Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nibble Max | 5767 | 97.86% | 6 | 40.00% |
Olli Salonen | 83 | 1.41% | 4 | 26.67% |
Mauro Carvalho Chehab | 30 | 0.51% | 2 | 13.33% |
Antti Palosaari | 7 | 0.12% | 1 | 6.67% |
Julia Lawall | 4 | 0.07% | 1 | 6.67% |
Hans Verkuil | 2 | 0.03% | 1 | 6.67% |
Total | 5893 | 15 |
/* * SMI PCIe driver for DVBSky cards. * * Copyright (C) 2014 Max nibble <nibble.max@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "smipcie.h" #include "m88ds3103.h" #include "ts2020.h" #include "m88rs6000t.h" #include "si2168.h" #include "si2157.h" DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); static int smi_hw_init(struct smi_dev *dev) { u32 port_mux, port_ctrl, int_stat; /* set port mux.*/ port_mux = smi_read(MUX_MODE_CTRL); port_mux &= ~(rbPaMSMask); port_mux |= rbPaMSDtvNoGpio; port_mux &= ~(rbPbMSMask); port_mux |= rbPbMSDtvNoGpio; port_mux &= ~(0x0f0000); port_mux |= 0x50000; smi_write(MUX_MODE_CTRL, port_mux); /* set DTV register.*/ /* Port A */ port_ctrl = smi_read(VIDEO_CTRL_STATUS_A); port_ctrl &= ~0x01; smi_write(VIDEO_CTRL_STATUS_A, port_ctrl); port_ctrl = smi_read(MPEG2_CTRL_A); port_ctrl &= ~0x40; port_ctrl |= 0x80; smi_write(MPEG2_CTRL_A, port_ctrl); /* Port B */ port_ctrl = smi_read(VIDEO_CTRL_STATUS_B); port_ctrl &= ~0x01; smi_write(VIDEO_CTRL_STATUS_B, port_ctrl); port_ctrl = smi_read(MPEG2_CTRL_B); port_ctrl &= ~0x40; port_ctrl |= 0x80; smi_write(MPEG2_CTRL_B, port_ctrl); /* disable and clear interrupt.*/ smi_write(MSI_INT_ENA_CLR, ALL_INT); int_stat = smi_read(MSI_INT_STATUS); smi_write(MSI_INT_STATUS_CLR, int_stat); /* reset demod.*/ smi_clear(PERIPHERAL_CTRL, 0x0303); msleep(50); smi_set(PERIPHERAL_CTRL, 0x0101); return 0; } /* i2c bit bus.*/ static void smi_i2c_cfg(struct smi_dev *dev, u32 sw_ctl) { u32 dwCtrl; dwCtrl = smi_read(sw_ctl); dwCtrl &= ~0x18; /* disable output.*/ dwCtrl |= 0x21; /* reset and software mode.*/ dwCtrl &= ~0xff00; dwCtrl |= 0x6400; smi_write(sw_ctl, dwCtrl); msleep(20); dwCtrl = smi_read(sw_ctl); dwCtrl &= ~0x20; smi_write(sw_ctl, dwCtrl); } static void smi_i2c_setsda(struct smi_dev *dev, int state, u32 sw_ctl) { if (state) { /* set as input.*/ smi_clear(sw_ctl, SW_I2C_MSK_DAT_EN); } else { smi_clear(sw_ctl, SW_I2C_MSK_DAT_OUT); /* set as output.*/ smi_set(sw_ctl, SW_I2C_MSK_DAT_EN); } } static void smi_i2c_setscl(void *data, int state, u32 sw_ctl) { struct smi_dev *dev = data; if (state) { /* set as input.*/ smi_clear(sw_ctl, SW_I2C_MSK_CLK_EN); } else { smi_clear(sw_ctl, SW_I2C_MSK_CLK_OUT); /* set as output.*/ smi_set(sw_ctl, SW_I2C_MSK_CLK_EN); } } static int smi_i2c_getsda(void *data, u32 sw_ctl) { struct smi_dev *dev = data; /* set as input.*/ smi_clear(sw_ctl, SW_I2C_MSK_DAT_EN); udelay(1); return (smi_read(sw_ctl) & SW_I2C_MSK_DAT_IN) ? 1 : 0; } static int smi_i2c_getscl(void *data, u32 sw_ctl) { struct smi_dev *dev = data; /* set as input.*/ smi_clear(sw_ctl, SW_I2C_MSK_CLK_EN); udelay(1); return (smi_read(sw_ctl) & SW_I2C_MSK_CLK_IN) ? 1 : 0; } /* i2c 0.*/ static void smi_i2c0_setsda(void *data, int state) { struct smi_dev *dev = data; smi_i2c_setsda(dev, state, I2C_A_SW_CTL); } static void smi_i2c0_setscl(void *data, int state) { struct smi_dev *dev = data; smi_i2c_setscl(dev, state, I2C_A_SW_CTL); } static int smi_i2c0_getsda(void *data) { struct smi_dev *dev = data; return smi_i2c_getsda(dev, I2C_A_SW_CTL); } static int smi_i2c0_getscl(void *data) { struct smi_dev *dev = data; return smi_i2c_getscl(dev, I2C_A_SW_CTL); } /* i2c 1.