Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Juan Jesús García de Soria Lucena | 6522 | 97.17% | 1 | 4.00% |
Jarod Wilson | 58 | 0.86% | 4 | 16.00% |
Luis Henriques | 45 | 0.67% | 1 | 4.00% |
Matthijs Kooijman | 28 | 0.42% | 2 | 8.00% |
Matthias Reichl | 18 | 0.27% | 1 | 4.00% |
Ben Hutchings | 8 | 0.12% | 2 | 8.00% |
Sean Young | 7 | 0.10% | 3 | 12.00% |
Mauro Carvalho Chehab | 5 | 0.07% | 3 | 12.00% |
Nicolas Iooss | 4 | 0.06% | 1 | 4.00% |
David Härdeman | 4 | 0.06% | 2 | 8.00% |
Wei Yongjun | 4 | 0.06% | 1 | 4.00% |
Stephen Rothwell | 3 | 0.04% | 1 | 4.00% |
Andi Shyti | 3 | 0.04% | 1 | 4.00% |
Peter Hüwe | 2 | 0.03% | 1 | 4.00% |
Sakari Ailus | 1 | 0.01% | 1 | 4.00% |
Total | 6712 | 25 |
/* * Driver for ITE Tech Inc. IT8712F/IT8512 CIR * * Copyright (C) 2010 Juan Jesús García de Soria <skandalfo@gmail.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * Inspired by the original lirc_it87 and lirc_ite8709 drivers, on top of the * skeleton provided by the nuvoton-cir driver. * * The lirc_it87 driver was originally written by Hans-Gunter Lutke Uphues * <hg_lu@web.de> in 2001, with enhancements by Christoph Bartelmus * <lirc@bartelmus.de>, Andrew Calkin <r_tay@hotmail.com> and James Edwards * <jimbo-lirc@edwardsclan.net>. * * The lirc_ite8709 driver was written by Grégory Lardière * <spmf2004-lirc@yahoo.fr> in 2008. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pnp.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/input.h> #include <linux/bitops.h> #include <media/rc-core.h> #include <linux/pci_ids.h> #include "ite-cir.h" /* module parameters */ /* debug level */ static int debug; module_param(debug, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Enable debugging output"); /* low limit for RX carrier freq, Hz, 0 for no RX demodulation */ static int rx_low_carrier_freq; module_param(rx_low_carrier_freq, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(rx_low_carrier_freq, "Override low RX carrier frequency, Hz, 0 for no RX demodulation"); /* high limit for RX carrier freq, Hz, 0 for no RX demodulation */ static int rx_high_carrier_freq; module_param(rx_high_carrier_freq, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(rx_high_carrier_freq, "Override high RX carrier frequency, Hz, 0 for no RX demodulation"); /* override tx carrier frequency */ static int tx_carrier_freq; module_param(tx_carrier_freq, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(tx_carrier_freq, "Override TX carrier frequency, Hz"); /* override tx duty cycle */ static int tx_duty_cycle; module_param(tx_duty_cycle, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(tx_duty_cycle, "Override TX duty cycle, 1-100"); /* override default sample period */ static long sample_period; module_param(sample_period, long, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(sample_period, "Override carrier sample period, us"); /* override detected model id */ static int model_number = -1; module_param(model_number, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(model_number, "Use this model number, don't autodetect"); /* HW-independent code functions */ /* check whether carrier frequency is high frequency */ static inline bool ite_is_high_carrier_freq(unsigned int freq) { return freq >= ITE_HCF_MIN_CARRIER_FREQ; } /* get the bits required to program the carrier frequency in CFQ bits, * unshifted */ static u8 ite_get_carrier_freq_bits(unsigned int freq) { if (ite_is_high_carrier_freq(freq)) { if (freq < 425000) return ITE_CFQ_400; else if (freq < 465000) return ITE_CFQ_450; else if (freq < 490000) return ITE_CFQ_480; else return ITE_CFQ_500; } else { /* trim to limits */ if (freq < ITE_LCF_MIN_CARRIER_FREQ) freq = ITE_LCF_MIN_CARRIER_FREQ; if (freq > ITE_LCF_MAX_CARRIER_FREQ) freq = ITE_LCF_MAX_CARRIER_FREQ; /* convert to kHz and subtract the base freq */ freq = DIV_ROUND_CLOSEST(freq - ITE_LCF_MIN_CARRIER_FREQ, 1000); return (u8) freq; } } /* get the bits required to program the pulse with in TXMPW */ static u8 ite_get_pulse_width_bits(unsigned int freq, int duty_cycle) { unsigned long period_ns, on_ns; /* sanitize freq into range */ if (freq < ITE_LCF_MIN_CARRIER_FREQ) freq = ITE_LCF_MIN_CARRIER_FREQ; if (freq > ITE_HCF_MAX_CARRIER_FREQ) freq = ITE_HCF_MAX_CARRIER_FREQ; period_ns = 1000000000UL / freq; on_ns = period_ns * duty_cycle / 100; if (ite_is_high_carrier_freq(freq)) { if (on_ns < 750) return ITE_TXMPW_A; else if (on_ns < 850) return ITE_TXMPW_B; else if (on_ns < 950) return ITE_TXMPW_C; else if (on_ns < 1080) return ITE_TXMPW_D; else return ITE_TXMPW_E; } else { if (on_ns < 6500) return ITE_TXMPW_A; else if (on_ns < 7850) return ITE_TXMPW_B; else if (on_ns < 9650) return ITE_TXMPW_C; else if (on_ns < 11950) return ITE_TXMPW_D; else return ITE_TXMPW_E; } } /* decode raw bytes as received by the hardware, and push them to the ir-core * layer */ static void ite_decode_bytes(struct ite_dev *dev, const u8 * data, int length) { u32 sample_period; unsigned long *ldata; unsigned int next_one, next_zero, size; struct ir_raw_event ev = {}; if (length == 0) return; sample_period = dev->params.sample_period; ldata = (unsigned long *)data; size = length << 3; next_one = find_next_bit_le(ldata, size, 0); if (next_one > 0) { ev.pulse = true; ev.duration = ITE_BITS_TO_NS(next_one, sample_period); ir_raw_event_store_with_filter(dev->rdev, &ev); } while (next_one < size) { next_zero = find_next_zero_bit_le(ldata, size, next_one + 1); ev.pulse = false; ev.duration = ITE_BITS_TO_NS(next_zero - next_one, sample_period); ir_raw_event_store_with_filter(dev->rdev, &ev); if (next_zero < size) { next_one = find_next_bit_le(ldata, size, next_zero + 1); ev.pulse = true; ev.duration = ITE_BITS_TO_NS(next_one - next_zero, sample_period); ir_raw_event_store_with_filter (dev->rdev, &ev); } else next_one = size; } ir_raw_event_handle(dev->rdev); ite_dbg_verbose("decoded %d bytes.", length); } /* set all the rx/tx carrier parameters; this must be called with the device * spinlock held */ static void ite_set_carrier_params(struct ite_dev *dev) { unsigned int freq, low_freq, high_freq; int allowance; bool use_demodulator; bool for_tx = dev->transmitting; ite_dbg("%s called", __func__); if (for_tx) { /* we don't need no stinking calculations */ freq = dev->params.tx_carrier_freq; allowance = ITE_RXDCR_DEFAULT; use_demodulator = false; } else { low_freq = dev->params.rx_low_carrier_freq; high_freq = dev->params.rx_high_carrier_freq; if (low_freq == 0) { /* don't demodulate */ freq = ITE_DEFAULT_CARRIER_FREQ; allowance = ITE_RXDCR_DEFAULT; use_demodulator = false; } else { /* calculate the middle freq */ freq = (low_freq + high_freq) / 2; /* calculate the allowance */ allowance = DIV_ROUND_CLOSEST(10000 * (high_freq - low_freq), ITE_RXDCR_PER_10000_STEP * (high_freq + low_freq)); if (allowance < 1) allowance = 1; if (allowance > ITE_RXDCR_MAX) allowance = ITE_RXDCR_MAX; use_demodulator = true; } } /* set the carrier parameters in a device-dependent way */ dev->params.set_carrier_params(dev, ite_is_high_carrier_freq(freq), use_demodulator, ite_get_carrier_freq_bits(freq), allowance, ite_get_pulse_width_bits(freq, dev->params.tx_duty_cycle)); } /* interrupt service routine for incoming and outgoing CIR data */ static irqreturn_t ite_cir_isr(int irq, void *data) { struct ite_dev *dev = data; unsigned long flags; irqreturn_t ret = IRQ_RETVAL(IRQ_NONE); u8 rx_buf[ITE_RX_FIFO_LEN]; int rx_bytes; int iflags; ite_dbg_verbose("%s firing", __func__); /* grab the spinlock */ spin_lock_irqsave(&dev->lock, flags); /* read the interrupt flags */ iflags = dev->params.get_irq_causes(dev); /* check for the receive interrupt */ if (iflags & (ITE_IRQ_RX_FIFO | ITE_IRQ_RX_FIFO_OVERRUN)) { /* read the FIFO bytes */ rx_bytes = dev->params.get_rx_bytes(dev, rx_buf, ITE_RX_FIFO_LEN); if (rx_bytes > 0) { /* drop the spinlock, since the ir-core layer * may call us back again through * ite_s_idle() */ spin_unlock_irqrestore(&dev-> lock, flags); /* decode the data we've just received */ ite_decode_bytes(dev, rx_buf, rx_bytes); /* reacquire the spinlock */ spin_lock_irqsave(&dev->lock, flags); /* mark the interrupt as serviced */ ret = IRQ_RETVAL(IRQ_HANDLED); } } else if (iflags & ITE_IRQ_TX_FIFO) { /* FIFO space available interrupt */ ite_dbg_verbose("got interrupt for TX FIFO"); /* wake any sleeping transmitter */ wake_up_interruptible(&dev->tx_queue); /* mark the interrupt as serviced */ ret = IRQ_RETVAL(IRQ_HANDLED); } /* drop the spinlock */ spin_unlock_irqrestore(&dev->lock, flags); ite_dbg_verbose("%s done returning %d", __func__, (int)ret); return ret; } /* set the rx carrier freq range, guess it's in Hz... */ static int ite_set_rx_carrier_range(struct rc_dev *rcdev, u32 carrier_low, u32 carrier_high) { unsigned long flags; struct ite_dev *dev = rcdev->priv; spin_lock_irqsave(&dev->lock, flags); dev->params.rx_low_carrier_freq = carrier_low; dev->params.rx_high_carrier_freq = carrier_high; ite_set_carrier_params(dev); spin_unlock_irqrestore(&dev->lock, flags); return 0; } /* set the tx carrier freq, guess it's in Hz... */ static int ite_set_tx_carrier(struct rc_dev *rcdev, u32 carrier) { unsigned long flags; struct ite_dev *dev = rcdev->priv; spin_lock_irqsave(&dev->lock, flags); dev->params.tx_carrier_freq = carrier; ite_set_carrier_params(dev); spin_unlock_irqrestore(&dev->lock, flags); return 0; } /* set the tx duty cycle by controlling the pulse width */ static int ite_set_tx_duty_cycle(struct rc_dev *rcdev, u32 duty_cycle) { unsigned long flags; struct ite_dev *dev = rcdev->priv; spin_lock_irqsave(&dev->lock, flags); dev->params.tx_duty_cycle = duty_cycle; ite_set_carrier_params(dev); spin_unlock_irqrestore(&dev->lock, flags); return 0; } /* transmit out IR pulses; what you get here is a batch of alternating * pulse/space/pulse/space lengths that we should write out completely through * the FIFO, blocking on a full FIFO */ static int ite_tx_ir(struct rc_dev *rcdev, unsigned *txbuf, unsigned n) { unsigned long flags; struct ite_dev *dev = rcdev->priv; bool is_pulse = false; int remaining_us, fifo_avail, fifo_remaining, last_idx = 0; int max_rle_us, next_rle_us; int ret = n; u8 last_sent[ITE_TX_FIFO_LEN]; u8 val; ite_dbg("%s called", __func__); /* clear the array just in case */ memset(last_sent, 0, ARRAY_SIZE(last_sent)); spin_lock_irqsave(&dev->lock, flags); /* let everybody know we're now transmitting */ dev->transmitting = true; /* and set the carrier values for transmission */ ite_set_carrier_params(dev); /* calculate how much time we can send in one byte */ max_rle_us = (ITE_BAUDRATE_DIVISOR * dev->params.sample_period * ITE_TX_MAX_RLE) / 1000; /* disable the receiver */ dev->params.disable_rx(dev); /* this is where we'll begin filling in the FIFO, until it's full. * then we'll just activate the interrupt, wait for it to wake us up * again, disable it, continue filling the FIFO... until everything * has been pushed out */ fifo_avail = ITE_TX_FIFO_LEN - dev->params.get_tx_used_slots(dev); while (n > 0 && dev->in_use) { /* transmit the next sample */ is_pulse = !is_pulse; remaining_us = *(txbuf++); n--; ite_dbg("%s: %ld", ((is_pulse) ? "pulse" : "space"), (long int) remaining_us); /* repeat while the pulse is non-zero length */ while (remaining_us > 0 && dev->in_use) { if (remaining_us > max_rle_us) next_rle_us = max_rle_us; else next_rle_us = remaining_us; remaining_us -= next_rle_us; /* check what's the length we have to pump out */ val = (ITE_TX_MAX_RLE * next_rle_us) / max_rle_us; /* put it into the sent buffer */ last_sent[last_idx++] = val; last_idx &= (ITE_TX_FIFO_LEN); /* encode it for 7 bits */ val = (val - 1) & ITE_TX_RLE_MASK; /* take into account pulse/space prefix */ if (is_pulse) val |= ITE_TX_PULSE; else val |= ITE_TX_SPACE; /* * if we get to 0 available, read again, just in case * some other slot got freed */ if (fifo_avail <= 0) fifo_avail = ITE_TX_FIFO_LEN - dev->params.get_tx_used_slots(dev); /* if it's still full */ if (fifo_avail <= 0) { /* enable the tx interrupt */ dev->params. enable_tx_interrupt(dev); /* drop the spinlock */ spin_unlock_irqrestore(&dev->lock, flags); /* wait for the FIFO to empty enough */ wait_event_interruptible(dev->tx_queue, (fifo_avail = ITE_TX_FIFO_LEN - dev->params.get_tx_used_slots(dev)) >= 8); /* get the spinlock again */ spin_lock_irqsave(&dev->lock, flags); /* disable the tx interrupt again. */ dev->params. disable_tx_interrupt(dev); } /* now send the byte through the FIFO */ dev->params.put_tx_byte(dev, val); fifo_avail--; } } /* wait and don't return until the whole FIFO has been sent out; * otherwise we could configure the RX carrier params instead of the * TX ones while the transmission is still being performed! */ fifo_remaining = dev->params.get_tx_used_slots(dev); remaining_us = 0; while (fifo_remaining > 0) { fifo_remaining--; last_idx--; last_idx &= (ITE_TX_FIFO_LEN - 1); remaining_us += last_sent[last_idx]; } remaining_us = (remaining_us * max_rle_us) / (ITE_TX_MAX_RLE); /* drop the spinlock while we sleep */ spin_unlock_irqrestore(&dev->lock, flags); /* sleep remaining_us microseconds */ mdelay(DIV_ROUND_UP(remaining_us, 1000)); /* reacquire the spinlock */ spin_lock_irqsave(&dev->lock, flags); /* now we're not transmitting anymore */ dev->transmitting = false; /* and set the carrier values for reception */ ite_set_carrier_params(dev); /* reenable the receiver */ if (dev->in_use) dev->params.enable_rx(dev); /* notify transmission end */ wake_up_interruptible(&dev->tx_ended); spin_unlock_irqrestore(&dev->lock, flags); return ret; } /* idle the receiver if needed */ static void ite_s_idle(struct rc_dev *rcdev, bool enable) { unsigned long flags; struct ite_dev *dev = rcdev->priv; ite_dbg("%s called", __func__); if (enable) { spin_lock_irqsave(&dev->lock, flags); dev->params.idle_rx(dev); spin_unlock_irqrestore(&dev->lock, flags); } } /* IT8712F HW-specific functions */ /* retrieve a bitmask of the current causes for a pending interrupt; this may * be composed of ITE_IRQ_TX_FIFO, ITE_IRQ_RX_FIFO and ITE_IRQ_RX_FIFO_OVERRUN * */ static int it87_get_irq_causes(struct ite_dev *dev) { u8 iflags; int ret = 0; ite_dbg("%s called", __func__); /* read the interrupt flags */ iflags = inb(dev->cir_addr + IT87_IIR) & IT87_II; switch (iflags) { case IT87_II_RXDS: ret = ITE_IRQ_RX_FIFO; break; case IT87_II_RXFO: ret = ITE_IRQ_RX_FIFO_OVERRUN; break; case IT87_II_TXLDL: ret = ITE_IRQ_TX_FIFO; break; } return ret; } /* set the carrier parameters; to be called with the spinlock held */ static void it87_set_carrier_params(struct ite_dev *dev, bool high_freq, bool use_demodulator, u8 carrier_freq_bits, u8 allowance_bits, u8 pulse_width_bits) { u8 val; ite_dbg("%s called", __func__); /* program the RCR register */ val = inb(dev->cir_addr + IT87_RCR) & ~(IT87_HCFS | IT87_RXEND | IT87_RXDCR); if (high_freq) val |= IT87_HCFS; if (use_demodulator) val |= IT87_RXEND; val |= allowance_bits; outb(val, dev->cir_addr + IT87_RCR); /* program the TCR2 register */ outb((carrier_freq_bits << IT87_CFQ_SHIFT) | pulse_width_bits, dev->cir_addr + IT87_TCR2); } /* read up to buf_size bytes from the RX FIFO; to be called with the spinlock * held */ static int it87_get_rx_bytes(struct ite_dev *dev, u8 * buf, int buf_size) { int fifo, read = 0; ite_dbg("%s called", __func__); /* read how many bytes are still in the FIFO */ fifo = inb(dev->cir_addr + IT87_RSR) & IT87_RXFBC; while (fifo > 0 && buf_size > 0) { *(buf++) = inb(dev->cir_addr + IT87_DR); fifo--; read++; buf_size--; } return read; } /* return how many bytes are still in the FIFO; this will be called * with the device spinlock NOT HELD while waiting for the TX FIFO to get * empty; let's expect this won't be a problem */ static int it87_get_tx_used_slots(struct ite_dev *dev) { ite_dbg("%s called", __func__); return inb(dev->cir_addr + IT87_TSR) & IT87_TXFBC; } /* put a byte to the TX fifo; this should be called with the spinlock held */ static void it87_put_tx_byte(struct ite_dev *dev, u8 value) { outb(value, dev->cir_addr + IT87_DR); } /* idle the receiver so that we won't receive samples until another pulse is detected; this must be called with the device spinlock held */ static void it87_idle_rx(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable streaming by clearing RXACT writing it as 1 */ outb(inb(dev->cir_addr + IT87_RCR) | IT87_RXACT, dev->cir_addr + IT87_RCR); /* clear the FIFO */ outb(inb(dev->cir_addr + IT87_TCR1) | IT87_FIFOCLR, dev->cir_addr + IT87_TCR1); } /* disable the receiver; this must be called with the device spinlock held */ static void it87_disable_rx(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable the receiver interrupts */ outb(inb(dev->cir_addr + IT87_IER) & ~(IT87_RDAIE | IT87_RFOIE), dev->cir_addr + IT87_IER); /* disable the receiver */ outb(inb(dev->cir_addr + IT87_RCR) & ~IT87_RXEN, dev->cir_addr + IT87_RCR); /* clear the FIFO and RXACT (actually RXACT should have been cleared * in the previous outb() call) */ it87_idle_rx(dev); } /* enable the receiver; this must be called with the device spinlock held */ static void it87_enable_rx(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* enable the receiver by setting RXEN */ outb(inb(dev->cir_addr + IT87_RCR) | IT87_RXEN, dev->cir_addr + IT87_RCR); /* just prepare it to idle for the next reception */ it87_idle_rx(dev); /* enable the receiver interrupts and master enable flag */ outb(inb(dev->cir_addr + IT87_IER) | IT87_RDAIE | IT87_RFOIE | IT87_IEC, dev->cir_addr + IT87_IER); } /* disable the transmitter interrupt; this must be called with the device * spinlock held */ static void it87_disable_tx_interrupt(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable the transmitter interrupts */ outb(inb(dev->cir_addr + IT87_IER) & ~IT87_TLDLIE, dev->cir_addr + IT87_IER); } /* enable the transmitter interrupt; this must be called with the device * spinlock held */ static void it87_enable_tx_interrupt(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* enable the transmitter interrupts and master enable flag */ outb(inb(dev->cir_addr + IT87_IER) | IT87_TLDLIE | IT87_IEC, dev->cir_addr + IT87_IER); } /* disable the device; this must be called with the device spinlock held */ static void it87_disable(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* clear out all interrupt enable flags */ outb(inb(dev->cir_addr + IT87_IER) & ~(IT87_IEC | IT87_RFOIE | IT87_RDAIE | IT87_TLDLIE), dev->cir_addr + IT87_IER); /* disable the receiver */ it87_disable_rx(dev); /* erase the FIFO */ outb(IT87_FIFOCLR | inb(dev->cir_addr + IT87_TCR1), dev->cir_addr + IT87_TCR1); } /* initialize the hardware */ static void it87_init_hardware(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* enable just the baud rate divisor register, disabling all the interrupts at the same time */ outb((inb(dev->cir_addr + IT87_IER) & ~(IT87_IEC | IT87_RFOIE | IT87_RDAIE | IT87_TLDLIE)) | IT87_BR, dev->cir_addr + IT87_IER); /* write out the baud rate divisor */ outb(ITE_BAUDRATE_DIVISOR & 0xff, dev->cir_addr + IT87_BDLR); outb((ITE_BAUDRATE_DIVISOR >> 8) & 0xff, dev->cir_addr + IT87_BDHR); /* disable the baud rate divisor register again */ outb(inb(dev->cir_addr + IT87_IER) & ~IT87_BR, dev->cir_addr + IT87_IER); /* program the RCR register defaults */ outb(ITE_RXDCR_DEFAULT, dev->cir_addr + IT87_RCR); /* program the TCR1 register */ outb(IT87_TXMPM_DEFAULT | IT87_TXENDF | IT87_TXRLE | IT87_FIFOTL_DEFAULT | IT87_FIFOCLR, dev->cir_addr + IT87_TCR1); /* program the carrier parameters */ ite_set_carrier_params(dev); } /* IT8512F on ITE8708 HW-specific functions */ /* retrieve a bitmask of the current causes for a pending interrupt; this may * be composed of ITE_IRQ_TX_FIFO, ITE_IRQ_RX_FIFO and ITE_IRQ_RX_FIFO_OVERRUN * */ static int it8708_get_irq_causes(struct ite_dev *dev) { u8 iflags; int ret = 0; ite_dbg("%s called", __func__); /* read the interrupt flags */ iflags = inb(dev->cir_addr + IT8708_C0IIR); if (iflags & IT85_TLDLI) ret |= ITE_IRQ_TX_FIFO; if (iflags & IT85_RDAI) ret |= ITE_IRQ_RX_FIFO; if (iflags & IT85_RFOI) ret |= ITE_IRQ_RX_FIFO_OVERRUN; return ret; } /* set the carrier parameters; to be called with the spinlock held */ static void it8708_set_carrier_params(struct ite_dev *dev, bool high_freq, bool use_demodulator, u8 carrier_freq_bits, u8 allowance_bits, u8 pulse_width_bits) { u8 val; ite_dbg("%s called", __func__); /* program the C0CFR register, with HRAE=1 */ outb(inb(dev->cir_addr + IT8708_BANKSEL) | IT8708_HRAE, dev->cir_addr + IT8708_BANKSEL); val = (inb(dev->cir_addr + IT8708_C0CFR) & ~(IT85_HCFS | IT85_CFQ)) | carrier_freq_bits; if (high_freq) val |= IT85_HCFS; outb(val, dev->cir_addr + IT8708_C0CFR); outb(inb(dev->cir_addr + IT8708_BANKSEL) & ~IT8708_HRAE, dev->cir_addr + IT8708_BANKSEL); /* program the C0RCR register */ val = inb(dev->cir_addr + IT8708_C0RCR) & ~(IT85_RXEND | IT85_RXDCR); if (use_demodulator) val |= IT85_RXEND; val |= allowance_bits; outb(val, dev->cir_addr + IT8708_C0RCR); /* program the C0TCR register */ val = inb(dev->cir_addr + IT8708_C0TCR) & ~IT85_TXMPW; val |= pulse_width_bits; outb(val, dev->cir_addr + IT8708_C0TCR); } /* read up to buf_size bytes from the RX FIFO; to be called with the spinlock * held */ static int it8708_get_rx_bytes(struct ite_dev *dev, u8 * buf, int buf_size) { int fifo, read = 0; ite_dbg("%s called", __func__); /* read how many bytes are still in the FIFO */ fifo = inb(dev->cir_addr + IT8708_C0RFSR) & IT85_RXFBC; while (fifo > 0 && buf_size > 0) { *(buf++) = inb(dev->cir_addr + IT8708_C0DR); fifo--; read++; buf_size--; } return read; } /* return how many bytes are still in the FIFO; this will be called * with the device spinlock NOT HELD while waiting for the TX FIFO to get * empty; let's expect this won't be a problem */ static int it8708_get_tx_used_slots(struct ite_dev *dev) { ite_dbg("%s called", __func__); return inb(dev->cir_addr + IT8708_C0TFSR) & IT85_TXFBC; } /* put a byte to the TX fifo; this should be called with the spinlock held */ static void it8708_put_tx_byte(struct ite_dev *dev, u8 value) { outb(value, dev->cir_addr + IT8708_C0DR); } /* idle the receiver so that we won't receive samples until another