Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mauro Carvalho Chehab | 10310 | 97.52% | 31 | 65.96% |
Benjamin Larsson | 123 | 1.16% | 5 | 10.64% |
Antti Palosaari | 86 | 0.81% | 2 | 4.26% |
Gianluca Gennari | 26 | 0.25% | 3 | 6.38% |
Arnd Bergmann | 17 | 0.16% | 1 | 2.13% |
Fengguang Wu | 4 | 0.04% | 1 | 2.13% |
Dan Carpenter | 4 | 0.04% | 2 | 4.26% |
Alan One Thousand Gnomes | 1 | 0.01% | 1 | 2.13% |
Max Kellermann | 1 | 0.01% | 1 | 2.13% |
Total | 10572 | 47 |
// SPDX-License-Identifier: GPL-2.0 // Rafael Micro R820T driver // // Copyright (C) 2013 Mauro Carvalho Chehab // // This driver was written from scratch, based on an existing driver // that it is part of rtl-sdr git tree, released under GPLv2: // https://groups.google.com/forum/#!topic/ultra-cheap-sdr/Y3rBEOFtHug // https://github.com/n1gp/gr-baz // // From what I understood from the threads, the original driver was converted // to userspace from a Realtek tree. I couldn't find the original tree. // However, the original driver look awkward on my eyes. So, I decided to // write a new version from it from the scratch, while trying to reproduce // everything found there. // // TODO: // After locking, the original driver seems to have some routines to // improve reception. This was not implemented here yet. // // RF Gain set/get is not implemented. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/videodev2.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/bitrev.h> #include "tuner-i2c.h" #include "r820t.h" /* * FIXME: I think that there are only 32 registers, but better safe than * sorry. After finishing the driver, we may review it. */ #define REG_SHADOW_START 5 #define NUM_REGS 27 #define NUM_IMR 5 #define IMR_TRIAL 9 #define VER_NUM 49 static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "enable verbose debug messages"); static int no_imr_cal; module_param(no_imr_cal, int, 0444); MODULE_PARM_DESC(no_imr_cal, "Disable IMR calibration at module init"); /* * enums and structures */ enum xtal_cap_value { XTAL_LOW_CAP_30P = 0, XTAL_LOW_CAP_20P, XTAL_LOW_CAP_10P, XTAL_LOW_CAP_0P, XTAL_HIGH_CAP_0P }; struct r820t_sect_type { u8 phase_y; u8 gain_x; u16 value; }; struct r820t_priv { struct list_head hybrid_tuner_instance_list; const struct r820t_config *cfg; struct tuner_i2c_props i2c_props; struct mutex lock; u8 regs[NUM_REGS]; u8 buf[NUM_REGS + 1]; enum xtal_cap_value xtal_cap_sel; u16 pll; /* kHz */ u32 int_freq; u8 fil_cal_code; bool imr_done; bool has_lock; bool init_done; struct r820t_sect_type imr_data[NUM_IMR]; /* Store current mode */ u32 delsys; enum v4l2_tuner_type type; v4l2_std_id std; u32 bw; /* in MHz */ }; struct r820t_freq_range { u32 freq; u8 open_d; u8 rf_mux_ploy; u8 tf_c; u8 xtal_cap20p; u8 xtal_cap10p; u8 xtal_cap0p; u8 imr_mem; /* Not used, currently */ }; #define VCO_POWER_REF 0x02 #define DIP_FREQ 32000000 /* * Static constants */ static LIST_HEAD(hybrid_tuner_instance_list); static DEFINE_MUTEX(r820t_list_mutex); /* Those initial values start from REG_SHADOW_START */ static const u8 r820t_init_array[NUM_REGS] = { 0x83, 0x32, 0x75, /* 05 to 07 */ 0xc0, 0x40, 0xd6, 0x6c, /* 08 to 0b */ 0xf5, 0x63, 0x75, 0x68, /* 0c to 0f */ 0x6c, 0x83, 0x80, 0x00, /* 10 to 13 */ 0x0f, 0x00, 0xc0, 0x30, /* 14 to 17 */ 0x48, 0xcc, 0x60, 0x00, /* 18 to 1b */ 0x54, 0xae, 0x4a, 0xc0 /* 1c to 1f */ }; /* Tuner frequency ranges */ static const struct r820t_freq_range freq_ranges[] = { { .freq = 0, .open_d = 0x08, /* low */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0xdf, /* R27[7:0] band2,band0 */ .xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 50, /* Start freq, in MHz */ .open_d = 0x08, /* low */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0xbe, /* R27[7:0] band4,band1 */ .xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 55, /* Start freq, in MHz */ .open_d = 0x08, /* low */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x8b, /* R27[7:0] band7,band4 */ .xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 60, /* Start freq, in MHz */ .open_d = 0x08, /* low */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x7b, /* R27[7:0] band8,band4 */ .xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 65, /* Start freq, in MHz */ .open_d = 0x08, /* low */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x69, /* R27[7:0] band9,band6 */ .xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 70, /* Start freq, in MHz */ .open_d = 0x08, /* low */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x58, /* R27[7:0] band10,band7 */ .xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 75, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x44, /* R27[7:0] band11,band11 */ .xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 80, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x44, /* R27[7:0] band11,band11 */ .xtal_cap20p = 0x02, /* R16[1:0] 20pF (10) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 90, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x34, /* R27[7:0] band12,band11 */ .xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 100, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x34, /* R27[7:0] band12,band11 */ .xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 0, }, { .freq = 110, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x24, /* R27[7:0] band13,band11 */ .xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 1, }, { .freq = 120, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x24, /* R27[7:0] band13,band11 */ .xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 1, }, { .freq = 140, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x14, /* R27[7:0] band14,band11 */ .xtal_cap20p = 0x01, /* R16[1:0] 10pF (01) */ .xtal_cap10p = 0x01, .xtal_cap0p = 0x00, .imr_mem = 1, }, { .freq = 180, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x13, /* R27[7:0] band14,band12 */ .xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */ .xtal_cap10p = 0x00, .xtal_cap0p = 0x00, .imr_mem = 1, }, { .freq = 220, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x13, /* R27[7:0] band14,band12 */ .xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */ .xtal_cap10p = 0x00, .xtal_cap0p = 0x00, .imr_mem = 2, }, { .freq = 250, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x11, /* R27[7:0] highest,highest */ .xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */ .xtal_cap10p = 