Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hans-Frieder Vogt | 3063 | 98.81% | 2 | 28.57% |
Mauro Carvalho Chehab | 34 | 1.10% | 2 | 28.57% |
Sakari Ailus | 1 | 0.03% | 1 | 14.29% |
Peter Senna Tschudin | 1 | 0.03% | 1 | 14.29% |
Colin Ian King | 1 | 0.03% | 1 | 14.29% |
Total | 3100 | 7 |
/* * Fitipower FC0013 tuner driver * * Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net> * partially based on driver code from Fitipower * Copyright (C) 2010 Fitipower Integrated Technology Inc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include "fc0013.h" #include "fc0013-priv.h" static int fc0013_writereg(struct fc0013_priv *priv, u8 reg, u8 val) { u8 buf[2] = {reg, val}; struct i2c_msg msg = { .addr = priv->addr, .flags = 0, .buf = buf, .len = 2 }; if (i2c_transfer(priv->i2c, &msg, 1) != 1) { err("I2C write reg failed, reg: %02x, val: %02x", reg, val); return -EREMOTEIO; } return 0; } static int fc0013_readreg(struct fc0013_priv *priv, u8 reg, u8 *val) { struct i2c_msg msg[2] = { { .addr = priv->addr, .flags = 0, .buf = ®, .len = 1 }, { .addr = priv->addr, .flags = I2C_M_RD, .buf = val, .len = 1 }, }; if (i2c_transfer(priv->i2c, msg, 2) != 2) { err("I2C read reg failed, reg: %02x", reg); return -EREMOTEIO; } return 0; } static void fc0013_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; } static int fc0013_init(struct dvb_frontend *fe) { struct fc0013_priv *priv = fe->tuner_priv; int i, ret = 0; unsigned char reg[] = { 0x00, /* reg. 0x00: dummy */ 0x09, /* reg. 0x01 */ 0x16, /* reg. 0x02 */ 0x00, /* reg. 0x03 */ 0x00, /* reg. 0x04 */ 0x17, /* reg. 0x05 */ 0x02, /* reg. 0x06 */ 0x0a, /* reg. 0x07: CHECK */ 0xff, /* reg. 0x08: AGC Clock divide by 256, AGC gain 1/256, Loop Bw 1/8 */ 0x6f, /* reg. 0x09: enable LoopThrough */ 0xb8, /* reg. 0x0a: Disable LO Test Buffer */ 0x82, /* reg. 0x0b: CHECK */ 0xfc, /* reg. 0x0c: depending on AGC Up-Down mode, may need 0xf8 */ 0x01, /* reg. 0x0d: AGC Not Forcing & LNA Forcing, may need 0x02 */ 0x00, /* reg. 0x0e */ 0x00, /* reg. 0x0f */ 0x00, /* reg. 0x10 */ 0x00, /* reg. 0x11 */ 0x00, /* reg. 0x12 */ 0x00, /* reg. 0x13 */ 0x50, /* reg. 0x14: DVB-t High Gain, UHF. Middle Gain: 0x48, Low Gain: 0x40 */ 0x01, /* reg. 0x15 */ }; switch (priv->xtal_freq) { case FC_XTAL_27_MHZ: case FC_XTAL_28_8_MHZ: reg[0x07] |= 0x20; break; case FC_XTAL_36_MHZ: default: break; } if (priv->dual_master) reg[0x0c] |= 0x02; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */ for (i = 1; i < sizeof(reg); i++) { ret = fc0013_writereg(priv, i, reg[i]); if (ret) break; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ if (ret) err("fc0013_writereg failed: %d", ret); return ret; } static int fc0013_sleep(struct dvb_frontend *fe) { /* nothing to do here */ return 0; } int fc0013_rc_cal_add(struct dvb_frontend *fe, int rc_val) { struct fc0013_priv *priv = fe->tuner_priv; int ret; u8 rc_cal; int val; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */ /* push rc_cal value, get rc_cal value */ ret = fc0013_writereg(priv, 0x10, 0x00); if (ret) goto error_out; /* get rc_cal value */ ret = fc0013_readreg(priv, 0x10, &rc_cal); if (ret) goto error_out; rc_cal &= 0x0f; val = (int)rc_cal + rc_val; /* forcing rc_cal */ ret = fc0013_writereg(priv, 0x0d, 0x11); if (ret) goto error_out; /* modify