*/ static void smi_i2c1_setsda(void *data, int state) { struct smi_dev *dev = data; smi_i2c_setsda(dev, state, I2C_B_SW_CTL); } static void smi_i2c1_setscl(void *data, int state) { struct smi_dev *dev = data; smi_i2c_setscl(dev, state, I2C_B_SW_CTL); } static int smi_i2c1_getsda(void *data) { struct smi_dev *dev = data; return smi_i2c_getsda(dev, I2C_B_SW_CTL); } static int smi_i2c1_getscl(void *data) { struct smi_dev *dev = data; return smi_i2c_getscl(dev, I2C_B_SW_CTL); } static int smi_i2c_init(struct smi_dev *dev) { int ret; /* i2c bus 0 */ smi_i2c_cfg(dev, I2C_A_SW_CTL); i2c_set_adapdata(&dev->i2c_bus[0], dev); strscpy(dev->i2c_bus[0].name, "SMI-I2C0", sizeof(dev->i2c_bus[0].name)); dev->i2c_bus[0].owner = THIS_MODULE; dev->i2c_bus[0].dev.parent = &dev->pci_dev->dev; dev->i2c_bus[0].algo_data = &dev->i2c_bit[0]; dev->i2c_bit[0].data = dev; dev->i2c_bit[0].setsda = smi_i2c0_setsda; dev->i2c_bit[0].setscl = smi_i2c0_setscl; dev->i2c_bit[0].getsda = smi_i2c0_getsda; dev->i2c_bit[0].getscl = smi_i2c0_getscl; dev->i2c_bit[0].udelay = 12; dev->i2c_bit[0].timeout = 10; /* Raise SCL and SDA */ smi_i2c0_setsda(dev, 1); smi_i2c0_setscl(dev, 1); ret = i2c_bit_add_bus(&dev->i2c_bus[0]); if (ret < 0) return ret; /* i2c bus 1 */ smi_i2c_cfg(dev, I2C_B_SW_CTL); i2c_set_adapdata(&dev->i2c_bus[1], dev); strscpy(dev->i2c_bus[1].name, "SMI-I2C1", sizeof(dev->i2c_bus[1].name)); dev->i2c_bus[1].owner = THIS_MODULE; dev->i2c_bus[1].dev.parent = &dev->pci_dev->dev; dev->i2c_bus[1].algo_data = &dev->i2c_bit[1]; dev->i2c_bit[1].data = dev; dev->i2c_bit[1].setsda = smi_i2c1_setsda; dev->i2c_bit[1].setscl = smi_i2c1_setscl; dev->i2c_bit[1].getsda = smi_i2c1_getsda; dev->i2c_bit[1].getscl = smi_i2c1_getscl; dev->i2c_bit[1].udelay = 12; dev->i2c_bit[1].timeout = 10; /* Raise SCL and SDA */ smi_i2c1_setsda(dev, 1); smi_i2c1_setscl(dev, 1); ret = i2c_bit_add_bus(&dev->i2c_bus[1]); if (ret < 0) i2c_del_adapter(&dev->i2c_bus[0]); return ret; } static void smi_i2c_exit(struct smi_dev *dev) { i2c_del_adapter(&dev->i2c_bus[0]); i2c_del_adapter(&dev->i2c_bus[1]); } static int smi_read_eeprom(struct i2c_adapter *i2c, u16 reg, u8 *data, u16 size) { int ret; u8 b0[2] = { (reg >> 8) & 0xff, reg & 0xff }; struct i2c_msg msg[] = { { .addr = 0x50, .flags = 0, .buf = b0, .len = 2 }, { .addr = 0x50, .flags = I2C_M_RD, .buf = data, .len = size } }; ret = i2c_transfer(i2c, msg, 2); if (ret != 2) { dev_err(&i2c->dev, "%s: reg=0x%x (error=%d)\n", __func__, reg, ret); return ret; } return ret; } /* ts port interrupt operations */ static void smi_port_disableInterrupt(struct smi_port *port) { struct smi_dev *dev = port->dev; smi_write(MSI_INT_ENA_CLR, (port->_dmaInterruptCH0 | port->_dmaInterruptCH1)); } static void smi_port_enableInterrupt(struct smi_port *port) { struct smi_dev *dev = port->dev; smi_write(MSI_INT_ENA_SET, (port->_dmaInterruptCH0 | port->_dmaInterruptCH1)); } static void smi_port_clearInterrupt(struct smi_port *port) { struct smi_dev *dev = port->dev; smi_write(MSI_INT_STATUS_CLR, (port->_dmaInterruptCH0 | port->_dmaInterruptCH1)); } /* tasklet handler: DMA data to dmx.*/ static void smi_dma_xfer(unsigned long data) { struct smi_port *port = (struct smi_port *) data; struct smi_dev *dev = port->dev; u32 intr_status, finishedData, dmaManagement; u8 dmaChan0State, dmaChan1State; intr_status = port->_int_status; dmaManagement = smi_read(port->DMA_MANAGEMENT); dmaChan0State = (u8)((dmaManagement & 0x00000030) >> 4); dmaChan1State = (u8)((dmaManagement & 0x00300000) >> 20); /* CH-0 DMA interrupt.