0x00, .xtal_cap0p = 0x00, .imr_mem = 2, }, { .freq = 280, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x02, /* R26[7:6]=0 (LPF) R26[1:0]=2 (low) */ .tf_c = 0x00, /* R27[7:0] highest,highest */ .xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */ .xtal_cap10p = 0x00, .xtal_cap0p = 0x00, .imr_mem = 2, }, { .freq = 310, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x41, /* R26[7:6]=1 (bypass) R26[1:0]=1 (middle) */ .tf_c = 0x00, /* R27[7:0] highest,highest */ .xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */ .xtal_cap10p = 0x00, .xtal_cap0p = 0x00, .imr_mem = 2, }, { .freq = 450, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x41, /* R26[7:6]=1 (bypass) R26[1:0]=1 (middle) */ .tf_c = 0x00, /* R27[7:0] highest,highest */ .xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */ .xtal_cap10p = 0x00, .xtal_cap0p = 0x00, .imr_mem = 3, }, { .freq = 588, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x40, /* R26[7:6]=1 (bypass) R26[1:0]=0 (highest) */ .tf_c = 0x00, /* R27[7:0] highest,highest */ .xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */ .xtal_cap10p = 0x00, .xtal_cap0p = 0x00, .imr_mem = 3, }, { .freq = 650, /* Start freq, in MHz */ .open_d = 0x00, /* high */ .rf_mux_ploy = 0x40, /* R26[7:6]=1 (bypass) R26[1:0]=0 (highest) */ .tf_c = 0x00, /* R27[7:0] highest,highest */ .xtal_cap20p = 0x00, /* R16[1:0] 0pF (00) */ .xtal_cap10p = 0x00, .xtal_cap0p = 0x00, .imr_mem = 4, } }; static int r820t_xtal_capacitor[][2] = { { 0x0b, XTAL_LOW_CAP_30P }, { 0x02, XTAL_LOW_CAP_20P }, { 0x01, XTAL_LOW_CAP_10P }, { 0x00, XTAL_LOW_CAP_0P }, { 0x10, XTAL_HIGH_CAP_0P }, }; /* * I2C read/write code and shadow registers logic */ static void shadow_store(struct r820t_priv *priv, u8 reg, const u8 *val, int len) { int r = reg - REG_SHADOW_START; if (r < 0) { len += r; r = 0; } if (len <= 0) return; if (len > NUM_REGS - r) len = NUM_REGS - r; tuner_dbg("%s: prev reg=%02x len=%d: %*ph\n", __func__, r + REG_SHADOW_START, len, len, val); memcpy(&priv->regs[r], val, len); } static int r820t_write(struct r820t_priv *priv, u8 reg, const u8 *val, int len) { int rc, size, pos = 0; /* Store the shadow registers */ shadow_store(priv, reg, val, len); do { if (len > priv->cfg->max_i2c_msg_len - 1) size = priv->cfg->max_i2c_msg_len - 1; else size = len; /* Fill I2C buffer */ priv->buf[0] = reg; memcpy(&priv->buf[1], &val[pos], size); rc = tuner_i2c_xfer_send(&priv->i2c_props, priv->buf, size + 1); if (rc != size + 1) { tuner_info("%s: i2c wr failed=%d reg=%02x len=%d: %*ph\n", __func__, rc, reg, size, size, &priv->buf[1]); if (rc < 0) return rc; return -EREMOTEIO; } tuner_dbg("%s: i2c wr reg=%02x len=%d: %*ph\n", __func__, reg, size, size, &priv->buf[1]); reg += size; len -= size; pos += size; } while (len > 0); return 0; } static inline int r820t_write_reg(struct r820t_priv *priv, u8 reg, u8 val) { u8 tmp = val; /* work around GCC PR81715 with asan-stack=1 */ return r820t_write(priv, reg, &tmp, 1); } static int r820t_read_cache_reg(struct r820t_priv *priv, int reg) { reg -= REG_SHADOW_START; if (reg >= 0 && reg < NUM_REGS) return priv->regs[reg]; else return -EINVAL; } static inline int r820t_write_reg_mask(struct r820t_priv *priv, u8 reg, u8 val, u8 bit_mask) { u8 tmp = val; int rc = r820t_read_cache_reg(priv, reg); if (rc < 0) return rc; tmp = (rc & ~bit_mask) | (tmp & bit_mask); return r820t_write(priv, reg, &tmp, 1); } static int r820t_read(struct r820t_priv *priv, u8 reg, u8 *val, int len) { int rc, i; u8 *p = &priv->buf[1]; priv->buf[0] = reg; rc = tuner_i2c_xfer_send_recv(&priv->i2c_props, priv->buf, 1, p, len); if (rc != len) { tuner_info("%s: i2c rd failed=%d reg=%02x len=%d: %*ph\n", __func__, rc, reg, len, len, p); if (rc < 0) return rc; return -EREMOTEIO; } /* Copy data to the output buffer */ for (i = 0; i < len; i++) val[i] = bitrev8(p[i]); tuner_dbg("%s: i2c rd reg=%02x len=%d: %*ph\n", __func__, reg, len, len, val); return 0; } /* * r820t tuning logic */ static int r820t_set_mux(struct r820t_priv *priv, u32 freq) { const struct r820t_freq_range *range; int i, rc; u8 val, reg08, reg09; /* Get the proper frequency range */ freq = freq / 1000000; for (i = 0; i < ARRAY_SIZE(freq_ranges) - 1; i++) { if (freq < freq_ranges[i + 1].freq) break; } range = &freq_ranges[i]; tuner_dbg("set r820t range#%d for frequency %d MHz\n", i, freq); /* Open Drain */ rc = r820t_write_reg_mask(priv, 0x17, range->open_d, 0x08); if (rc < 0) return rc; /* RF_MUX,Polymux */ rc = r820t_write_reg_mask(priv, 0x1a, range->rf_mux_ploy, 0xc3); if (rc < 0) return rc; /* TF BAND */ rc = r820t_write_reg(priv, 0x1b, range->tf_c); if (rc < 0) return rc; /* XTAL CAP & Drive */ switch (priv->xtal_cap_sel) { case XTAL_LOW_CAP_30P: case XTAL_LOW_CAP_20P: val = range->xtal_cap20p | 0x08; break; case XTAL_LOW_CAP_10P: val = range->xtal_cap10p | 0x08; break; case XTAL_HIGH_CAP_0P: val = range->xtal_cap0p | 0x00; break; default: case XTAL_LOW_CAP_0P: val = range->xtal_cap0p | 0x08; break; } rc = r820t_write_reg_mask(priv, 0x10, val, 0x0b); if (rc < 0) return rc; if (priv->imr_done) { reg08 = priv->imr_data[range->imr_mem].gain_x; reg09 = priv->imr_data[range->imr_mem].phase_y; } else { reg08 = 0; reg09 = 0; } rc = r820t_write_reg_mask(priv, 0x08, reg08, 0x3f); if (rc < 0) return rc; rc = r820t_write_reg_mask(priv, 0x09, reg09, 0x3f); return rc; } static int r820t_set_pll(struct r820t_priv *priv, enum v4l2_tuner_type type, u32 freq) { u32 vco_freq; int rc, i; unsigned sleep_time = 10000; u32 vco_fra; /* VCO contribution by SDM (kHz) */ u32 vco_min = 1770000; u32 vco_max = vco_min * 2; u32 pll_ref; u16 n_sdm = 2; u16 sdm = 0; u8 mix_div = 2; u8 div_buf = 0; u8 div_num = 0; u8 refdiv2 = 0; u8 ni, si, nint, vco_fine_tune, val; u8 data[5]; /* Frequency in kHz */ freq = freq / 1000; pll_ref = priv->cfg->xtal / 1000; #if 0 /* Doesn't exist on rtl-sdk, and on field tests, caused troubles */ if ((priv->cfg->rafael_chip == CHIP_R620D) || (priv->cfg->rafael_chip == CHIP_R828D) || (priv->cfg->rafael_chip == CHIP_R828)) { /* ref set refdiv2, reffreq = Xtal/2 on ATV application */ if (type != V4L2_TUNER_DIGITAL_TV) { pll_ref /= 2; refdiv2 = 0x10; sleep_time = 20000; } } else { if (priv->cfg->xtal > 24000000) { pll_ref /= 2; refdiv2 = 0x10; } } #endif rc = r820t_write_reg_mask(priv, 0x10, refdiv2, 0x10); if (rc < 0) return rc; /* set pll autotune = 128kHz */ rc = r820t_write_reg_mask(priv, 