sd, int enable) { struct cx18 *cx = v4l2_get_subdevdata(sd); CX18_DEBUG_INFO_DEV(sd, "%s output\n", enable ? "enable" : "disable"); if (enable) { cx18_av_write(cx, 0x115, 0x8c); cx18_av_write(cx, 0x116, 0x07); } else { cx18_av_write(cx, 0x115, 0x00); cx18_av_write(cx, 0x116, 0x00); } return 0; } static void log_video_status(struct cx18 *cx) { static const char *const fmt_strs[] = { "0x0", "NTSC-M", "NTSC-J", "NTSC-4.43", "PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60", "0x9", "0xA", "0xB", "SECAM", "0xD", "0xE", "0xF" }; struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd = &state->sd; u8 vidfmt_sel = cx18_av_read(cx, 0x400) & 0xf; u8 gen_stat1 = cx18_av_read(cx, 0x40d); u8 gen_stat2 = cx18_av_read(cx, 0x40e); int vid_input = state->vid_input; CX18_INFO_DEV(sd, "Video signal: %spresent\n", (gen_stat2 & 0x20) ? "" : "not "); CX18_INFO_DEV(sd, "Detected format: %s\n", fmt_strs[gen_stat1 & 0xf]); CX18_INFO_DEV(sd, "Specified standard: %s\n", vidfmt_sel ? fmt_strs[vidfmt_sel] : "automatic detection"); if (vid_input >= CX18_AV_COMPOSITE1 && vid_input <= CX18_AV_COMPOSITE8) { CX18_INFO_DEV(sd, "Specified video input: Composite %d\n", vid_input - CX18_AV_COMPOSITE1 + 1); } else { CX18_INFO_DEV(sd, "Specified video input: S-Video (Luma In%d, Chroma In%d)\n", (vid_input & 0xf0) >> 4, (vid_input & 0xf00) >> 8); } CX18_INFO_DEV(sd, "Specified audioclock freq: %d Hz\n", state->audclk_freq); } static void log_audio_status(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd = &state->sd; u8 download_ctl = cx18_av_read(cx, 0x803); u8 mod_det_stat0 = cx18_av_read(cx, 0x804); u8 mod_det_stat1 = cx18_av_read(cx, 0x805); u8 audio_config = cx18_av_read(cx, 0x808); u8 pref_mode = cx18_av_read(cx, 0x809); u8 afc0 = cx18_av_read(cx, 0x80b); u8 mute_ctl = cx18_av_read(cx, 0x8d3); int aud_input = state->aud_input; char *p; switch (mod_det_stat0) { case 0x00: p = "mono"; break; case 0x01: p = "stereo"; break; case 0x02: p = "dual"; break; case 0x04: p = "tri"; break; case 0x10: p = "mono with SAP"; break; case 0x11: p = "stereo with SAP"; break; case 0x12: p = "dual with SAP"; break; case 0x14: p = "tri with SAP"; break; case 0xfe: p = "forced mode"; break; default: p = "not defined"; break; } CX18_INFO_DEV(sd, "Detected audio mode: %s\n", p); switch (mod_det_stat1) { case 0x00: p = "not defined"; break; case 0x01: p = "EIAJ"; break; case 0x02: p = "A2-M"; break; case 0x03: p = "A2-BG"; break; case 0x04: p = "A2-DK1"; break; case 0x05: p = "A2-DK2"; break; case 0x06: p = "A2-DK3"; break; case 0x07: p = "A1 (6.0 MHz FM Mono)"; break; case 0x08: p = "AM-L"; break; case 0x09: p = "NICAM-BG"; break; case 0x0a: p = "NICAM-DK"; break; case 0x0b: p = "NICAM-I"; break; case 0x0c: p = "NICAM-L"; break; case 0x0d: p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; break; case 0x0e: p = "IF FM Radio"; break; case 0x0f: p = "BTSC"; break; case 0x10: p = "detected chrominance"; break; case 0xfd: p = "unknown audio standard"; break; case 0xfe: p = "forced audio standard"; break; case 0xff: p = "no detected audio standard"; break; default: p = "not defined"; break; } CX18_INFO_DEV(sd, "Detected audio standard: %s\n", p); CX18_INFO_DEV(sd, "Audio muted: %s\n", (mute_ctl & 0x2) ? "yes" : "no"); CX18_INFO_DEV(sd, "Audio microcontroller: %s\n", (download_ctl & 