rc_cal value */ if (val > 15) ret = fc0013_writereg(priv, 0x10, 0x0f); else if (val < 0) ret = fc0013_writereg(priv, 0x10, 0x00); else ret = fc0013_writereg(priv, 0x10, (u8)val); error_out: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ return ret; } EXPORT_SYMBOL(fc0013_rc_cal_add); int fc0013_rc_cal_reset(struct dvb_frontend *fe) { struct fc0013_priv *priv = fe->tuner_priv; int ret; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */ ret = fc0013_writereg(priv, 0x0d, 0x01); if (!ret) ret = fc0013_writereg(priv, 0x10, 0x00); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ return ret; } EXPORT_SYMBOL(fc0013_rc_cal_reset); static int fc0013_set_vhf_track(struct fc0013_priv *priv, u32 freq) { int ret; u8 tmp; ret = fc0013_readreg(priv, 0x1d, &tmp); if (ret) goto error_out; tmp &= 0xe3; if (freq <= 177500) { /* VHF Track: 7 */ ret = fc0013_writereg(priv, 0x1d, tmp | 0x1c); } else if (freq <= 184500) { /* VHF Track: 6 */ ret = fc0013_writereg(priv, 0x1d, tmp | 0x18); } else if (freq <= 191500) { /* VHF Track: 5 */ ret = fc0013_writereg(priv, 0x1d, tmp | 0x14); } else if (freq <= 198500) { /* VHF Track: 4 */ ret = fc0013_writereg(priv, 0x1d, tmp | 0x10); } else if (freq <= 205500) { /* VHF Track: 3 */ ret = fc0013_writereg(priv, 0x1d, tmp | 0x0c); } else if (freq <= 219500) { /* VHF Track: 2 */ ret = fc0013_writereg(priv, 0x1d, tmp | 0x08); } else if (freq < 300000) { /* VHF Track: 1 */ ret = fc0013_writereg(priv, 0x1d, tmp | 0x04); } else { /* UHF and GPS */ ret = fc0013_writereg(priv, 0x1d, tmp | 0x1c); } error_out: return ret; } static int fc0013_set_params(struct dvb_frontend *fe) { struct fc0013_priv *priv = fe->tuner_priv; int i, ret = 0; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u32 freq = p->frequency / 1000; u32 delsys = p->delivery_system; unsigned char reg[7], am, pm, multi, tmp; unsigned long f_vco; unsigned short xtal_freq_khz_2, xin, xdiv; bool vco_select = false; if (fe->callback) { ret = fe->callback(priv->i2c, DVB_FRONTEND_COMPONENT_TUNER, FC_FE_CALLBACK_VHF_ENABLE, (freq > 300000 ? 0 : 1)); if (ret) goto exit; } switch (priv->xtal_freq) { case FC_XTAL_27_MHZ: xtal_freq_khz_2 = 27000 / 2; break; case FC_XTAL_36_MHZ: xtal_freq_khz_2 = 36000 / 2; break; case FC_XTAL_28_8_MHZ: default: xtal_freq_khz_2 = 28800 / 2; break; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */ /* set VHF track */ ret = fc0013_set_vhf_track(priv, freq); if (ret) goto exit; if (freq < 300000) { /* enable VHF filter */ ret = fc0013_readreg(priv, 0x07, &tmp); if (ret) goto exit; ret = fc0013_writereg(priv, 0x07, tmp | 0x10); if (ret) goto exit; /* disable UHF & disable GPS */ ret = fc0013_readreg(priv, 0x14, &tmp); if (ret) goto exit; ret = fc0013_writereg(priv, 0x14, tmp & 0x1f); if (ret) goto exit; } else if (freq <= 862000) { /* disable VHF filter */ ret = fc0013_readreg(priv, 0x07, &tmp); if (ret) goto exit; ret = fc0013_writereg(priv, 0x07, tmp & 0xef); if (ret) goto exit; /* enable UHF & disable GPS */ ret = fc0013_readreg(priv, 0x14, &tmp); if (ret) goto exit; ret = fc0013_writereg(priv, 0x14, (tmp & 0x1f) | 0x40); if (ret) goto exit; } else { /* disable VHF filter */ ret = fc0013_readreg(priv, 0x07, &tmp); if (ret) goto exit; ret = fc0013_writereg(priv, 0x07, tmp & 0xef); if (ret) goto exit; /* disable