0x1a, 0x00, 0x0c); if (rc < 0) return rc; /* set VCO current = 100 */ rc = r820t_write_reg_mask(priv, 0x12, 0x80, 0xe0); if (rc < 0) return rc; /* Calculate divider */ while (mix_div <= 64) { if (((freq * mix_div) >= vco_min) && ((freq * mix_div) < vco_max)) { div_buf = mix_div; while (div_buf > 2) { div_buf = div_buf >> 1; div_num++; } break; } mix_div = mix_div << 1; } rc = r820t_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; vco_fine_tune = (data[4] & 0x30) >> 4; tuner_dbg("mix_div=%d div_num=%d vco_fine_tune=%d\n", mix_div, div_num, vco_fine_tune); /* * XXX: R828D/16MHz seems to have always vco_fine_tune=1. * Due to that, this calculation goes wrong. */ if (priv->cfg->rafael_chip != CHIP_R828D) { if (vco_fine_tune > VCO_POWER_REF) div_num = div_num - 1; else if (vco_fine_tune < VCO_POWER_REF) div_num = div_num + 1; } rc = r820t_write_reg_mask(priv, 0x10, div_num << 5, 0xe0); if (rc < 0) return rc; vco_freq = freq * mix_div; nint = vco_freq / (2 * pll_ref); vco_fra = vco_freq - 2 * pll_ref * nint; /* boundary spur prevention */ if (vco_fra < pll_ref / 64) { vco_fra = 0; } else if (vco_fra > pll_ref * 127 / 64) { vco_fra = 0; nint++; } else if ((vco_fra > pll_ref * 127 / 128) && (vco_fra < pll_ref)) { vco_fra = pll_ref * 127 / 128; } else if ((vco_fra > pll_ref) && (vco_fra < pll_ref * 129 / 128)) { vco_fra = pll_ref * 129 / 128; } ni = (nint - 13) / 4; si = nint - 4 * ni - 13; rc = r820t_write_reg(priv, 0x14, ni + (si << 6)); if (rc < 0) return rc; /* pw_sdm */ if (!vco_fra) val = 0x08; else val = 0x00; rc = r820t_write_reg_mask(priv, 0x12, val, 0x08); if (rc < 0) return rc; /* sdm calculator */ while (vco_fra > 1) { if (vco_fra > (2 * pll_ref / n_sdm)) { sdm = sdm + 32768 / (n_sdm / 2); vco_fra = vco_fra - 2 * pll_ref / n_sdm; if (n_sdm >= 0x8000) break; } n_sdm = n_sdm << 1; } tuner_dbg("freq %d kHz, pll ref %d%s, sdm=0x%04x\n", freq, pll_ref, refdiv2 ? " / 2" : "", sdm); rc = r820t_write_reg(priv, 0x16, sdm >> 8); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x15, sdm & 0xff); if (rc < 0) return rc; for (i = 0; i < 2; i++) { usleep_range(sleep_time, sleep_time + 1000); /* Check if PLL has locked */ rc = r820t_read(priv, 0x00, data, 3); if (rc < 0) return rc; if (data[2] & 0x40) break; if (!i) { /* Didn't lock. Increase VCO current */ rc = r820t_write_reg_mask(priv, 0x12, 0x60, 0xe0); if (rc < 0) return rc; } } if (!(data[2] & 0x40)) { priv->has_lock = false; return 0; } priv->has_lock = true; tuner_dbg("tuner has lock at frequency %d kHz\n", freq); /* set pll autotune = 8kHz */ rc = r820t_write_reg_mask(priv, 0x1a, 0x08, 0x08); return rc; } static int r820t_sysfreq_sel(struct r820t_priv *priv, u32 freq, enum v4l2_tuner_type type, v4l2_std_id std, u32 delsys) { int rc; u8 mixer_top, lna_top, cp_cur, div_buf_cur, lna_vth_l, mixer_vth_l; u8 air_cable1_in, cable2_in, pre_dect, lna_discharge, filter_cur; tuner_dbg("adjusting tuner parameters for the standard\n"); switch (delsys) { case SYS_DVBT: if ((freq == 506000000) || (freq == 666000000) || (freq == 818000000)) { mixer_top = 0x14; /* mixer top:14 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ cp_cur = 0x28; /* 101, 0.2 */ div_buf_cur = 0x20; /* 10, 200u */ } else { mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ cp_cur = 0x38; /* 111, auto */ div_buf_cur = 0x30; /* 11, 150u */ } lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */ air_cable1_in = 0x00; cable2_in = 0x00; pre_dect = 0x40; lna_discharge = 14; filter_cur = 0x40; /* 10, low */ break; case SYS_DVBT2: mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */ air_cable1_in = 0x00; cable2_in = 0x00; pre_dect = 0x40; lna_discharge = 14; cp_cur = 0x38; /* 111, auto */ div_buf_cur = 0x30; /* 11, 150u */ filter_cur = 0x40; /* 10, low */ break; case SYS_ISDBT: mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ lna_vth_l = 0x75; /* lna vth 1.04 , vtl 0.84 */ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */ air_cable1_in = 0x00; cable2_in = 0x00; pre_dect = 0x40; lna_discharge = 14; cp_cur = 0x38; /* 111, auto */ div_buf_cur = 0x30; /* 11, 150u */ filter_cur = 0x40; /* 10, low */ break; case SYS_DVBC_ANNEX_A: mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */ lna_top = 0xe5; lna_vth_l = 0x62; mixer_vth_l = 0x75; air_cable1_in = 0x60; cable2_in = 0x00; pre_dect = 0x40; lna_discharge = 14; cp_cur = 0x38; /* 111, auto */ div_buf_cur = 0x30; /* 11, 150u */ filter_cur = 0x40; /* 10, low */ break; default: /* DVB-T 8M */ mixer_top = 0x24; /* mixer top:13 , top-1, low-discharge */ lna_top = 0xe5; /* detect bw 3, lna top:4, predet top:2 */ lna_vth_l = 0x53; /* lna vth 0.84 , vtl 0.64 */ mixer_vth_l = 0x75; /* mixer vth 1.04, vtl 0.84 */ air_cable1_in = 0x00; cable2_in = 0x00; pre_dect = 0x40; lna_discharge = 14; cp_cur = 0x38; /* 111, auto */ div_buf_cur = 0x30; /* 11, 150u */ filter_cur = 0x40; /* 10, low */ break; } if (priv->cfg->use_diplexer && ((priv->cfg->rafael_chip == CHIP_R820T) || (priv->cfg->rafael_chip == CHIP_R828S) || (priv->cfg->rafael_chip == CHIP_R820C))) { if (freq > DIP_FREQ) air_cable1_in = 0x00; else air_cable1_in = 0x60; cable2_in = 0x00; } if (priv->cfg->use_predetect) { rc = r820t_write_reg_mask(priv, 0x06, pre_dect, 0x40); if (rc < 0) return rc; } rc = r820t_write_reg_mask(priv, 0x1d, lna_top, 0xc7); if (rc < 0) return rc; rc = r820t_write_reg_mask(priv, 0x1c, mixer_top, 0xf8); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x0d, lna_vth_l); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x0e, mixer_vth_l); if (rc < 0) return rc; /* Air-IN only for Astrometa */ rc = r820t_write_reg_mask(priv, 0x05, air_cable1_in, 0x60); if (rc < 0) return rc; rc = r820t_write_reg_mask(priv, 0x06, cable2_in, 0x08); if (rc < 0) return rc; rc = r820t_write_reg_mask(priv, 0x11, cp_cur, 0x38); if (rc < 0) return rc; rc = r820t_write_reg_mask(priv, 0x17, div_buf_cur, 0x30); if (rc < 0) return rc; rc = r820t_write_reg_mask(priv, 0x0a, filter_cur, 0x60); if (rc < 0) return rc; /* * Original driver initializes regs 0x05 and 0x06 with the * same value again on this point. Probably, it is just an * error there */ /* * Set LNA */ tuner_dbg("adjusting LNA parameters\n"); if (type != V4L2_TUNER_ANALOG_TV) { /* LNA TOP: lowest */ rc = r820t_write_reg_mask(priv, 0x1d, 0, 0x38); if (rc < 0) return rc; /* 0: normal mode */ rc = r820t_write_reg_mask(priv, 0x1c, 0, 0x04); if (rc < 0) return rc; /* 0: PRE_DECT off */ rc = r820t_write_reg_mask(priv, 0x06, 0, 0x40); if (rc < 0) return rc; /* agc clk 250hz */ rc = r820t_write_reg_mask(priv, 0x1a, 0x30, 0x30); if (rc < 0) return rc; msleep(250); /* write LNA TOP = 3 */ rc = r820t_write_reg_mask(priv, 0x1d, 0x18, 0x38); if (rc < 0) return rc; /* * write discharge mode * FIXME: IMHO, the mask here is wrong, but it matches * what's there at the original driver */ rc = r820t_write_reg_mask(priv, 0x1c, mixer_top, 0x04); if (rc < 0) return rc; /* LNA discharge current */ rc = r820t_write_reg_mask(priv, 0x1e, lna_discharge, 0x1f); if (rc < 0) return rc; /* agc clk 60hz */ rc = r820t_write_reg_mask(priv, 0x1a, 0x20, 0x30); if (rc < 0) return rc; } else { /* PRE_DECT off */ rc = r820t_write_reg_mask(priv, 0x06, 0, 0x40); if (rc < 0) return rc; /* write LNA TOP */ rc = r820t_write_reg_mask(priv, 0x1d, lna_top, 0x38); if (rc < 0) return rc; /* * write discharge mode * FIXME: IMHO, the mask here is wrong, but it matches * what's there at the original driver */ rc = r820t_write_reg_mask(priv, 0x1c, mixer_top, 0x04); if (rc < 0) return rc; /* LNA discharge current */ rc = r820t_write_reg_mask(priv, 0x1e, lna_discharge, 0x1f); if (rc < 0) return rc; /* agc clk 1Khz, external det1 cap 1u */ rc = r820t_write_reg_mask(priv, 0x1a, 0x00, 0x30); if (rc < 0) return rc; rc = r820t_write_reg_mask(priv, 0x10, 0x00, 0x04); if (rc < 0) return rc; } return 0; } static int r820t_set_tv_standard(struct r820t_priv *priv, unsigned bw, enum v4l2_tuner_type type, v4l2_std_id std, u32 delsys) { int rc, i; u32 if_khz, filt_cal_lo; u8 data[5], val; u8 filt_gain, img_r, filt_q, hp_cor, ext_enable, loop_through; u8 lt_att, flt_ext_widest, polyfil_cur; bool need_calibration; tuner_dbg("selecting the delivery system\n"); if (delsys == SYS_ISDBT) { if_khz = 4063; filt_cal_lo = 59000; filt_gain = 0x10; /* +3db, 6mhz on */ img_r = 0x00; /* image negative */ filt_q = 0x10; /* r10[4]:low q(1'b1) */ hp_cor = 0x6a; /* 1.7m disable, +2cap, 1.25mhz */ ext_enable = 0x40; /* r30[6], ext enable; r30[5]:0 ext at lna max */ loop_through = 0x00; /* r5[7], lt on */ lt_att = 0x00; /* r31[7], lt att enable */ flt_ext_widest = 0x80; /* r15[7]: flt_ext_wide on */ polyfil_cur = 0x60; /* r25[6:5]:min */ } else if (delsys == SYS_DVBC_ANNEX_A) { if_khz = 5070; filt_cal_lo = 73500; filt_gain = 0x10; /* +3db, 6mhz on */ img_r = 0x00; /* image negative */ filt_q = 0x10; /* r10[4]:low q(1'b1) */ hp_cor = 0x0b; /* 1.7m disable, +0cap, 1.0mhz */ ext_enable = 0x40; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */ loop_through = 0x00; /* r5[7], lt on */ lt_att = 0x00; /* r31[7], lt att enable */ flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */ polyfil_cur = 0x60; /* r25[6:5]:min */ } else if (delsys == SYS_DVBC_ANNEX_C) { if_khz = 4063; filt_cal_lo = 55000; filt_gain = 0x10; /* +3db, 6mhz on */ img_r = 0x00; /* image negative */ filt_q = 0x10; /* r10[4]:low q(1'b1) */ hp_cor = 0x6a; /* 1.7m disable, +0cap, 1.0mhz */ ext_enable = 0x40; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */ loop_through = 0x00; /* r5[7], lt on */ lt_att = 0x00; /* r31[7], lt att enable */ flt_ext_widest = 0x80; /* r15[7]: flt_ext_wide on */ polyfil_cur = 0x60; /* r25[6:5]:min */ } else { if (bw <= 6) { if_khz = 3570; filt_cal_lo = 56000; /* 52000->56000 */ filt_gain = 0x10; /* +3db, 6mhz on */ img_r = 0x00; /* image negative */ filt_q = 0x10; /* r10[4]:low q(1'b1) */ hp_cor = 0x6b; /* 1.7m disable, +2cap, 1.0mhz */ ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */ loop_through = 0x00; /* r5[7], lt on */ lt_att = 0x00; /* r31[7], lt att enable */ flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */ polyfil_cur = 0x60; /* r25[6:5]:min */ } else if (bw == 7) { #if 0 /* * There are two 7 MHz tables defined on the original * driver, but just the second one seems to be visible * by rtl2832. Keep this one here commented, as it * might be needed in the future */ if_khz = 4070; filt_cal_lo = 60000; filt_gain = 0x10; /* +3db, 6mhz on */ img_r = 0x00; /* image negative */ filt_q = 0x10; /* r10[4]:low q(1'b1) */ hp_cor = 0x2b; /* 1.7m disable, +1cap, 1.0mhz */ ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */ loop_through = 0x00; /* r5[7], lt on */ lt_att = 0x00; /* r31[7], lt att enable */ flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */ polyfil_cur = 0x60; /* r25[6:5]:min */ #endif /* 7 MHz, second table */ if_khz = 4570; filt_cal_lo = 63000; filt_gain = 0x10; /* +3db, 6mhz on */ img_r = 0x00; /* image negative */ filt_q = 0x10; /* r10[4]:low q(1'b1) */ hp_cor = 0x2a; /* 1.7m disable, +1cap, 1.25mhz */ ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */ loop_through = 0x00; /* r5[7], lt on */ lt_att = 0x00; /* r31[7], lt att enable */ flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */ polyfil_cur = 0x60; /* r25[6:5]:min */ } else { if_khz = 4570; filt_cal_lo = 68500; filt_gain = 0x10; /* +3db, 6mhz on */ img_r = 0x00; /* image negative */ filt_q = 0x10; /* r10[4]:low q(1'b1) */ hp_cor = 0x0b; /* 1.7m disable, +0cap, 1.0mhz */ ext_enable = 0x60; /* r30[6]=1 ext enable; r30[5]:1 ext at lna max-1 */ loop_through = 0x00; /* r5[7], lt on */ lt_att = 0x00; /* r31[7], lt att enable */ flt_ext_widest = 0x00; /* r15[7]: flt_ext_wide off */ polyfil_cur = 0x60; /* r25[6:5]:min */ } } /* Initialize the shadow registers */ memcpy(priv->regs, r820t_init_array, sizeof(r820t_init_array)); /* Init Flag & Xtal_check Result */ if (priv->imr_done) val = 1 | priv->xtal_cap_sel << 1; else val = 0; rc = r820t_write_reg_mask(priv, 0x0c, val, 0x0f); if (rc < 0) return rc; /* version */ rc = r820t_write_reg_mask(priv, 0x13, VER_NUM, 0x3f); if (rc < 0) return rc; /* for LT Gain test */ if (type != V4L2_TUNER_ANALOG_TV) { rc = r820t_write_reg_mask(priv, 0x1d, 0x00, 0x38); if (rc < 0) return rc; usleep_range(1000, 2000); } priv->int_freq = if_khz * 1000; /* Check if standard changed. If so, filter calibration is needed */ if (type != priv->type) need_calibration = true; else if ((type == V4L2_TUNER_ANALOG_TV) && (std != priv->std)) need_calibration = true; else if ((type == V4L2_TUNER_DIGITAL_TV) && ((delsys != priv->delsys) || bw != priv->bw)) need_calibration = true; else need_calibration = false; if (need_calibration) { tuner_dbg("calibrating the tuner\n"); for (i = 0; i < 2; i++) { /* Set filt_cap */ rc = r820t_write_reg_mask(priv, 