*/ if ((intr_status & port->_dmaInterruptCH0) && (dmaChan0State == 0x01)) { dev_dbg(&dev->pci_dev->dev, "Port[%d]-DMA CH0 engine complete successful !\n", port->idx); finishedData = smi_read(port->DMA_CHAN0_TRANS_STATE); finishedData &= 0x003FFFFF; /* value of DMA_PORT0_CHAN0_TRANS_STATE register [21:0] * indicate dma total transfer length and * zero of [21:0] indicate dma total transfer length * equal to 0x400000 (4MB)*/ if (finishedData == 0) finishedData = 0x00400000; if (finishedData != SMI_TS_DMA_BUF_SIZE) { dev_dbg(&dev->pci_dev->dev, "DMA CH0 engine complete length mismatched, finish data=%d !\n", finishedData); } dvb_dmx_swfilter_packets(&port->demux, port->cpu_addr[0], (finishedData / 188)); /*dvb_dmx_swfilter(&port->demux, port->cpu_addr[0], finishedData);*/ } /* CH-1 DMA interrupt.*/ if ((intr_status & port->_dmaInterruptCH1) && (dmaChan1State == 0x01)) { dev_dbg(&dev->pci_dev->dev, "Port[%d]-DMA CH1 engine complete successful !\n", port->idx); finishedData = smi_read(port->DMA_CHAN1_TRANS_STATE); finishedData &= 0x003FFFFF; /* value of DMA_PORT0_CHAN0_TRANS_STATE register [21:0] * indicate dma total transfer length and * zero of [21:0] indicate dma total transfer length * equal to 0x400000 (4MB)*/ if (finishedData == 0) finishedData = 0x00400000; if (finishedData != SMI_TS_DMA_BUF_SIZE) { dev_dbg(&dev->pci_dev->dev, "DMA CH1 engine complete length mismatched, finish data=%d !\n", finishedData); } dvb_dmx_swfilter_packets(&port->demux, port->cpu_addr[1], (finishedData / 188)); /*dvb_dmx_swfilter(&port->demux, port->cpu_addr[1], finishedData);*/ } /* restart DMA.*/ if (intr_status & port->_dmaInterruptCH0) dmaManagement |= 0x00000002; if (intr_status & port->_dmaInterruptCH1) dmaManagement |= 0x00020000; smi_write(port->DMA_MANAGEMENT, dmaManagement); /* Re-enable interrupts */ smi_port_enableInterrupt(port); } static void smi_port_dma_free(struct smi_port *port) { if (port->cpu_addr[0]) { pci_free_consistent(port->dev->pci_dev, SMI_TS_DMA_BUF_SIZE, port->cpu_addr[0], port->dma_addr[0]); port->cpu_addr[0] = NULL; } if (port->cpu_addr[1]) { pci_free_consistent(port->dev->pci_dev, SMI_TS_DMA_BUF_SIZE, port->cpu_addr[1], port->dma_addr[1]); port->cpu_addr[1] = NULL; } } static int smi_port_init(struct smi_port *port, int dmaChanUsed) { dev_dbg(&port->dev->pci_dev->dev, "%s, port %d, dmaused %d\n", __func__, port->idx, dmaChanUsed); port->enable = 0; if (port->idx == 0) { /* Port A */ port->_dmaInterruptCH0 = dmaChanUsed & 0x01; port->_dmaInterruptCH1 = dmaChanUsed & 0x02; port->DMA_CHAN0_ADDR_LOW = DMA_PORTA_CHAN0_ADDR_LOW; port->DMA_CHAN0_ADDR_HI = DMA_PORTA_CHAN0_ADDR_HI; port->DMA_CHAN0_TRANS_STATE = DMA_PORTA_CHAN0_TRANS_STATE; port->DMA_CHAN0_CONTROL = DMA_PORTA_CHAN0_CONTROL; port->DMA_CHAN1_ADDR_LOW = DMA_PORTA_CHAN1_ADDR_LOW; port->DMA_CHAN1_ADDR_HI = DMA_PORTA_CHAN1_ADDR_HI; port->DMA_CHAN1_TRANS_STATE = DMA_PORTA_CHAN1_TRANS_STATE; port->DMA_CHAN1_CONTROL = DMA_PORTA_CHAN1_CONTROL; port->DMA_MANAGEMENT = DMA_PORTA_MANAGEMENT; } else { /* Port B */ port->_dmaInterruptCH0 = (dmaChanUsed << 2) & 0x04; port->_dmaInterruptCH1 = (dmaChanUsed << 2) & 0x08; port->DMA_CHAN0_ADDR_LOW = DMA_PORTB_CHAN0_ADDR_LOW; port->DMA_CHAN0_ADDR_HI = DMA_PORTB_CHAN0_ADDR_HI; port->DMA_CHAN0_TRANS_STATE = DMA_PORTB_CHAN0_TRANS_STATE; port->DMA_CHAN0_CONTROL = DMA_PORTB_CHAN0_CONTROL; port->DMA_CHAN1_ADDR_LOW = DMA_PORTB_CHAN1_ADDR_LOW; port->DMA_CHAN1_ADDR_HI = DMA_PORTB_CHAN1_ADDR_HI; port->DMA_CHAN1_TRANS_STATE = DMA_PORTB_CHAN1_TRANS_STATE; port->DMA_CHAN1_CONTROL = DMA_PORTB_CHAN1_CONTROL; port->DMA_MANAGEMENT = DMA_PORTB_MANAGEMENT; } if (port->_dmaInterruptCH0) { port->cpu_addr[0] = pci_alloc_consistent(port->dev->pci_dev, SMI_TS_DMA_BUF_SIZE, &port->dma_addr[0]); if (!port->cpu_addr[0]) { dev_err(&port->dev->pci_dev->dev, "Port[%d] DMA CH0 memory allocation failed!