UHF & enable GPS */ ret = fc0013_readreg(priv, 0x14, &tmp); if (ret) goto exit; ret = fc0013_writereg(priv, 0x14, (tmp & 0x1f) | 0x20); if (ret) goto exit; } /* select frequency divider and the frequency of VCO */ if (freq < 37084) { /* freq * 96 < 3560000 */ multi = 96; reg[5] = 0x82; reg[6] = 0x00; } else if (freq < 55625) { /* freq * 64 < 3560000 */ multi = 64; reg[5] = 0x02; reg[6] = 0x02; } else if (freq < 74167) { /* freq * 48 < 3560000 */ multi = 48; reg[5] = 0x42; reg[6] = 0x00; } else if (freq < 111250) { /* freq * 32 < 3560000 */ multi = 32; reg[5] = 0x82; reg[6] = 0x02; } else if (freq < 148334) { /* freq * 24 < 3560000 */ multi = 24; reg[5] = 0x22; reg[6] = 0x00; } else if (freq < 222500) { /* freq * 16 < 3560000 */ multi = 16; reg[5] = 0x42; reg[6] = 0x02; } else if (freq < 296667) { /* freq * 12 < 3560000 */ multi = 12; reg[5] = 0x12; reg[6] = 0x00; } else if (freq < 445000) { /* freq * 8 < 3560000 */ multi = 8; reg[5] = 0x22; reg[6] = 0x02; } else if (freq < 593334) { /* freq * 6 < 3560000 */ multi = 6; reg[5] = 0x0a; reg[6] = 0x00; } else if (freq < 950000) { /* freq * 4 < 3800000 */ multi = 4; reg[5] = 0x12; reg[6] = 0x02; } else { multi = 2; reg[5] = 0x0a; reg[6] = 0x02; } f_vco = freq * multi; if (f_vco >= 3060000) { reg[6] |= 0x08; vco_select = true; } if (freq >= 45000) { /* From divided value (XDIV) determined the FA and FP value */ xdiv = (unsigned short)(f_vco / xtal_freq_khz_2); if ((f_vco - xdiv * xtal_freq_khz_2) >= (xtal_freq_khz_2 / 2)) xdiv++; pm = (unsigned char)(xdiv / 8); am = (unsigned char)(xdiv - (8 * pm)); if (am < 2) { reg[1] = am + 8; reg[2] = pm - 1; } else { reg[1] = am; reg[2] = pm; } } else { /* fix for frequency less than 45 MHz */ reg[1] = 0x06; reg[2] = 0x11; } /* fix clock out */ reg[6] |= 0x20; /* From VCO frequency determines the XIN ( fractional part of Delta Sigma PLL) and divided value (XDIV) */ xin = (unsigned short)(f_vco - (f_vco / xtal_freq_khz_2) * xtal_freq_khz_2); xin = (xin << 15) / xtal_freq_khz_2; if (xin >= 16384) xin += 32768; reg[3] = xin >> 8; reg[4] = xin & 0xff; if (delsys == SYS_DVBT) { reg[6] &= 0x3f; /* bits 6 and 7 describe the bandwidth */ switch (p->bandwidth_hz) { case 6000000: reg[6] |= 0x80; break; case 7000000: reg[6] |= 0x40; break; case 8000000: default: break; } } else { err("%s: modulation type not supported!", __func__); return -EINVAL; } /* modified for Realtek demod */ reg[5] |= 0x07; for (i = 1; i <= 6; i++) { ret = fc0013_writereg(priv, i, reg[i]); if (ret) goto exit; } ret = fc0013_readreg(priv, 0x11, &tmp); if (ret) goto exit; if (multi == 64) ret = fc0013_writereg(priv, 0x11, tmp | 0x04); else ret = fc0013_writereg(priv, 0x11, tmp & 0xfb); if (ret) goto exit; /* VCO Calibration */ ret = fc0013_writereg(priv, 0x0e, 0x80); if (!ret) ret = fc0013_writereg(priv, 0x0e, 0x00); /* VCO Re-Calibration if needed */ if (!ret) ret = fc0013_writereg(priv, 0x0e, 0x00); if (!ret) { msleep(10); ret = fc0013_readreg(priv, 0x0e, &tmp); } if (ret) goto exit; /* vco selection */ tmp &= 0x3f; if (vco_select) { if (tmp > 0x3c) { reg[6] &= ~0x08; ret = fc0013_writereg(priv, 0x06, reg[6]); if (!ret) ret = fc0013_writereg(priv, 0x0e, 0x80); if (!ret) ret = fc0013_writereg(priv, 0x0e, 0x00); } } else { if (tmp < 0x02) { reg[6] |= 0x08; ret = fc0013_writereg(priv, 0x06, reg[6]); if (!ret) ret = fc0013_writereg(priv, 0x0e, 0x80); if (!ret) ret = fc0013_writereg(priv, 0x0e, 0x00); } } priv->frequency = p->frequency; priv->bandwidth = p->bandwidth_hz; exit: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ if (ret) warn("%s: failed: %d", __func__, ret); return ret; } static int fc0013_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct fc0013_priv *priv = fe->tuner_priv; *frequency = priv->frequency; return 0; } static int fc0013_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { /* always ? */ *frequency = 0; return 0; } static int fc0013_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { struct fc0013_priv *priv = fe->tuner_priv; *bandwidth = priv->bandwidth; return 0; } #define INPUT_ADC_LEVEL -8 static int fc0013_get_rf_strength(struct dvb_frontend *fe, u16 *strength) { struct fc0013_priv *priv = fe->tuner_priv; int ret; unsigned char tmp; int int_temp, lna_gain, int_lna, tot_agc_gain, power; static const int fc0013_lna_gain_table[] = { /* low gain */ -63, -58, -99, -73, -63, -65, -54, -60, /* middle gain */ 71, 70, 68, 67, 65, 63, 61, 58, /* high gain */ 197, 191, 188, 186, 184, 182, 181, 179, }; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */ ret = fc0013_writereg(priv, 0x13, 0x00); if (ret) goto err; ret = fc0013_readreg(priv, 0x13, &tmp); if (ret) goto err; int_temp = tmp; ret = fc0013_readreg(priv, 0x14, &tmp); if (ret) goto err; lna_gain = tmp & 0x1f; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ if (lna_gain < ARRAY_SIZE(fc0013_lna_gain_table)) { int_lna = fc0013_lna_gain_table[lna_gain]; tot_agc_gain = (abs((int_temp >> 5) - 7) - 2 + (int_temp & 0x1f)) * 2; power = INPUT_ADC_LEVEL - tot_agc_gain - int_lna / 10; if (power >= 45) *strength = 255; /* 100% */ else if (power < -95) *strength = 0; else *strength = (power + 95) * 255 / 140; *strength |= *strength << 8; } else { ret = -1; } goto exit; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ exit: if (ret) warn("%s: failed: %d", __func__, ret); return ret; } static const struct dvb_tuner_ops fc0013_tuner_ops = { .info = { .name = "Fitipower FC0013", .frequency_min_hz = 37 * MHz, /* estimate */ .frequency_max_hz = 1680 * MHz, /* CHECK */ }, .release = fc0013_release, .init = fc0013_init, .sleep = fc0013_sleep, .set_params = fc0013_set_params, .get_frequency = fc0013_get_frequency, .get_if_frequency = fc0013_get_if_frequency, .get_bandwidth = fc0013_get_bandwidth, .get_rf_strength = fc0013_get_rf_strength, }; struct dvb_frontend *fc0013_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, u8 i2c_address, int dual_master, enum fc001x_xtal_freq xtal_freq) { struct fc0013_priv *priv = NULL; priv = kzalloc(sizeof(struct fc0013_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->i2c = i2c; priv->dual_master = dual_master; priv->addr = i2c_address; priv->xtal_freq = xtal_freq; info("Fitipower FC0013 successfully attached."); fe->tuner_priv = priv; memcpy(&fe->ops.tuner_ops, &fc0013_tuner_ops, sizeof(struct dvb_tuner_ops)); return fe; } EXPORT_SYMBOL(fc0013_attach); MODULE_DESCRIPTION("Fitipower FC0013 silicon tuner driver"); MODULE_AUTHOR("Hans-Frieder Vogt <hfvogt@gmx.net>"); MODULE_LICENSE("GPL"); MODULE_VERSION("0.2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1