0x0b, hp_cor, 0x60); if (rc < 0) return rc; /* set cali clk =on */ rc = r820t_write_reg_mask(priv, 0x0f, 0x04, 0x04); if (rc < 0) return rc; /* X'tal cap 0pF for PLL */ rc = r820t_write_reg_mask(priv, 0x10, 0x00, 0x03); if (rc < 0) return rc; rc = r820t_set_pll(priv, type, filt_cal_lo * 1000); if (rc < 0 || !priv->has_lock) return rc; /* Start Trigger */ rc = r820t_write_reg_mask(priv, 0x0b, 0x10, 0x10); if (rc < 0) return rc; usleep_range(1000, 2000); /* Stop Trigger */ rc = r820t_write_reg_mask(priv, 0x0b, 0x00, 0x10); if (rc < 0) return rc; /* set cali clk =off */ rc = r820t_write_reg_mask(priv, 0x0f, 0x00, 0x04); if (rc < 0) return rc; /* Check if calibration worked */ rc = r820t_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; priv->fil_cal_code = data[4] & 0x0f; if (priv->fil_cal_code && priv->fil_cal_code != 0x0f) break; } /* narrowest */ if (priv->fil_cal_code == 0x0f) priv->fil_cal_code = 0; } rc = r820t_write_reg_mask(priv, 0x0a, filt_q | priv->fil_cal_code, 0x1f); if (rc < 0) return rc; /* Set BW, Filter_gain, & HP corner */ rc = r820t_write_reg_mask(priv, 0x0b, hp_cor, 0xef); if (rc < 0) return rc; /* Set Img_R */ rc = r820t_write_reg_mask(priv, 0x07, img_r, 0x80); if (rc < 0) return rc; /* Set filt_3dB, V6MHz */ rc = r820t_write_reg_mask(priv, 0x06, filt_gain, 0x30); if (rc < 0) return rc; /* channel filter extension */ rc = r820t_write_reg_mask(priv, 0x1e, ext_enable, 0x60); if (rc < 0) return rc; /* Loop through */ rc = r820t_write_reg_mask(priv, 0x05, loop_through, 0x80); if (rc < 0) return rc; /* Loop through attenuation */ rc = r820t_write_reg_mask(priv, 0x1f, lt_att, 0x80); if (rc < 0) return rc; /* filter extension widest */ rc = r820t_write_reg_mask(priv, 0x0f, flt_ext_widest, 0x80); if (rc < 0) return rc; /* RF poly filter current */ rc = r820t_write_reg_mask(priv, 0x19, polyfil_cur, 0x60); if (rc < 0) return rc; /* Store current standard. If it changes, re-calibrate the tuner */ priv->delsys = delsys; priv->type = type; priv->std = std; priv->bw = bw; return 0; } static int r820t_read_gain(struct r820t_priv *priv) { u8 data[4]; int rc; rc = r820t_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; return ((data[3] & 0x08) << 1) + ((data[3] & 0xf0) >> 4); } #if 0 /* FIXME: This routine requires more testing */ /* * measured with a Racal 6103E GSM test set at 928 MHz with -60 dBm * input power, for raw results see: * http://steve-m.de/projects/rtl-sdr/gain_measurement/r820t/ */ static const int r820t_lna_gain_steps[] = { 0, 9, 13, 40, 38, 13, 31, 22, 26, 31, 26, 14, 19, 5, 35, 13 }; static const int r820t_mixer_gain_steps[] = { 0, 5, 10, 10, 19, 9, 10, 25, 17, 10, 8, 16, 13, 6, 3, -8 }; static int r820t_set_gain_mode(struct r820t_priv *priv, bool set_manual_gain, int gain) { int rc; if (set_manual_gain) { int i, total_gain = 0; uint8_t mix_index = 0, lna_index = 0; u8 data[4]; /* LNA auto off */ rc = r820t_write_reg_mask(priv, 0x05, 0x10, 0x10); if (rc < 0) return rc; /* Mixer auto off */ rc = r820t_write_reg_mask(priv, 0x07, 0, 0x10); if (rc < 0) return rc; rc = r820t_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; /* set fixed VGA gain for now (16.3 dB) */ rc = r820t_write_reg_mask(priv, 0x0c, 0x08, 0x9f); if (rc < 0) return rc; for (i = 0; i < 15; i++) { if (total_gain >= gain) break; total_gain += r820t_lna_gain_steps[++lna_index]; if (total_gain >= gain) break; total_gain += r820t_mixer_gain_steps[++mix_index]; } /* set LNA gain */ rc = r820t_write_reg_mask(priv, 0x05, lna_index, 0x0f); if (rc < 0) return rc; /* set Mixer gain */ rc = r820t_write_reg_mask(priv, 0x07, mix_index, 0x0f); if (rc < 0) return rc; } else { /* LNA */ rc = r820t_write_reg_mask(priv, 0x05, 0, 0x10); if (rc < 0) return rc; /* Mixer */ rc = r820t_write_reg_mask(priv, 0x07, 0x10, 0x10); if (rc < 0) return rc; /* set fixed VGA gain for now (26.5 dB) */ rc = r820t_write_reg_mask(priv, 0x0c, 0x0b, 0x9f); if (rc < 0) return rc; } return 0; } #endif static int generic_set_freq(struct dvb_frontend *fe, u32 freq /* in HZ */, unsigned bw, enum v4l2_tuner_type type, v4l2_std_id std, u32 delsys) { struct r820t_priv *priv = fe->tuner_priv; int rc; u32 lo_freq; tuner_dbg("should set frequency to %d kHz, bw %d MHz\n", freq / 1000, bw); rc = r820t_set_tv_standard(priv, bw, type, std, delsys); if (rc < 0) goto err; if ((type == V4L2_TUNER_ANALOG_TV) && (std == V4L2_STD_SECAM_LC)) lo_freq = freq - priv->int_freq; else lo_freq = freq + priv->int_freq; rc = r820t_set_mux(priv, lo_freq); if (rc < 0) goto err; rc = r820t_set_pll(priv, type, lo_freq); if (rc < 0 || !priv->has_lock) goto err; rc = r820t_sysfreq_sel(priv, freq, type, std, delsys); if (rc < 0) goto err; tuner_dbg("%s: PLL locked on frequency %d Hz, gain=%d\n", __func__, freq, r820t_read_gain(priv)); err: if (rc < 0) tuner_dbg("%s: failed=%d\n", __func__, rc); return rc; } /* * r820t standby logic */ static int r820t_standby(struct r820t_priv *priv) { int rc; /* If device was not initialized yet, don't need to standby */ if (!priv->init_done) return 0; rc = r820t_write_reg(priv, 0x06, 0xb1); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x05, 0x03); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x07, 0x3a); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x08, 0x40); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x09, 0xc0); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x0a, 0x36); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x0c, 0x35); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x0f, 0x68); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x11, 0x03); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x17, 0xf4); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x19, 0x0c); /* Force initial calibration */ priv->type = -1; return rc; } /* * r820t device init logic */ static int r820t_xtal_check(struct r820t_priv *priv) { int rc, i; u8 data[3], val; /* Initialize the shadow registers */ memcpy(priv->regs, r820t_init_array, sizeof(r820t_init_array)); /* cap 30pF & Drive Low */ rc = r820t_write_reg_mask(priv, 0x10, 0x0b, 0x0b); if (rc < 0) return rc; /* set pll autotune = 128kHz */ rc = r820t_write_reg_mask(priv, 0x1a, 0x00, 0x0c); if (rc < 0) return rc; /* set manual initial reg = 111111; */ rc = r820t_write_reg_mask(priv, 0x13, 0x7f, 0x7f); if (rc < 0) return rc; /* set auto */ rc = r820t_write_reg_mask(priv, 0x13, 0x00, 0x40); if (rc < 0) return rc; /* Try several xtal capacitor alternatives */ for (i = 0; i < ARRAY_SIZE(r820t_xtal_capacitor); i++) { rc = r820t_write_reg_mask(priv, 0x10, r820t_xtal_capacitor[i][0], 0x1b); if (rc < 0) return rc; usleep_range(5000, 6000); rc = r820t_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; if (!