0x10) ? "running" : "stopped"); switch (audio_config >> 4) { case 0x00: p = "undefined"; break; case 0x01: p = "BTSC"; break; case 0x02: p = "EIAJ"; break; case 0x03: p = "A2-M"; break; case 0x04: p = "A2-BG"; break; case 0x05: p = "A2-DK1"; break; case 0x06: p = "A2-DK2"; break; case 0x07: p = "A2-DK3"; break; case 0x08: p = "A1 (6.0 MHz FM Mono)"; break; case 0x09: p = "AM-L"; break; case 0x0a: p = "NICAM-BG"; break; case 0x0b: p = "NICAM-DK"; break; case 0x0c: p = "NICAM-I"; break; case 0x0d: p = "NICAM-L"; break; case 0x0e: p = "FM radio"; break; case 0x0f: p = "automatic detection"; break; default: p = "undefined"; break; } CX18_INFO_DEV(sd, "Configured audio standard: %s\n", p); if ((audio_config >> 4) < 0xF) { switch (audio_config & 0xF) { case 0x00: p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; break; case 0x01: p = "MONO2 (LANGUAGE B)"; break; case 0x02: p = "MONO3 (STEREO forced MONO)"; break; case 0x03: p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; break; case 0x04: p = "STEREO"; break; case 0x05: p = "DUAL1 (AC)"; break; case 0x06: p = "DUAL2 (BC)"; break; case 0x07: p = "DUAL3 (AB)"; break; default: p = "undefined"; } CX18_INFO_DEV(sd, "Configured audio mode: %s\n", p); } else { switch (audio_config & 0xF) { case 0x00: p = "BG"; break; case 0x01: p = "DK1"; break; case 0x02: p = "DK2"; break; case 0x03: p = "DK3"; break; case 0x04: p = "I"; break; case 0x05: p = "L"; break; case 0x06: p = "BTSC"; break; case 0x07: p = "EIAJ"; break; case 0x08: p = "A2-M"; break; case 0x09: p = "FM Radio (4.5 MHz)"; break; case 0x0a: p = "FM Radio (5.5 MHz)"; break; case 0x0b: p = "S-Video"; break; case 0x0f: p = "automatic standard and mode detection"; break; default: p = "undefined"; break; } CX18_INFO_DEV(sd, "Configured audio system: %s\n", p); } if (aud_input) CX18_INFO_DEV(sd, "Specified audio input: Tuner (In%d)\n", aud_input); else CX18_INFO_DEV(sd, "Specified audio input: External\n"); switch (pref_mode & 0xf) { case 0: p = "mono/language A"; break; case 1: p = "language B"; break; case 2: p = "language C"; break; case 3: p = "analog fallback"; break; case 4: p = "stereo"; break; case 5: p = "language AC"; break; case 6: p = "language BC"; break; case 7: p = "language AB"; break; default: p = "undefined"; break; } CX18_INFO_DEV(sd, "Preferred audio mode: %s\n", p); if ((audio_config & 0xf) == 0xf) { switch ((afc0 >> 3) & 0x1) { case 0: p = "system DK"; break; case 1: p = "system L"; break; } CX18_INFO_DEV(sd, "Selected 65 MHz format: %s\n", p); switch (afc0 & 0x7) { case 0: p = "Chroma"; break; case 1: p = "BTSC"; break; case 2: p = "EIAJ"; break; case 3: p = "A2-M"; break; case 4: p = "autodetect"; break; default: p = "undefined"; break; } CX18_INFO_DEV(sd, "Selected 45 MHz format: %s\n", p); } } static int cx18_av_log_status(struct v4l2_subdev *sd) { struct cx18 *cx = v4l2_get_subdevdata(sd); log_video_status(cx); log_audio_status(cx); return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int cx18_av_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct cx18 *cx = v4l2_get_subdevdata(sd); if ((reg->reg & 0x3) != 0) return -EINVAL; reg->size = 4; reg->val = cx18_av_read4(cx, reg->reg & 0x00000ffc); return 0; } static int cx18_av_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { struct cx18 *cx = v4l2_get_subdevdata(sd); if ((reg->reg & 0x3) != 