\n", port->idx); goto err; } } if (port->_dmaInterruptCH1) { port->cpu_addr[1] = pci_alloc_consistent(port->dev->pci_dev, SMI_TS_DMA_BUF_SIZE, &port->dma_addr[1]); if (!port->cpu_addr[1]) { dev_err(&port->dev->pci_dev->dev, "Port[%d] DMA CH1 memory allocation failed!\n", port->idx); goto err; } } smi_port_disableInterrupt(port); tasklet_init(&port->tasklet, smi_dma_xfer, (unsigned long)port); tasklet_disable(&port->tasklet); port->enable = 1; return 0; err: smi_port_dma_free(port); return -ENOMEM; } static void smi_port_exit(struct smi_port *port) { smi_port_disableInterrupt(port); tasklet_kill(&port->tasklet); smi_port_dma_free(port); port->enable = 0; } static int smi_port_irq(struct smi_port *port, u32 int_status) { u32 port_req_irq = port->_dmaInterruptCH0 | port->_dmaInterruptCH1; int handled = 0; if (int_status & port_req_irq) { smi_port_disableInterrupt(port); port->_int_status = int_status; smi_port_clearInterrupt(port); tasklet_schedule(&port->tasklet); handled = 1; } return handled; } static irqreturn_t smi_irq_handler(int irq, void *dev_id) { struct smi_dev *dev = dev_id; struct smi_port *port0 = &dev->ts_port[0]; struct smi_port *port1 = &dev->ts_port[1]; struct smi_rc *ir = &dev->ir; int handled = 0; u32 intr_status = smi_read(MSI_INT_STATUS); /* ts0 interrupt.*/ if (dev->info->ts_0) handled += smi_port_irq(port0, intr_status); /* ts1 interrupt.*/ if (dev->info->ts_1) handled += smi_port_irq(port1, intr_status); /* ir interrupt.*/ handled += smi_ir_irq(ir, intr_status); return IRQ_RETVAL(handled); } static struct i2c_client *smi_add_i2c_client(struct i2c_adapter *adapter, struct i2c_board_info *info) { struct i2c_client *client; request_module(info->type); client = i2c_new_device(adapter, info); if (client == NULL || client->dev.driver == NULL) goto err_add_i2c_client; if (!try_module_get(client->dev.driver->owner)) { i2c_unregister_device(client); goto err_add_i2c_client; } return client; err_add_i2c_client: client = NULL; return client; } static void smi_del_i2c_client(struct i2c_client *client) { module_put(client->dev.driver->owner); i2c_unregister_device(client); } static const struct m88ds3103_config smi_dvbsky_m88ds3103_cfg = { .i2c_addr = 0x68, .clock = 27000000, .i2c_wr_max = 33, .clock_out = 0, .ts_mode = M88DS3103_TS_PARALLEL, .ts_clk = 16000, .ts_clk_pol = 1, .agc = 0x99, .lnb_hv_pol = 0, .lnb_en_pol = 1, }; static int smi_dvbsky_m88ds3103_fe_attach(struct smi_port *port) { int ret = 0; struct smi_dev *dev = port->dev; struct i2c_adapter *i2c; /* tuner I2C module */ struct i2c_adapter *tuner_i2c_adapter; struct i2c_client *tuner_client; struct i2c_board_info tuner_info; struct ts2020_config ts2020_config = {}; memset(&tuner_info, 0, sizeof(struct i2c_board_info)); i2c = (port->idx == 0) ? &dev->i2c_bus[0] : &dev->i2c_bus[1]; /* attach demod */ port->fe = dvb_attach(m88ds3103_attach, &smi_dvbsky_m88ds3103_cfg, i2c, &tuner_i2c_adapter); if (!port->fe) { ret = -ENODEV; return ret; } /* attach tuner */ ts2020_config.fe = port->fe; strscpy(tuner_info.type, "ts2020", I2C_NAME_SIZE); tuner_info.addr = 0x60; tuner_info.platform_data = &ts2020_config; tuner_client = smi_add_i2c_client(tuner_i2c_adapter, &tuner_info); if (!tuner_client) { ret = -ENODEV; goto err_tuner_i2c_device; } /* delegate signal strength measurement