pulse is detected; this must be called with the device spinlock held */ static void it8708_idle_rx(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable streaming by clearing RXACT writing it as 1 */ outb(inb(dev->cir_addr + IT8708_C0RCR) | IT85_RXACT, dev->cir_addr + IT8708_C0RCR); /* clear the FIFO */ outb(inb(dev->cir_addr + IT8708_C0MSTCR) | IT85_FIFOCLR, dev->cir_addr + IT8708_C0MSTCR); } /* disable the receiver; this must be called with the device spinlock held */ static void it8708_disable_rx(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable the receiver interrupts */ outb(inb(dev->cir_addr + IT8708_C0IER) & ~(IT85_RDAIE | IT85_RFOIE), dev->cir_addr + IT8708_C0IER); /* disable the receiver */ outb(inb(dev->cir_addr + IT8708_C0RCR) & ~IT85_RXEN, dev->cir_addr + IT8708_C0RCR); /* clear the FIFO and RXACT (actually RXACT should have been cleared * in the previous outb() call) */ it8708_idle_rx(dev); } /* enable the receiver; this must be called with the device spinlock held */ static void it8708_enable_rx(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* enable the receiver by setting RXEN */ outb(inb(dev->cir_addr + IT8708_C0RCR) | IT85_RXEN, dev->cir_addr + IT8708_C0RCR); /* just prepare it to idle for the next reception */ it8708_idle_rx(dev); /* enable the receiver interrupts and master enable flag */ outb(inb(dev->cir_addr + IT8708_C0IER) |IT85_RDAIE | IT85_RFOIE | IT85_IEC, dev->cir_addr + IT8708_C0IER); } /* disable the transmitter interrupt; this must be called with the device * spinlock held */ static void it8708_disable_tx_interrupt(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable the transmitter interrupts */ outb(inb(dev->cir_addr + IT8708_C0IER) & ~IT85_TLDLIE, dev->cir_addr + IT8708_C0IER); } /* enable the transmitter interrupt; this must be called with the device * spinlock held */ static void it8708_enable_tx_interrupt(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* enable the transmitter interrupts and master enable flag */ outb(inb(dev->cir_addr + IT8708_C0IER) |IT85_TLDLIE | IT85_IEC, dev->cir_addr + IT8708_C0IER); } /* disable the device; this must be called with the device spinlock held */ static void it8708_disable(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* clear out all interrupt enable flags */ outb(inb(dev->cir_addr + IT8708_C0IER) & ~(IT85_IEC | IT85_RFOIE | IT85_RDAIE | IT85_TLDLIE), dev->cir_addr + IT8708_C0IER); /* disable the receiver */ it8708_disable_rx(dev); /* erase the FIFO */ outb(IT85_FIFOCLR | inb(dev->cir_addr + IT8708_C0MSTCR), dev->cir_addr + IT8708_C0MSTCR); } /* initialize the hardware */ static void it8708_init_hardware(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable all the interrupts */ outb(inb(dev->cir_addr + IT8708_C0IER) & ~(IT85_IEC | IT85_RFOIE | IT85_RDAIE | IT85_TLDLIE), dev->cir_addr + IT8708_C0IER); /* program the baud rate divisor */ outb(inb(dev->cir_addr + IT8708_BANKSEL) | IT8708_HRAE, dev->cir_addr + IT8708_BANKSEL); outb(ITE_BAUDRATE_DIVISOR & 0xff, dev->cir_addr + IT8708_C0BDLR); outb((ITE_BAUDRATE_DIVISOR >> 8) & 0xff, dev->cir_addr + IT8708_C0BDHR); outb(inb(dev->cir_addr + IT8708_BANKSEL) & ~IT8708_HRAE, dev->cir_addr + IT8708_BANKSEL); /* program the C0MSTCR register defaults */ outb((inb(dev->cir_addr + IT8708_C0MSTCR) & ~(IT85_ILSEL | IT85_ILE | IT85_FIFOTL | IT85_FIFOCLR | IT85_RESET)) | IT85_FIFOTL_DEFAULT, dev->cir_addr + IT8708_C0MSTCR); /* program the C0RCR register defaults */ outb((inb(dev->cir_addr + IT8708_C0RCR) & ~(IT85_RXEN | IT85_RDWOS | IT85_RXEND | IT85_RXACT | IT85_RXDCR)) | ITE_RXDCR_DEFAULT, dev->cir_addr + IT8708_C0RCR); /* program the C0TCR register defaults */ outb((inb(dev->cir_addr + IT8708_C0TCR) & ~(IT85_TXMPM | IT85_TXMPW)) |IT85_TXRLE | IT85_TXENDF | IT85_TXMPM_DEFAULT | IT85_TXMPW_DEFAULT, dev->cir_addr + IT8708_C0TCR); /* program the carrier parameters */ ite_set_carrier_params(dev); } /* IT8512F on ITE8709 HW-specific functions */ /* read a byte from the SRAM module */ static inline u8 it8709_rm(struct ite_dev *dev, int index) { outb(index, dev->cir_addr + IT8709_RAM_IDX); return inb(dev->cir_addr + IT8709_RAM_VAL); } /* write a byte to the SRAM module */ static inline void it8709_wm(struct ite_dev *dev, u8 val, int index) { outb(index, dev->cir_addr + IT8709_RAM_IDX); outb(val, dev->cir_addr + IT8709_RAM_VAL); } static void it8709_wait(struct ite_dev *dev) { int i = 0; /* * loop until device tells it's ready to continue * iterations count is usually ~750 but can sometimes achieve 13000 */ for (i = 0; i < 15000; i++) { udelay(2); if (it8709_rm(dev, IT8709_MODE) == IT8709_IDLE) break; } } /* read the value of a CIR register */ static u8 it8709_rr(struct ite_dev *dev, int index) { /* just wait in case the previous access was a write */ it8709_wait(dev); it8709_wm(dev, index, IT8709_REG_IDX); it8709_wm(dev, IT8709_READ, IT8709_MODE); /* wait for the read data to be available */ it8709_wait(dev); /* return the read value */ return it8709_rm(dev, IT8709_REG_VAL); } /* write the value of a CIR register */ static void it8709_wr(struct ite_dev *dev, u8 val, int index) { /* we wait before writing, and not afterwards, since this allows us to * pipeline the host CPU with the microcontroller */ it8709_wait(dev); it8709_wm(dev, val, IT8709_REG_VAL); it8709_wm(dev, index, IT8709_REG_IDX); it8709_wm(dev, IT8709_WRITE, IT8709_MODE); } /* retrieve a bitmask of the current causes for a pending interrupt; this may * be composed of ITE_IRQ_TX_FIFO, ITE_IRQ_RX_FIFO and ITE_IRQ_RX_FIFO_OVERRUN * */ static int it8709_get_irq_causes(struct ite_dev *dev) { u8 iflags; int ret = 0; ite_dbg("%s called", __func__); /* read the interrupt flags */ iflags = it8709_rm(dev, IT8709_IIR); if (iflags & IT85_TLDLI) ret |= ITE_IRQ_TX_FIFO; if (iflags & IT85_RDAI) ret |= ITE_IRQ_RX_FIFO; if (iflags & IT85_RFOI) ret |= ITE_IRQ_RX_FIFO_OVERRUN; return ret; } /* set the carrier parameters; to be called with the spinlock held */ static void it8709_set_carrier_params(struct ite_dev *dev, bool high_freq, bool use_demodulator, u8 carrier_freq_bits, u8 allowance_bits, u8 pulse_width_bits) { u8 val; ite_dbg("%s called", __func__); val = (it8709_rr(dev, IT85_C0CFR) &~(IT85_HCFS | IT85_CFQ)) | carrier_freq_bits; if (high_freq) val |= IT85_HCFS; it8709_wr(dev, val, IT85_C0CFR); /* program the C0RCR register */ val = it8709_rr(dev, IT85_C0RCR) & ~(IT85_RXEND | IT85_RXDCR); if (use_demodulator) val |= IT85_RXEND; val |= allowance_bits; it8709_wr(dev, val, IT85_C0RCR); /* program the C0TCR register */ val = it8709_rr(dev, IT85_C0TCR) & ~IT85_TXMPW; val |= pulse_width_bits; it8709_wr(dev, val, IT85_C0TCR); } /* read up to buf_size bytes from the RX FIFO; to be called with the spinlock * held */ static int it8709_get_rx_bytes(struct ite_dev *dev, u8 * buf, int buf_size) { int fifo, read = 0; ite_dbg("%s called", __func__); /* read how many bytes are still in the FIFO */ fifo = it8709_rm(dev, IT8709_RFSR) & IT85_RXFBC; while (fifo > 0 && buf_size > 0) { *(buf++) = it8709_rm(dev, IT8709_FIFO + read); fifo--; read++; buf_size--; } /* 'clear' the FIFO by setting the writing index to 0; this is * completely bound to be racy, but we can't help it, since it's a * limitation of the protocol */ it8709_wm(dev, 0, IT8709_RFSR); return read; } /* return how many bytes are still in the FIFO; this will be called * with the device spinlock NOT HELD while waiting for the TX FIFO to get * empty; let's expect this won't be a problem */ static int it8709_get_tx_used_slots(struct ite_dev *dev) { ite_dbg("%s called", __func__); return it8709_rr(dev, IT85_C0TFSR) & IT85_TXFBC; } /* put a byte to the TX fifo; this should be called with the spinlock held */ static void it8709_put_tx_byte(struct ite_dev *dev, u8 value) { it8709_wr(dev, value, IT85_C0DR); } /* idle the receiver so that we won't receive samples until another pulse is detected; this must be called with the device spinlock held */ static void it8709_idle_rx(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable streaming by clearing RXACT writing it as 1 */ it8709_wr(dev, it8709_rr(dev, IT85_C0RCR) | IT85_RXACT, IT85_C0RCR); /* clear the FIFO */ it8709_wr(dev, it8709_rr(dev, IT85_C0MSTCR) | IT85_FIFOCLR, IT85_C0MSTCR); } /* disable the receiver; this must be called with the device spinlock held */ static void it8709_disable_rx(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable the receiver interrupts */ it8709_wr(dev, it8709_rr(dev, IT85_C0IER) & ~(IT85_RDAIE | IT85_RFOIE), IT85_C0IER); /* disable the receiver */ it8709_wr(dev, it8709_rr(dev, IT85_C0RCR) & ~IT85_RXEN, IT85_C0RCR); /* clear the FIFO and RXACT (actually RXACT should have been cleared * in the previous it8709_wr(dev, ) call) */ it8709_idle_rx(dev); } /* enable the receiver; this must be called with the device spinlock held */ static void it8709_enable_rx(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* enable the receiver by setting RXEN */ it8709_wr(dev, it8709_rr(dev, IT85_C0RCR) | IT85_RXEN, IT85_C0RCR); /* just prepare it to idle for the next reception */ it8709_idle_rx(dev); /* enable the receiver interrupts and master enable flag */ it8709_wr(dev, it8709_rr(dev, IT85_C0IER) |IT85_RDAIE | IT85_RFOIE | IT85_IEC, IT85_C0IER); } /* disable the transmitter interrupt; this must be called with the device * spinlock held */ static void it8709_disable_tx_interrupt(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable the transmitter interrupts */ it8709_wr(dev, it8709_rr(dev, IT85_C0IER) & ~IT85_TLDLIE, IT85_C0IER); } /* enable the transmitter interrupt; this must be called with the device * spinlock held */ static void it8709_enable_tx_interrupt(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* enable the transmitter interrupts and master enable flag */ it8709_wr(dev, it8709_rr(dev, IT85_C0IER) |IT85_TLDLIE | IT85_IEC, IT85_C0IER); } /* disable the device; this must be called with the device spinlock held */ static void it8709_disable(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* clear out all interrupt enable flags */ it8709_wr(dev, it8709_rr(dev, IT85_C0IER) & ~(IT85_IEC | IT85_RFOIE | IT85_RDAIE | IT85_TLDLIE), IT85_C0IER); /* disable the receiver */ it8709_disable_rx(dev); /* erase the FIFO */ it8709_wr(dev, IT85_FIFOCLR | it8709_rr(dev, IT85_C0MSTCR), IT85_C0MSTCR); } /* initialize the hardware */ static void it8709_init_hardware(struct ite_dev *dev) { ite_dbg("%s called", __func__); /* disable all the interrupts */ it8709_wr(dev, it8709_rr(dev, IT85_C0IER) & ~(IT85_IEC | IT85_RFOIE | IT85_RDAIE | IT85_TLDLIE), IT85_C0IER); /* program the baud rate divisor */ it8709_wr(dev, ITE_BAUDRATE_DIVISOR & 0xff, IT85_C0BDLR); it8709_wr(dev, (ITE_BAUDRATE_DIVISOR >> 8) & 0xff, IT85_C0BDHR); /* program the C0MSTCR register defaults */ it8709_wr(dev, (it8709_rr(dev, IT85_C0MSTCR) & ~(IT85_ILSEL | IT85_ILE | IT85_FIFOTL | IT85_FIFOCLR | IT85_RESET)) | IT85_FIFOTL_DEFAULT, IT85_C0MSTCR); /* program the C0RCR register defaults */ it8709_wr(dev, (it8709_rr(dev, IT85_C0RCR) & ~(IT85_RXEN | IT85_RDWOS | IT85_RXEND | IT85_RXACT | IT85_RXDCR)) | ITE_RXDCR_DEFAULT, IT85_C0RCR); /* program the C0TCR register defaults */ it8709_wr(dev, (it8709_rr(dev, IT85_C0TCR) & ~(IT85_TXMPM | IT85_TXMPW)) | IT85_TXRLE | IT85_TXENDF | IT85_TXMPM_DEFAULT | IT85_TXMPW_DEFAULT, IT85_C0TCR); /* program the carrier parameters */ ite_set_carrier_params(dev); } /* generic hardware setup/teardown code */ /* activate the device for use */ static int ite_open(struct rc_dev *rcdev) { struct ite_dev *dev = rcdev->priv; unsigned long flags; ite_dbg("%s called", __func__); spin_lock_irqsave(&dev->lock, flags); dev->in_use = true; /* enable the receiver */ dev->params.enable_rx(dev); spin_unlock_irqrestore(&dev->lock, flags); return 0; } /* deactivate the device for use */ static void ite_close(struct rc_dev *rcdev) { struct ite_dev *dev = rcdev->priv; unsigned long flags; ite_dbg("%s called", __func__); spin_lock_irqsave(&dev->lock, flags); dev->in_use = false; /* wait for any transmission to end */ spin_unlock_irqrestore(&dev->lock, flags); wait_event_interruptible(dev->tx_ended, !dev->transmitting); spin_lock_irqsave(&dev->lock, flags); dev->params.disable(dev); spin_unlock_irqrestore(&dev->lock, flags); } /* supported models and their parameters */ static const struct ite_dev_params ite_dev_descs[] = { { /* 0: ITE8704 */ .model = "ITE8704 CIR transceiver", .io_region_size = IT87_IOREG_LENGTH, .io_rsrc_no = 0, .hw_tx_capable = true, .sample_period = (u32) (1000000000ULL / 115200), .tx_carrier_freq = 38000, .tx_duty_cycle = 33, .rx_low_carrier_freq = 0, .rx_high_carrier_freq = 0, /* operations */ .get_irq_causes = it87_get_irq_causes, .enable_rx = it87_enable_rx, .idle_rx = it87_idle_rx, .disable_rx = it87_idle_rx, .get_rx_bytes = it87_get_rx_bytes, .enable_tx_interrupt = it87_enable_tx_interrupt, .disable_tx_interrupt = it87_disable_tx_interrupt, .get_tx_used_slots = it87_get_tx_used_slots, .put_tx_byte = it87_put_tx_byte, .disable = it87_disable, .init_hardware = it87_init_hardware, .set_carrier_params = it87_set_carrier_params, }, { /* 1: ITE8713 */ .model = "ITE8713 CIR transceiver", .io_region_size = IT87_IOREG_LENGTH, .io_rsrc_no = 0, .hw_tx_capable = true, .sample_period = (u32) (1000000000ULL / 115200), .tx_carrier_freq = 38000, .tx_duty_cycle = 33, .rx_low_carrier_freq = 0, .rx_high_carrier_freq = 0, /* operations */ .get_irq_causes = it87_get_irq_causes, .enable_rx = it87_enable_rx, .idle_rx = it87_idle_rx, .disable_rx = it87_idle_rx, .get_rx_bytes = it87_get_rx_bytes, .enable_tx_interrupt = it87_enable_tx_interrupt, .disable_tx_interrupt = it87_disable_tx_interrupt, .get_tx_used_slots = it87_get_tx_used_slots, .put_tx_byte = it87_put_tx_byte, .disable = it87_disable, .init_hardware = it87_init_hardware, .set_carrier_params = it87_set_carrier_params, }, { /* 2: ITE8708 */ .model = "ITE8708 CIR transceiver", .io_region_size = IT8708_IOREG_LENGTH, .io_rsrc_no = 0, .hw_tx_capable = true, .sample_period = (u32) (1000000000ULL / 115200), .tx_carrier_freq = 38000, .tx_duty_cycle = 33, .rx_low_carrier_freq = 0, .rx_high_carrier_freq = 0, /* operations */ .get_irq_causes = it8708_get_irq_causes, .enable_rx = it8708_enable_rx, .idle_rx = it8708_idle_rx, .disable_rx = it8708_idle_rx, .get_rx_bytes = it8708_get_rx_bytes, .enable_tx_interrupt = it8708_enable_tx_interrupt, .disable_tx_interrupt = it8708_disable_tx_interrupt, .get_tx_used_slots = it8708_get_tx_used_slots, .put_tx_byte = it8708_put_tx_byte, .disable = it8708_disable, .init_hardware = it8708_init_hardware, .set_carrier_params = it8708_set_carrier_params, }, { /* 3: ITE8709 */ .model = "ITE8709 CIR transceiver", .io_region_size = IT8709_IOREG_LENGTH, .io_rsrc_no = 2, .hw_tx_capable = true, .sample_period = (u32) (1000000000ULL / 115200), .tx_carrier_freq = 38000, .tx_duty_cycle = 33, .rx_low_carrier_freq = 0, .rx_high_carrier_freq = 0, /* operations */ .get_irq_causes = it8709_get_irq_causes, .enable_rx = it8709_enable_rx, .idle_rx = it8709_idle_rx, .disable_rx = it8709_idle_rx, .get_rx_bytes = it8709_get_rx_bytes, .enable_tx_interrupt = it8709_enable_tx_interrupt, .disable_tx_interrupt = it8709_disable_tx_interrupt, .get_tx_used_slots = it8709_get_tx_used_slots, .put_tx_byte = it8709_put_tx_byte, .disable = it8709_disable, .init_hardware = it8709_init_hardware, .set_carrier_params = it8709_set_carrier_params, }, }; static const struct pnp_device_id ite_ids[] = { {"ITE8704", 0}, /* Default model */ {"ITE8713", 1}, /* CIR found in EEEBox 1501U */ {"ITE8708", 2}, /* Bridged IT8512 */ {"ITE8709", 3}, /* SRAM-Bridged IT8512 */ {"", 0}, }; /* allocate memory, probe hardware, and initialize everything */ static int ite_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id) { const struct ite_dev_params *dev_desc = NULL; struct ite_dev *itdev = NULL; struct rc_dev *rdev = NULL; int ret = -ENOMEM; int model_no; int io_rsrc_no; ite_dbg("%s called", __func__); itdev = kzalloc(sizeof(struct ite_dev), GFP_KERNEL); if (!itdev) return ret; /* input device for IR remote (and tx) */ rdev = rc_allocate_device(RC_DRIVER_IR_RAW); if (!rdev) goto exit_free_dev_rdev; itdev->rdev = rdev; ret = -ENODEV; /* get the model number */ model_no = (int)dev_id->driver_data; ite_pr(KERN_NOTICE, "Auto-detected model: %s\n", ite_dev_descs[model_no].model); if (model_number >= 0 && model_number < ARRAY_SIZE(ite_dev_descs)) { model_no = model_number; ite_pr(KERN_NOTICE, "The model has been fixed by a module parameter."); } ite_pr(KERN_NOTICE, "Using model: %s\n", ite_dev_descs[model_no].model); /* get the description for the device */ dev_desc = &ite_dev_descs[model_no]; io_rsrc_no = dev_desc->io_rsrc_no; /* validate pnp resources */ if (!pnp_port_valid(pdev, io_rsrc_no) || pnp_port_len(pdev, io_rsrc_no) != dev_desc->io_region_size) { dev_err(&pdev->dev, "IR PNP Port not valid!