0) return -EINVAL; cx18_av_write4(cx, reg->reg & 0x00000ffc, reg->val); return 0; } #endif static const struct v4l2_ctrl_ops cx18_av_ctrl_ops = { .s_ctrl = cx18_av_s_ctrl, }; static const struct v4l2_subdev_core_ops cx18_av_general_ops = { .log_status = cx18_av_log_status, .load_fw = cx18_av_load_fw, .reset = cx18_av_reset, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = cx18_av_g_register, .s_register = cx18_av_s_register, #endif }; static const struct v4l2_subdev_tuner_ops cx18_av_tuner_ops = { .s_radio = cx18_av_s_radio, .s_frequency = cx18_av_s_frequency, .g_tuner = cx18_av_g_tuner, .s_tuner = cx18_av_s_tuner, }; static const struct v4l2_subdev_audio_ops cx18_av_audio_ops = { .s_clock_freq = cx18_av_s_clock_freq, .s_routing = cx18_av_s_audio_routing, }; static const struct v4l2_subdev_video_ops cx18_av_video_ops = { .s_std = cx18_av_s_std, .s_routing = cx18_av_s_video_routing, .s_stream = cx18_av_s_stream, }; static const struct v4l2_subdev_vbi_ops cx18_av_vbi_ops = { .decode_vbi_line = cx18_av_decode_vbi_line, .g_sliced_fmt = cx18_av_g_sliced_fmt, .s_sliced_fmt = cx18_av_s_sliced_fmt, .s_raw_fmt = cx18_av_s_raw_fmt, }; static const struct v4l2_subdev_pad_ops cx18_av_pad_ops = { .set_fmt = cx18_av_set_fmt, }; static const struct v4l2_subdev_ops cx18_av_ops = { .core = &cx18_av_general_ops, .tuner = &cx18_av_tuner_ops, .audio = &cx18_av_audio_ops, .video = &cx18_av_video_ops, .vbi = &cx18_av_vbi_ops, .pad = &cx18_av_pad_ops, }; int cx18_av_probe(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; struct v4l2_subdev *sd; int err; state->rev = cx18_av_read4(cx, CXADEC_CHIP_CTRL) & 0xffff; state->vid_input = CX18_AV_COMPOSITE7; state->aud_input = CX18_AV_AUDIO8; state->audclk_freq = 48000; state->audmode = V4L2_TUNER_MODE_LANG1; state->slicer_line_delay = 0; state->slicer_line_offset = (10 + state->slicer_line_delay - 2); sd = &state->sd; v4l2_subdev_init(sd, &cx18_av_ops); v4l2_set_subdevdata(sd, cx); snprintf(sd->name, sizeof(sd->name), "%s %03x", cx->v4l2_dev.name, (state->rev >> 4)); sd->grp_id = CX18_HW_418_AV; v4l2_ctrl_handler_init(&state->hdl, 9); v4l2_ctrl_new_std(&state->hdl, &cx18_av_ctrl_ops, V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); v4l2_ctrl_new_std(&state->hdl, &cx18_av_ctrl_ops, V4L2_CID_CONTRAST, 0, 127, 1, 64); v4l2_ctrl_new_std(&state->hdl, &cx18_av_ctrl_ops, V4L2_CID_SATURATION, 0, 127, 1, 64); v4l2_ctrl_new_std(&state->hdl, &cx18_av_ctrl_ops, V4L2_CID_HUE, -128, 127, 1, 0); state->volume = v4l2_ctrl_new_std(&state->hdl, &cx18_av_audio_ctrl_ops, V4L2_CID_AUDIO_VOLUME, 0, 65535, 65535 / 100, 0); v4l2_ctrl_new_std(&state->hdl, &cx18_av_audio_ctrl_ops, V4L2_CID_AUDIO_MUTE, 0, 1, 1, 0); v4l2_ctrl_new_std(&state->hdl, &cx18_av_audio_ctrl_ops, V4L2_CID_AUDIO_BALANCE, 0, 65535, 65535 / 100, 32768); v4l2_ctrl_new_std(&state->hdl, &cx18_av_audio_ctrl_ops, V4L2_CID_AUDIO_BASS, 0, 65535, 65535 / 100, 32768); v4l2_ctrl_new_std(&state->hdl, &cx18_av_audio_ctrl_ops, V4L2_CID_AUDIO_TREBLE, 0, 65535, 65535 / 100, 32768); sd->ctrl_handler = &state->hdl; if (state->hdl.error) { int err = state->hdl.error; v4l2_ctrl_handler_free(&state->hdl); return err; } err = v4l2_device_register_subdev(&cx->v4l2_dev, sd); if (err) v4l2_ctrl_handler_free(&state->hdl); else cx18_av_init(cx); return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1