(data[2] & 0x40)) continue; val = data[2] & 0x3f; if (priv->cfg->xtal == 16000000 && (val > 29 || val < 23)) break; if (val != 0x3f) break; } if (i == ARRAY_SIZE(r820t_xtal_capacitor)) return -EINVAL; return r820t_xtal_capacitor[i][1]; } static int r820t_imr_prepare(struct r820t_priv *priv) { int rc; /* Initialize the shadow registers */ memcpy(priv->regs, r820t_init_array, sizeof(r820t_init_array)); /* lna off (air-in off) */ rc = r820t_write_reg_mask(priv, 0x05, 0x20, 0x20); if (rc < 0) return rc; /* mixer gain mode = manual */ rc = r820t_write_reg_mask(priv, 0x07, 0, 0x10); if (rc < 0) return rc; /* filter corner = lowest */ rc = r820t_write_reg_mask(priv, 0x0a, 0x0f, 0x0f); if (rc < 0) return rc; /* filter bw=+2cap, hp=5M */ rc = r820t_write_reg_mask(priv, 0x0b, 0x60, 0x6f); if (rc < 0) return rc; /* adc=on, vga code mode, gain = 26.5dB */ rc = r820t_write_reg_mask(priv, 0x0c, 0x0b, 0x9f); if (rc < 0) return rc; /* ring clk = on */ rc = r820t_write_reg_mask(priv, 0x0f, 0, 0x08); if (rc < 0) return rc; /* ring power = on */ rc = r820t_write_reg_mask(priv, 0x18, 0x10, 0x10); if (rc < 0) return rc; /* from ring = ring pll in */ rc = r820t_write_reg_mask(priv, 0x1c, 0x02, 0x02); if (rc < 0) return rc; /* sw_pdect = det3 */ rc = r820t_write_reg_mask(priv, 0x1e, 0x80, 0x80); if (rc < 0) return rc; /* Set filt_3dB */ rc = r820t_write_reg_mask(priv, 0x06, 0x20, 0x20); return rc; } static int r820t_multi_read(struct r820t_priv *priv) { int rc, i; u16 sum = 0; u8 data[2], min = 255, max = 0; usleep_range(5000, 6000); for (i = 0; i < 6; i++) { rc = r820t_read(priv, 0x00, data, sizeof(data)); if (rc < 0) return rc; sum += data[1]; if (data[1] < min) min = data[1]; if (data[1] > max) max = data[1]; } rc = sum - max - min; return rc; } static int r820t_imr_cross(struct r820t_priv *priv, struct r820t_sect_type iq_point[3], u8 *x_direct) { struct r820t_sect_type cross[5]; /* (0,0)(0,Q-1)(0,I-1)(Q-1,0)(I-1,0) */ struct r820t_sect_type tmp; int i, rc; u8 reg08, reg09; reg08 = r820t_read_cache_reg(priv, 8) & 0xc0; reg09 = r820t_read_cache_reg(priv, 9) & 0xc0; tmp.gain_x = 0; tmp.phase_y = 0; tmp.value = 255; for (i = 0; i < 5; i++) { switch (i) { case 0: cross[i].gain_x = reg08; cross[i].phase_y = reg09; break; case 1: cross[i].gain_x = reg08; /* 0 */ cross[i].phase_y = reg09 + 1; /* Q-1 */ break; case 2: cross[i].gain_x = reg08; /* 0 */ cross[i].phase_y = (reg09 | 0x20) + 1; /* I-1 */ break; case 3: cross[i].gain_x = reg08 + 1; /* Q-1 */ cross[i].phase_y = reg09; break; default: cross[i].gain_x = (reg08 | 0x20) + 1; /* I-1 */ cross[i].phase_y = reg09; } rc = r820t_write_reg(priv, 0x08, cross[i].gain_x); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x09, cross[i].phase_y); if (rc < 0) return rc; rc = r820t_multi_read(priv); if (rc < 0) return rc; cross[i].value = rc; if (cross[i].value < tmp.value) tmp = cross[i]; } if ((tmp.phase_y & 0x1f) == 1) { /* y-direction */ *x_direct = 0; iq_point[0] = cross[0]; iq_point[1] = cross[1]; iq_point[2] = cross[2]; } else { /* (0,0) or x-direction */ *x_direct = 1; iq_point[0] = cross[0]; iq_point[1] = cross[3]; iq_point[2] = cross[4]; } return 0; } static void r820t_compre_cor(struct r820t_sect_type iq[3]) { int i; for (i = 3; i > 0; i--) { if (iq[0].value > iq[i - 1].value) swap(iq[0], iq[i - 1]); } } static int r820t_compre_step(struct r820t_priv *priv, struct r820t_sect_type iq[3], u8 reg) { int rc; struct r820t_sect_type tmp; /* * Purpose: if (Gain<9 or Phase<9), Gain+1 or Phase+1 and compare * with min value: * new < min => update to min and continue * new > min => Exit */ /* min value already saved in iq[0] */ tmp.phase_y = iq[0].phase_y; tmp.gain_x = iq[0].gain_x; while (((tmp.gain_x & 0x1f) < IMR_TRIAL) && ((tmp.phase_y & 0x1f) < IMR_TRIAL)) { if (reg == 0x08) tmp.gain_x++; else tmp.phase_y++; rc = r820t_write_reg(priv, 0x08, tmp.gain_x); if (rc < 0) return rc; rc = r820t_write_reg(priv, 0x09, tmp.phase_y); if (rc < 0) return rc; rc = r820t_multi_read(priv); if (rc < 0) return rc; tmp.value = rc; if (tmp.value <= iq[0].value) { iq[0].gain_x = tmp.gain_x; iq[0].phase_y = tmp.phase_y; iq[0].value = tmp.value; } else { return 0; } } return 0; } static int r820t_iq_tree(struct r820t_priv *priv, struct r820t_sect_type iq[3], u8 fix_val, u8 var_val, u8 fix_reg) { int rc, i; u8 tmp, var_reg; /* * record IMC results by input gain/phase location then adjust * gain or phase positive 1 step and negtive 1 step, * both record results */ if (fix_reg == 0x08) var_reg = 0x09; else var_reg = 0x08; for (i = 0; i < 3; i++) { rc = r820t_write_reg(priv, fix_reg, fix_val); if (rc < 0) return rc; rc = r820t_write_reg(priv, var_reg, var_val); if (rc < 0) return rc; rc = r820t_multi_read(priv); if (rc < 0) return rc; iq[i].value = rc; if (fix_reg == 0x08) { iq[i].gain_x = fix_val; iq[i].phase_y = var_val; } else { iq[i].phase_y = fix_val; iq[i].gain_x = var_val; } if (i == 0) { /* try right-side point */ var_val++; } else if (i == 1) { /* try left-side point */ /* if absolute location is 1, change I/Q direction */ if ((var_val & 0x1f) < 0x02) { tmp = 2 - (var_val & 0x1f); /* b[5]:I/Q selection. 0:Q-path, 1:I-path */ if (var_val & 0x20) { var_val &= 0xc0; var_val |= tmp; } else { var_val |= 0x20 | tmp; } } else { var_val -= 2; } } } return 0; } static int r820t_section(struct r820t_priv *priv, struct r820t_sect_type *iq_point) { int rc; struct r820t_sect_type compare_iq[3], compare_bet[3]; /* Try X-1 column and save min result to compare_bet[0] */ if (!