\n"); goto exit_free_dev_rdev; } if (!pnp_irq_valid(pdev, 0)) { dev_err(&pdev->dev, "PNP IRQ not valid!\n"); goto exit_free_dev_rdev; } /* store resource values */ itdev->cir_addr = pnp_port_start(pdev, io_rsrc_no); itdev->cir_irq = pnp_irq(pdev, 0); /* initialize spinlocks */ spin_lock_init(&itdev->lock); /* set driver data into the pnp device */ pnp_set_drvdata(pdev, itdev); itdev->pdev = pdev; /* initialize waitqueues for transmission */ init_waitqueue_head(&itdev->tx_queue); init_waitqueue_head(&itdev->tx_ended); /* copy model-specific parameters */ itdev->params = *dev_desc; /* apply any overrides */ if (sample_period > 0) itdev->params.sample_period = sample_period; if (tx_carrier_freq > 0) itdev->params.tx_carrier_freq = tx_carrier_freq; if (tx_duty_cycle > 0 && tx_duty_cycle <= 100) itdev->params.tx_duty_cycle = tx_duty_cycle; if (rx_low_carrier_freq > 0) itdev->params.rx_low_carrier_freq = rx_low_carrier_freq; if (rx_high_carrier_freq > 0) itdev->params.rx_high_carrier_freq = rx_high_carrier_freq; /* print out parameters */ ite_pr(KERN_NOTICE, "TX-capable: %d\n", (int) itdev->params.hw_tx_capable); ite_pr(KERN_NOTICE, "Sample period (ns): %ld\n", (long) itdev->params.sample_period); ite_pr(KERN_NOTICE, "TX carrier frequency (Hz): %d\n", (int) itdev->params.tx_carrier_freq); ite_pr(KERN_NOTICE, "TX duty cycle (%%): %d\n", (int) itdev->params.tx_duty_cycle); ite_pr(KERN_NOTICE, "RX low carrier frequency (Hz): %d\n", (int) itdev->params.rx_low_carrier_freq); ite_pr(KERN_NOTICE, "RX high carrier frequency (Hz): %d\n", (int) itdev->params.rx_high_carrier_freq); /* set up hardware initial state */ itdev->params.init_hardware(itdev); /* set up ir-core props */ rdev->priv = itdev; rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER; rdev->open = ite_open; rdev->close = ite_close; rdev->s_idle = ite_s_idle; rdev->s_rx_carrier_range = ite_set_rx_carrier_range; /* FIFO threshold is 17 bytes, so 17 * 8 samples minimum */ rdev->min_timeout = 17 * 8 * ITE_BAUDRATE_DIVISOR * itdev->params.sample_period; rdev->timeout = IR_DEFAULT_TIMEOUT; rdev->max_timeout = 10 * IR_DEFAULT_TIMEOUT; rdev->rx_resolution = ITE_BAUDRATE_DIVISOR * itdev->params.sample_period; rdev->tx_resolution = ITE_BAUDRATE_DIVISOR * itdev->params.sample_period; /* set up transmitter related values if needed */ if (itdev->params.hw_tx_capable) { rdev->tx_ir = ite_tx_ir; rdev->s_tx_carrier = ite_set_tx_carrier; rdev->s_tx_duty_cycle = ite_set_tx_duty_cycle; } rdev->device_name = dev_desc->model; rdev->input_id.bustype = BUS_HOST; rdev->input_id.vendor = PCI_VENDOR_ID_ITE; rdev->input_id.product = 0; rdev->input_id.version = 0; rdev->driver_name = ITE_DRIVER_NAME; rdev->map_name = RC_MAP_RC6_MCE; ret = rc_register_device(rdev); if (ret) goto exit_free_dev_rdev; ret = -EBUSY; /* now claim resources */ if (!request_region(itdev->cir_addr, dev_desc->io_region_size, ITE_DRIVER_NAME)) goto exit_unregister_device; if (request_irq(itdev->cir_irq, ite_cir_isr, IRQF_SHARED, ITE_DRIVER_NAME, (void *)itdev)) goto exit_release_cir_addr; ite_pr(KERN_NOTICE, "driver has been successfully loaded\n"); return 0; exit_release_cir_addr: release_region(itdev->cir_addr, itdev->params.io_region_size); exit_unregister_device: rc_unregister_device(rdev); rdev = NULL; exit_free_dev_rdev: rc_free_device(rdev); kfree(itdev); return ret; } static void ite_remove(struct pnp_dev *pdev) { struct ite_dev *dev = pnp_get_drvdata(pdev); unsigned long flags; ite_dbg("%s called", __func__); spin_lock_irqsave(&dev->lock, flags); /* disable hardware */ dev->params.disable(dev); spin_unlock_irqrestore(&dev->lock, flags); /* free resources */ free_irq(dev->cir_irq, dev); release_region(dev->cir_addr, dev->params.io_region_size); rc_unregister_device(dev->rdev); kfree(dev); } static int ite_suspend(struct pnp_dev *pdev, pm_message_t state) { struct ite_dev *dev = pnp_get_drvdata(pdev); unsigned long flags; ite_dbg("%s called", __func__); /* wait for any transmission to end */ wait_event_interruptible(dev->tx_ended, !dev->transmitting); spin_lock_irqsave(&dev->lock, flags); /* disable all interrupts */ dev->params.disable(dev); spin_unlock_irqrestore(&dev->lock, flags); return 0; } static int ite_resume(struct pnp_dev *pdev) { struct ite_dev *dev = pnp_get_drvdata(pdev); unsigned long flags; ite_dbg("%s called", __func__); spin_lock_irqsave(&dev->lock, flags); /* reinitialize hardware config registers */ dev->params.init_hardware(dev); /* enable the receiver */ dev->params.enable_rx(dev); spin_unlock_irqrestore(&dev->lock, flags); return 0; } static void ite_shutdown(struct pnp_dev *pdev) { struct ite_dev *dev = pnp_get_drvdata(pdev); unsigned long flags; ite_dbg("%s called", __func__); spin_lock_irqsave(&dev->lock, flags); /* disable all interrupts */ dev->params.disable(dev); spin_unlock_irqrestore(&dev->lock, flags); } static struct pnp_driver ite_driver = { .name = ITE_DRIVER_NAME, .id_table = ite_ids, .probe = ite_probe, .remove = ite_remove, .suspend = ite_suspend, .resume = ite_resume, .shutdown = ite_shutdown, }; MODULE_DEVICE_TABLE(pnp, ite_ids); MODULE_DESCRIPTION("ITE Tech Inc. IT8712F/ITE8512F CIR driver"); MODULE_AUTHOR("Juan J. Garcia de Soria <skandalfo@gmail.com>"); MODULE_LICENSE("GPL"); module_pnp_driver(ite_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1