to tuner */ port->fe->ops.read_signal_strength = port->fe->ops.tuner_ops.get_rf_strength; port->i2c_client_tuner = tuner_client; return ret; err_tuner_i2c_device: dvb_frontend_detach(port->fe); return ret; } static const struct m88ds3103_config smi_dvbsky_m88rs6000_cfg = { .i2c_addr = 0x69, .clock = 27000000, .i2c_wr_max = 33, .ts_mode = M88DS3103_TS_PARALLEL, .ts_clk = 16000, .ts_clk_pol = 1, .agc = 0x99, .lnb_hv_pol = 0, .lnb_en_pol = 1, }; static int smi_dvbsky_m88rs6000_fe_attach(struct smi_port *port) { int ret = 0; struct smi_dev *dev = port->dev; struct i2c_adapter *i2c; /* tuner I2C module */ struct i2c_adapter *tuner_i2c_adapter; struct i2c_client *tuner_client; struct i2c_board_info tuner_info; struct m88rs6000t_config m88rs6000t_config; memset(&tuner_info, 0, sizeof(struct i2c_board_info)); i2c = (port->idx == 0) ? &dev->i2c_bus[0] : &dev->i2c_bus[1]; /* attach demod */ port->fe = dvb_attach(m88ds3103_attach, &smi_dvbsky_m88rs6000_cfg, i2c, &tuner_i2c_adapter); if (!port->fe) { ret = -ENODEV; return ret; } /* attach tuner */ m88rs6000t_config.fe = port->fe; strscpy(tuner_info.type, "m88rs6000t", I2C_NAME_SIZE); tuner_info.addr = 0x21; tuner_info.platform_data = &m88rs6000t_config; tuner_client = smi_add_i2c_client(tuner_i2c_adapter, &tuner_info); if (!tuner_client) { ret = -ENODEV; goto err_tuner_i2c_device; } /* delegate signal strength measurement to tuner */ port->fe->ops.read_signal_strength = port->fe->ops.tuner_ops.get_rf_strength; port->i2c_client_tuner = tuner_client; return ret; err_tuner_i2c_device: dvb_frontend_detach(port->fe); return ret; } static int smi_dvbsky_sit2_fe_attach(struct smi_port *port) { int ret = 0; struct smi_dev *dev = port->dev; struct i2c_adapter *i2c; struct i2c_adapter *tuner_i2c_adapter; struct i2c_client *client_tuner, *client_demod; struct i2c_board_info client_info; struct si2168_config si2168_config; struct si2157_config si2157_config; /* select i2c bus */ i2c = (port->idx == 0) ? &dev->i2c_bus[0] : &dev->i2c_bus[1]; /* attach demod */ memset(&si2168_config, 0, sizeof(si2168_config)); si2168_config.i2c_adapter = &tuner_i2c_adapter; si2168_config.fe = &port->fe; si2168_config.ts_mode = SI2168_TS_PARALLEL; memset(&client_info, 0, sizeof(struct i2c_board_info)); strscpy(client_info.type, "si2168", I2C_NAME_SIZE); client_info.addr = 0x64; client_info.platform_data = &si2168_config; client_demod = smi_add_i2c_client(i2c, &client_info); if (!client_demod) { ret = -ENODEV; return ret; } port->i2c_client_demod = client_demod; /* attach tuner */ memset(&si2157_config, 0, sizeof(si2157_config)); si2157_config.fe = port->fe; si2157_config.if_port = 1; memset(&client_info, 0, sizeof(struct i2c_board_info)); strscpy(client_info.type, "si2157", I2C_NAME_SIZE); client_info.addr = 0x60; client_info.platform_data = &si2157_config; client_tuner = smi_add_i2c_client(tuner_i2c_adapter, &client_info); if (!client_tuner) { smi_del_i2c_client(port->i2c_client_demod); port->i2c_client_demod = NULL; ret = -ENODEV; return ret; } port->i2c_client_tuner = client_tuner; return ret; } static int smi_fe_init(struct smi_port *port) { int ret = 0; struct smi_dev *dev = port->dev; struct dvb_adapter *adap = &port->dvb_adapter; u8 mac_ee[16]; dev_dbg(&port->dev->pci_dev->dev, "%s: port %d, fe_type = %d\n", __func__, port->idx, port->fe_type); switch (port->fe_type) { case DVBSKY_FE_M88DS3103: ret = smi_dvbsky_m88ds3103_fe_attach(port); break; case DVBSKY_FE_M88RS6000: ret = smi_dvbsky_m88rs6000_fe_attach(port); break; case DVBSKY_FE_SIT2: ret = smi_dvbsky_sit2_fe_attach(port); break; } if (ret < 0) return ret; /* register dvb frontend */ ret = dvb_register_frontend(adap, port->fe); if (ret < 0) { if (port->i2c_client_tuner) smi_del_i2c_client(port->i2c_client_tuner); if (port->i2c_client_demod) smi_del_i2c_client(port->i2c_client_demod); dvb_frontend_detach(port->fe); return ret; } /* init MAC.