(iq_point->gain_x & 0x1f)) compare_iq[0].gain_x = ((iq_point->gain_x) & 0xdf) + 1; /* Q-path, Gain=1 */ else compare_iq[0].gain_x = iq_point->gain_x - 1; /* left point */ compare_iq[0].phase_y = iq_point->phase_y; /* y-direction */ rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x, compare_iq[0].phase_y, 0x08); if (rc < 0) return rc; r820t_compre_cor(compare_iq); compare_bet[0] = compare_iq[0]; /* Try X column and save min result to compare_bet[1] */ compare_iq[0].gain_x = iq_point->gain_x; compare_iq[0].phase_y = iq_point->phase_y; rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x, compare_iq[0].phase_y, 0x08); if (rc < 0) return rc; r820t_compre_cor(compare_iq); compare_bet[1] = compare_iq[0]; /* Try X+1 column and save min result to compare_bet[2] */ if ((iq_point->gain_x & 0x1f) == 0x00) compare_iq[0].gain_x = ((iq_point->gain_x) | 0x20) + 1; /* I-path, Gain=1 */ else compare_iq[0].gain_x = iq_point->gain_x + 1; compare_iq[0].phase_y = iq_point->phase_y; rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x, compare_iq[0].phase_y, 0x08); if (rc < 0) return rc; r820t_compre_cor(compare_iq); compare_bet[2] = compare_iq[0]; r820t_compre_cor(compare_bet); *iq_point = compare_bet[0]; return 0; } static int r820t_vga_adjust(struct r820t_priv *priv) { int rc; u8 vga_count; /* increase vga power to let image significant */ for (vga_count = 12; vga_count < 16; vga_count++) { rc = r820t_write_reg_mask(priv, 0x0c, vga_count, 0x0f); if (rc < 0) return rc; usleep_range(10000, 11000); rc = r820t_multi_read(priv); if (rc < 0) return rc; if (rc > 40 * 4) break; } return 0; } static int r820t_iq(struct r820t_priv *priv, struct r820t_sect_type *iq_pont) { struct r820t_sect_type compare_iq[3]; int rc; u8 x_direction = 0; /* 1:x, 0:y */ u8 dir_reg, other_reg; r820t_vga_adjust(priv); rc = r820t_imr_cross(priv, compare_iq, &x_direction); if (rc < 0) return rc; if (x_direction == 1) { dir_reg = 0x08; other_reg = 0x09; } else { dir_reg = 0x09; other_reg = 0x08; } /* compare and find min of 3 points. determine i/q direction */ r820t_compre_cor(compare_iq); /* increase step to find min value of this direction */ rc = r820t_compre_step(priv, compare_iq, dir_reg); if (rc < 0) return rc; /* the other direction */ rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x, compare_iq[0].phase_y, dir_reg); if (rc < 0) return rc; /* compare and find min of 3 points. determine i/q direction */ r820t_compre_cor(compare_iq); /* increase step to find min value on this direction */ rc = r820t_compre_step(priv, compare_iq, other_reg); if (rc < 0) return rc; /* check 3 points again */ rc = r820t_iq_tree(priv, compare_iq, compare_iq[0].gain_x, compare_iq[0].phase_y, other_reg); if (rc < 0) return rc; r820t_compre_cor(compare_iq); /* section-9 check */ rc = r820t_section(priv, compare_iq); *iq_pont = compare_iq[0]; /* reset gain/phase control setting */ rc = r820t_write_reg_mask(priv, 0x08, 0, 0x3f); if (rc < 0) return rc; rc = r820t_write_reg_mask(priv, 0x09, 0, 0x3f); return rc; } static int r820t_f_imr(struct r820t_priv *priv, struct r820t_sect_type *iq_pont) { int rc; r820t_vga_adjust(priv); /* * search surrounding points from previous point * try (x-1), (x), (x+1) columns, and find min IMR result point */ rc = r820t_section(priv, iq_pont); if (rc < 0) return rc; return 0; } static int r820t_imr(struct r820t_priv *priv, unsigned imr_mem, bool im_flag) { struct r820t_sect_type imr_point; int rc; u32 ring_vco, ring_freq, ring_ref; u8 n_ring, n; int reg18, reg19, reg1f; if (priv->cfg->xtal > 24000000) ring_ref = priv->cfg->xtal / 2000; else ring_ref = priv->cfg->xtal / 1000; n_ring = 15; for (n = 0; n < 16; n++) { if ((16 + n) * 8 * ring_ref >= 3100000) { n_ring = n; break; } } reg18 = r820t_read_cache_reg(priv, 0x18); reg19 = r820t_read_cache_reg(priv, 0x19); reg1f = r820t_read_cache_reg(priv, 0x1f); reg18 &= 0xf0; /* set ring[3:0] */ reg18 |= n_ring; ring_vco = (16 + n_ring) * 8 * ring_ref; reg18 &= 0xdf; /* clear ring_se23 */ reg19 &= 0xfc; /* clear ring_seldiv */ reg1f &= 0xfc; /* clear ring_att */ switch (imr_mem) { case 0: ring_freq = ring_vco / 48; reg18 |= 0x20; /* ring_se23 = 1 */ reg19 |= 0x03; /* ring_seldiv = 3 */ reg1f |= 0x02; /* ring_att 10 */ break; case 1: ring_freq = ring_vco / 16; reg18 |= 0x00; /* ring_se23 = 0 */ reg19 |= 0x02; /* ring_seldiv = 2 */ reg1f |= 0x00; /* pw_ring 00 */ break; case 2: ring_freq = ring_vco / 8; reg18 |= 0x00; /* ring_se23 = 0 */ reg19 |= 0x01; /* ring_seldiv = 1 */ reg1f |= 0x03; /* pw_ring 11 */ break; case 3: ring_freq = ring_vco / 6; reg18 |= 0x20; /* ring_se23 = 1 */ reg19 |= 0x00; /* ring_seldiv = 0 */ reg1f |= 0x03; /* pw_ring 11 */ break; case 4: ring_freq = ring_vco / 4; reg18 |= 0x00; /* ring_se23 = 0 */ reg19 |= 0x00; /* ring_seldiv = 0 */ reg1f |= 0x01; /* pw_ring 01 */ break; default: ring_freq = ring_vco / 4; reg18 |= 0x00; /* ring_se23 = 0 */ reg19 |= 0x00; /* ring_seldiv = 0 */ reg1f |= 0x01; /* pw_ring 01 */ break; } /* write pw_ring, n_ring, ringdiv2 registers */ /* n_ring, ring_se23 */ rc = r820t_write_reg(priv, 0x18, reg18); if (rc < 0) return rc; /* ring_sediv */ rc = r820t_write_reg(priv, 0x19, reg19); if (rc < 0) return rc; /* pw_ring */ rc = r820t_write_reg(priv, 0x1f, reg1f); if (rc < 0) return rc; /* mux input freq ~ rf_in freq */ rc = r820t_set_mux(priv, (ring_freq - 5300) * 1000); if (rc < 0) return rc; rc = r820t_set_pll(priv, V4L2_TUNER_DIGITAL_TV, (ring_freq - 5300) * 1000); if (!priv->has_lock) rc = -EINVAL; if (rc < 0) return rc; if (im_flag) { rc = r820t_iq(priv, &imr_point); } else { imr_point.gain_x = priv->imr_data[3].gain_x; imr_point.phase_y = priv->imr_data[3].phase_y; imr_point.value = priv->imr_data[3].value; rc = r820t_f_imr(priv, &imr_point); } if (rc < 0) return rc; /* save IMR value */ switch (imr_mem) { case 0: priv->imr_data[0].gain_x = imr_point.gain_x; priv->imr_data[0].phase_y = imr_point.phase_y; priv->imr_data[0].value = imr_point.value; break; case 1: priv->imr_data[1].gain_x = imr_point.gain_x; priv->imr_data[1].phase_y = imr_point.phase_y; priv->imr_data[1].value = imr_point.value; break; case 2: priv->imr_data[2].gain_x = imr_point.gain_x; priv->imr_data[2].phase_y = imr_point.phase_y; priv->imr_data[2].value = imr_point.value; break; case 3: priv->imr_data[3].gain_x = imr_point.gain_x; priv->imr_data[3].phase_y = imr_point.phase_y; priv->imr_data[3].value = imr_point.value; break; case 4: priv->imr_data[4].gain_x = imr_point.gain_x; priv->imr_data[4].phase_y = imr_point.phase_y; priv->imr_data[4].value = imr_point.value; break; default: priv->imr_data[4].gain_x = imr_point.gain_x; priv->imr_data[4].phase_y = imr_point.phase_y; priv->imr_data[4].value = imr_point.value; break; } return 0; } static int r820t_imr_callibrate(struct r820t_priv *priv) { int rc, i; int xtal_cap = 0; if (priv->init_done) return 0; /* Detect Xtal capacitance */ if ((priv->cfg->rafael_chip == CHIP_R820T) || (priv->cfg->rafael_chip == CHIP_R828S) || (priv->cfg->rafael_chip == CHIP_R820C)) { priv->xtal_cap_sel = XTAL_HIGH_CAP_0P; } else { /* Initialize registers */ rc = r820t_write(priv, 0x05, r820t_init_array, sizeof(r820t_init_array)); if (rc < 0) return rc; for (i = 0; i < 3; i++) { rc = r820t_xtal_check(priv); if (rc < 0) return rc; if (!i || rc > xtal_cap) xtal_cap = rc; } priv->xtal_cap_sel = xtal_cap; } /* * Disables IMR callibration. That emulates the same behaviour * as what is done by rtl-sdr userspace library. Useful for testing */ if (no_imr_cal) { priv->init_done = true; return 0; } /* Initialize registers */ rc = r820t_write(priv, 0x05, r820t_init_array, sizeof(r820t_init_array)); if (rc < 0) return rc; rc = r820t_imr_prepare(priv); if (rc < 0) return rc; rc = r820t_imr(priv, 3, true); if (rc < 0) return rc; rc = r820t_imr(priv, 1, false); if (rc < 0) return rc; rc = r820t_imr(priv, 0, false); if (rc < 0) return rc; rc = r820t_imr(priv, 2, false); if (rc < 0) return rc; rc = r820t_imr(priv, 4, false); if (rc < 0) return rc; priv->init_done = true; priv->imr_done = true; return 0; } #if 0 /* Not used, for now */ static int r820t_gpio(struct r820t_priv *priv, bool enable) { return r820t_write_reg_mask(priv, 0x0f, enable ? 1 : 0, 0x01); } #endif /* * r820t frontend operations and tuner attach code * * All driver locks and i2c control are only in this part of the code */ static int r820t_init(struct dvb_frontend *fe) { struct r820t_priv *priv = fe->tuner_priv; int rc; tuner_dbg("%s:\n", __func__); mutex_lock(&priv->lock); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); rc = r820t_imr_callibrate(priv); if (rc < 0) goto err; /* Initialize registers */ rc = r820t_write(priv, 0x05, r820t_init_array, sizeof(r820t_init_array)); err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); mutex_unlock(&priv->lock); if (rc < 0) tuner_dbg("%s: failed=%d\n", __func__, rc); return rc; } static int r820t_sleep(struct dvb_frontend *fe) { struct r820t_priv *priv = fe->tuner_priv; int rc; tuner_dbg("%s:\n", __func__); mutex_lock(&priv->lock); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); rc = r820t_standby(priv); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); mutex_unlock(&priv->lock); tuner_dbg("%s: failed=%d\n", __func__, rc); return rc; } static int r820t_set_analog_freq(struct dvb_frontend *fe, struct analog_parameters *p) { struct r820t_priv *priv = fe->tuner_priv; unsigned bw; int rc; tuner_dbg("%s called\n", __func__); /* if std is not defined, choose one */ if (!p->std) p->std = V4L2_STD_MN; if ((p->std == V4L2_STD_PAL_M) || (p->std == V4L2_STD_NTSC)) bw = 6; else bw = 8; mutex_lock(&priv->lock); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); rc = generic_set_freq(fe, 62500l * p->frequency, bw, V4L2_TUNER_ANALOG_TV, p->std, SYS_UNDEFINED); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); mutex_unlock(&priv->lock); return rc; } static int r820t_set_params(struct dvb_frontend *fe) { struct r820t_priv *priv = fe->tuner_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int rc; unsigned bw; tuner_dbg("%s: delivery_system=%d frequency=%d bandwidth_hz=%d\n", __func__, c->delivery_system, c->frequency, c->bandwidth_hz); mutex_lock(&priv->lock); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); bw = (c->bandwidth_hz + 500000) / 1000000; if (!bw) bw = 8; rc = generic_set_freq(fe, c->frequency, bw, V4L2_TUNER_DIGITAL_TV, 0, c->delivery_system); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); mutex_unlock(&priv->lock); if (rc) tuner_dbg("%s: failed=%d\n", __func__, rc); return rc; } static int r820t_signal(struct dvb_frontend *fe, u16 *strength) { struct r820t_priv *priv = fe->tuner_priv; int rc = 0; mutex_lock(&priv->lock); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); if (priv->has_lock) { rc = r820t_read_gain(priv); if (rc < 0) goto err; /* A higher gain at LNA means a lower signal strength */ *strength = (45 - rc) << 4 | 0xff; if (*strength == 0xff) *strength = 0; } else { *strength = 0; } err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); mutex_unlock(&priv->lock); tuner_dbg("%s: %s, gain=%d strength=%d\n", __func__, priv->has_lock ? "PLL locked" : "no signal", rc, *strength); return 0; } static int r820t_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { struct r820t_priv *priv = fe->tuner_priv; tuner_dbg("%s:\n", __func__); *frequency = priv->int_freq; return 0; } static void r820t_release(struct dvb_frontend *fe) { struct r820t_priv *priv = fe->tuner_priv; tuner_dbg("%s:\n", __func__); mutex_lock(&r820t_list_mutex); if (priv) hybrid_tuner_release_state(priv); mutex_unlock(&r820t_list_mutex); fe->tuner_priv = NULL; } static const struct dvb_tuner_ops r820t_tuner_ops = { .info = { .name = "Rafael Micro R820T", .frequency_min_hz = 42 * MHz, .frequency_max_hz = 1002 * MHz, }, .init = r820t_init, .release = r820t_release, .sleep = r820t_sleep, .set_params = r820t_set_params, .set_analog_params = r820t_set_analog_freq, .get_if_frequency = r820t_get_if_frequency, .get_rf_strength = r820t_signal, }; struct dvb_frontend *r820t_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct r820t_config *cfg) { struct r820t_priv *priv; int rc = -ENODEV; u8 data[5]; int instance; mutex_lock(&r820t_list_mutex); instance = hybrid_tuner_request_state(struct r820t_priv, priv, hybrid_tuner_instance_list, i2c, cfg->i2c_addr, "r820t"); switch (instance) { case 0: /* memory allocation failure */ goto err_no_gate; case 1: /* new tuner instance */ priv->cfg = cfg; mutex_init(&priv->lock); fe->tuner_priv = priv; break; case 2: /* existing tuner instance */ fe->tuner_priv = priv; break; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* check if the tuner is there */ rc = r820t_read(priv, 0x00, data, sizeof(data)); if (rc < 0) goto err; rc = r820t_sleep(fe); if (rc < 0) goto err; tuner_info("Rafael Micro r820t successfully identified\n"); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); mutex_unlock(&r820t_list_mutex); memcpy(&fe->ops.tuner_ops, &r820t_tuner_ops, sizeof(struct dvb_tuner_ops)); return fe; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); err_no_gate: mutex_unlock(&r820t_list_mutex); pr_info("%s: failed=%d\n", __func__, rc); r820t_release(fe); return NULL; } EXPORT_SYMBOL_GPL(r820t_attach); MODULE_DESCRIPTION("Rafael Micro r820t silicon tuner driver"); MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1