*/ ret = smi_read_eeprom(&dev->i2c_bus[0], 0xc0, mac_ee, 16); dev_info(&port->dev->pci_dev->dev, "%s port %d MAC: %pM\n", dev->info->name, port->idx, mac_ee + (port->idx)*8); memcpy(adap->proposed_mac, mac_ee + (port->idx)*8, 6); return ret; } static void smi_fe_exit(struct smi_port *port) { dvb_unregister_frontend(port->fe); /* remove I2C demod and tuner */ if (port->i2c_client_tuner) smi_del_i2c_client(port->i2c_client_tuner); if (port->i2c_client_demod) smi_del_i2c_client(port->i2c_client_demod); dvb_frontend_detach(port->fe); } static int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux, char *id, int (*start_feed)(struct dvb_demux_feed *), int (*stop_feed)(struct dvb_demux_feed *), void *priv) { dvbdemux->priv = priv; dvbdemux->filternum = 256; dvbdemux->feednum = 256; dvbdemux->start_feed = start_feed; dvbdemux->stop_feed = stop_feed; dvbdemux->write_to_decoder = NULL; dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING); return dvb_dmx_init(dvbdemux); } static int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev, struct dvb_demux *dvbdemux, struct dmx_frontend *hw_frontend, struct dmx_frontend *mem_frontend, struct dvb_adapter *dvb_adapter) { int ret; dmxdev->filternum = 256; dmxdev->demux = &dvbdemux->dmx; dmxdev->capabilities = 0; ret = dvb_dmxdev_init(dmxdev, dvb_adapter); if (ret < 0) return ret; hw_frontend->source = DMX_FRONTEND_0; dvbdemux->dmx.add_frontend(&dvbdemux->dmx, hw_frontend); mem_frontend->source = DMX_MEMORY_FE; dvbdemux->dmx.add_frontend(&dvbdemux->dmx, mem_frontend); return dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, hw_frontend); } static u32 smi_config_DMA(struct smi_port *port) { struct smi_dev *dev = port->dev; u32 totalLength = 0, dmaMemPtrLow, dmaMemPtrHi, dmaCtlReg; u8 chanLatencyTimer = 0, dmaChanEnable = 1, dmaTransStart = 1; u32 dmaManagement = 0, tlpTransUnit = DMA_TRANS_UNIT_188; u8 tlpTc = 0, tlpTd = 1, tlpEp = 0, tlpAttr = 0; u64 mem; dmaManagement = smi_read(port->DMA_MANAGEMENT); /* Setup Channel-0 */ if (port->_dmaInterruptCH0) { totalLength = SMI_TS_DMA_BUF_SIZE; mem = port->dma_addr[0]; dmaMemPtrLow = mem & 0xffffffff; dmaMemPtrHi = mem >> 32; dmaCtlReg = (totalLength) | (tlpTransUnit << 22) | (tlpTc << 25) | (tlpTd << 28) | (tlpEp << 29) | (tlpAttr << 30); dmaManagement |= dmaChanEnable | (dmaTransStart << 1) | (chanLatencyTimer << 8); /* write DMA register, start DMA engine */ smi_write(port->DMA_CHAN0_ADDR_LOW, dmaMemPtrLow); smi_write(port->DMA_CHAN0_ADDR_HI, dmaMemPtrHi); smi_write(port->DMA_CHAN0_CONTROL, dmaCtlReg); } /* Setup Channel-1 */ if (port->_dmaInterruptCH1) { totalLength = SMI_TS_DMA_BUF_SIZE; mem = port->dma_addr[1]; dmaMemPtrLow = mem & 0xffffffff; dmaMemPtrHi = mem >> 32; dmaCtlReg = (totalLength) | (tlpTransUnit << 22) | (tlpTc << 25) | (tlpTd << 28) | (tlpEp << 29) | (tlpAttr << 30); dmaManagement |= (dmaChanEnable << 16) | (dmaTransStart << 17) | (chanLatencyTimer << 24); /* write DMA register, start DMA engine */ smi_write(port->DMA_CHAN1_ADDR_LOW, dmaMemPtrLow); smi_write(port->DMA_CHAN1_ADDR_HI, dmaMemPtrHi); smi_write(port->DMA_CHAN1_CONTROL, dmaCtlReg); } return dmaManagement; } static int smi_start_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct smi_port *port = dvbdmx->priv; struct smi_dev *dev = port->dev; u32 dmaManagement; if (port->users++ == 0) { dmaManagement = smi_config_DMA(port); smi_port_clearInterrupt(port); smi_port_enableInterrupt(port); smi_write(port->DMA_MANAGEMENT, dmaManagement); tasklet_enable(&port->tasklet); } return port->users; } static int smi_stop_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct smi_port *port = dvbdmx->priv; struct smi_dev *dev = port->dev; if (--port->users) return port->users; tasklet_disable(&port->tasklet); smi_port_disableInterrupt(port); smi_clear(port->DMA_MANAGEMENT, 0x30003); return 0; } static int smi_dvb_init(struct smi_port *port) { int ret; struct dvb_adapter *adap = &port->dvb_adapter; struct dvb_demux *dvbdemux = &port->demux; dev_dbg(&port->dev->pci_dev->dev, "%s, port %d\n", __func__, port->idx); ret = dvb_register_adapter(adap, "SMI_DVB", THIS_MODULE, &port->dev->pci_dev->dev, adapter_nr); if (ret < 0) { dev_err(&port->dev->pci_dev->dev, "Fail to register DVB adapter.\n"); return ret; } ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux", smi_start_feed, smi_stop_feed, port); if (ret < 0) goto err_del_dvb_register_adapter; ret = my_dvb_dmxdev_ts_card_init(&port->dmxdev, &port->demux, &port->hw_frontend, &port->mem_frontend, adap); if (ret < 0) goto err_del_dvb_dmx; ret = dvb_net_init(adap, &port->dvbnet, port->dmxdev.demux); if (ret < 0) goto err_del_dvb_dmxdev; return 0; err_del_dvb_dmxdev: dvbdemux->dmx.close(&dvbdemux->dmx); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &port->hw_frontend); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &port->mem_frontend); dvb_dmxdev_release(&port->dmxdev); err_del_dvb_dmx: dvb_dmx_release(&port->demux); err_del_dvb_register_adapter: dvb_unregister_adapter(&port->dvb_adapter); return ret; } static void smi_dvb_exit(struct smi_port *port) { struct dvb_demux *dvbdemux = &port->demux; dvb_net_release(&port->dvbnet); dvbdemux->dmx.close(&dvbdemux->dmx); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &port->hw_frontend); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &port->mem_frontend); dvb_dmxdev_release(&port->dmxdev); dvb_dmx_release(&port->demux); dvb_unregister_adapter(&port->dvb_adapter); } static int smi_port_attach(struct smi_dev *dev, struct smi_port *port, int index) { int ret, dmachs; port->dev = dev; port->idx = index; port->fe_type = (index == 0) ? dev->info->fe_0 : dev->info->fe_1; dmachs = (index == 0) ? dev->info->ts_0 : dev->info->ts_1; /* port init.*/ ret = smi_port_init(port, dmachs); if (ret < 0) return ret; /* dvb init.*/ ret = smi_dvb_init(port); if (ret < 0) goto err_del_port_init; /* fe init.*/ ret = smi_fe_init(port); if (ret < 0) goto err_del_dvb_init; return 0; err_del_dvb_init: smi_dvb_exit(port); err_del_port_init: smi_port_exit(port); return ret; } static void smi_port_detach(struct smi_port *port) { smi_fe_exit(port); smi_dvb_exit(port); smi_port_exit(port); } static int smi_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct smi_dev *dev; int ret = -ENOMEM; if (pci_enable_device(pdev) < 0) return -ENODEV; dev = kzalloc(sizeof(struct smi_dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err_pci_disable_device; } dev->pci_dev = pdev; pci_set_drvdata(pdev, dev); dev->info = (struct smi_cfg_info *) id->driver_data; dev_info(&dev->pci_dev->dev, "card detected: %s\n", dev->info->name); dev->nr = dev->info->type; dev->lmmio = ioremap(pci_resource_start(dev->pci_dev, 0), pci_resource_len(dev->pci_dev, 0)); if (!dev->lmmio) { ret = -ENOMEM; goto err_kfree; } /* should we set to 32bit DMA? */ ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret < 0) goto err_pci_iounmap; pci_set_master(pdev); ret = smi_hw_init(dev); if (ret < 0) goto err_pci_iounmap; ret = smi_i2c_init(dev); if (ret < 0) goto err_pci_iounmap; if (dev->info->ts_0) { ret = smi_port_attach(dev, &dev->ts_port[0], 0); if (ret < 0) goto err_del_i2c_adaptor; } if (dev->info->ts_1) { ret = smi_port_attach(dev, &dev->ts_port[1], 1); if (ret < 0) goto err_del_port0_attach; } ret = smi_ir_init(dev); if (ret < 0) goto err_del_port1_attach; #ifdef CONFIG_PCI_MSI /* to do msi interrupt.???*/ if (pci_msi_enabled()) ret = pci_enable_msi(dev->pci_dev); if (ret) dev_info(&dev->pci_dev->dev, "MSI not available.\n"); #endif ret = request_irq(dev->pci_dev->irq, smi_irq_handler, IRQF_SHARED, "SMI_PCIE", dev); if (ret < 0) goto err_del_ir; smi_ir_start(&dev->ir); return 0; err_del_ir: smi_ir_exit(dev); err_del_port1_attach: if (dev->info->ts_1) smi_port_detach(&dev->ts_port[1]); err_del_port0_attach: if (dev->info->ts_0) smi_port_detach(&dev->ts_port[0]); err_del_i2c_adaptor: smi_i2c_exit(dev); err_pci_iounmap: iounmap(dev->lmmio); err_kfree: pci_set_drvdata(pdev, NULL); kfree(dev); err_pci_disable_device: pci_disable_device(pdev); return ret; } static void smi_remove(struct pci_dev *pdev) { struct smi_dev *dev = pci_get_drvdata(pdev); smi_write(MSI_INT_ENA_CLR, ALL_INT); free_irq(dev->pci_dev->irq, dev); #ifdef CONFIG_PCI_MSI pci_disable_msi(dev->pci_dev); #endif if (dev->info->ts_1) smi_port_detach(&dev->ts_port[1]); if (dev->info->ts_0) smi_port_detach(&dev->ts_port[0]); smi_ir_exit(dev); smi_i2c_exit(dev); iounmap(dev->lmmio); pci_set_drvdata(pdev, NULL); pci_disable_device(pdev); kfree(dev); } /* DVBSky cards */ static const struct smi_cfg_info dvbsky_s950_cfg = { .type = SMI_DVBSKY_S950, .name = "DVBSky S950 V3", .ts_0 = SMI_TS_NULL, .ts_1 = SMI_TS_DMA_BOTH, .fe_0 = DVBSKY_FE_NULL, .fe_1 = DVBSKY_FE_M88DS3103, .rc_map = RC_MAP_DVBSKY, }; static const struct smi_cfg_info dvbsky_s952_cfg = { .type = SMI_DVBSKY_S952, .name = "DVBSky S952 V3", .ts_0 = SMI_TS_DMA_BOTH, .ts_1 = SMI_TS_DMA_BOTH, .fe_0 = DVBSKY_FE_M88RS6000, .fe_1 = DVBSKY_FE_M88RS6000, .rc_map = RC_MAP_DVBSKY, }; static const struct smi_cfg_info dvbsky_t9580_cfg = { .type = SMI_DVBSKY_T9580, .name = "DVBSky T9580 V3", .ts_0 = SMI_TS_DMA_BOTH, .ts_1 = SMI_TS_DMA_BOTH, .fe_0 = DVBSKY_FE_SIT2, .fe_1 = DVBSKY_FE_M88DS3103, .rc_map = RC_MAP_DVBSKY, }; static const struct smi_cfg_info technotrend_s2_4200_cfg = { .type = SMI_TECHNOTREND_S2_4200, .name = "TechnoTrend TT-budget S2-4200 Twin", .ts_0 = SMI_TS_DMA_BOTH, .ts_1 = SMI_TS_DMA_BOTH, .fe_0 = DVBSKY_FE_M88RS6000, .fe_1 = DVBSKY_FE_M88RS6000, .rc_map = RC_MAP_TT_1500, }; /* PCI IDs */ #define SMI_ID(_subvend, _subdev, _driverdata) { \ .vendor = SMI_VID, .device = SMI_PID, \ .subvendor = _subvend, .subdevice = _subdev, \ .driver_data = (unsigned long)&_driverdata } static const struct pci_device_id smi_id_table[] = { SMI_ID(0x4254, 0x0550, dvbsky_s950_cfg), SMI_ID(0x4254, 0x0552, dvbsky_s952_cfg), SMI_ID(0x4254, 0x5580, dvbsky_t9580_cfg), SMI_ID(0x13c2, 0x3016, technotrend_s2_4200_cfg), {0} }; MODULE_DEVICE_TABLE(pci, smi_id_table); static struct pci_driver smipcie_driver = { .name = "SMI PCIe driver", .id_table = smi_id_table, .probe = smi_probe, .remove = smi_remove, }; module_pci_driver(smipcie_driver); MODULE_AUTHOR("Max nibble <nibble.max@gmail.com>"); MODULE_DESCRIPTION("SMI PCIe driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1