Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Aapo Vienamo | 2625 | 55.26% | 22 | 29.33% |
Lucas Stach | 532 | 11.20% | 7 | 9.33% |
Thierry Reding | 357 | 7.52% | 5 | 6.67% |
Olof Johansson | 300 | 6.32% | 1 | 1.33% |
Stephen Warren | 269 | 5.66% | 4 | 5.33% |
Pavan Kunapuli | 162 | 3.41% | 2 | 2.67% |
Shawn Guo | 137 | 2.88% | 1 | 1.33% |
Rhyland Klein | 100 | 2.11% | 2 | 2.67% |
Andrew Bresticker | 73 | 1.54% | 2 | 2.67% |
Jon Hunter | 46 | 0.97% | 2 | 2.67% |
Grant C. Likely | 26 | 0.55% | 1 | 1.33% |
Mylène Josserand | 24 | 0.51% | 1 | 1.33% |
Russell King | 19 | 0.40% | 4 | 5.33% |
JiSheng Zhang | 19 | 0.40% | 1 | 1.33% |
Joseph Lo | 10 | 0.21% | 2 | 2.67% |
Simon Baatz | 9 | 0.19% | 1 | 1.33% |
Kevin Hao | 6 | 0.13% | 1 | 1.33% |
Stefan Agner | 5 | 0.11% | 2 | 2.67% |
Manuel Lauss | 5 | 0.11% | 1 | 1.33% |
Lars-Peter Clausen | 5 | 0.11% | 2 | 2.67% |
Sowjanya Komatineni | 4 | 0.08% | 1 | 1.33% |
Krishna Reddy | 3 | 0.06% | 1 | 1.33% |
Paul Gortmaker | 3 | 0.06% | 1 | 1.33% |
Ulf Hansson | 2 | 0.04% | 1 | 1.33% |
Prashant Gaikwad | 2 | 0.04% | 1 | 1.33% |
Michał Mirosław | 2 | 0.04% | 1 | 1.33% |
Yue haibing | 1 | 0.02% | 1 | 1.33% |
Axel Lin | 1 | 0.02% | 1 | 1.33% |
Arnd Bergmann | 1 | 0.02% | 1 | 1.33% |
Christian Daudt | 1 | 0.02% | 1 | 1.33% |
Philipp Zabel | 1 | 0.02% | 1 | 1.33% |
Total | 4750 | 75 |
/* * Copyright (C) 2010 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/delay.h> #include <linux/err.h> #include <linux/module.h> #include <linux/init.h> #include <linux/iopoll.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/pinctrl/consumer.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/mmc/card.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/slot-gpio.h> #include <linux/gpio/consumer.h> #include <linux/ktime.h> #include "sdhci-pltfm.h" /* Tegra SDHOST controller vendor register definitions */ #define SDHCI_TEGRA_VENDOR_CLOCK_CTRL 0x100 #define SDHCI_CLOCK_CTRL_TAP_MASK 0x00ff0000 #define SDHCI_CLOCK_CTRL_TAP_SHIFT 16 #define SDHCI_CLOCK_CTRL_TRIM_MASK 0x1f000000 #define SDHCI_CLOCK_CTRL_TRIM_SHIFT 24 #define SDHCI_CLOCK_CTRL_SDR50_TUNING_OVERRIDE BIT(5) #define SDHCI_CLOCK_CTRL_PADPIPE_CLKEN_OVERRIDE BIT(3) #define SDHCI_CLOCK_CTRL_SPI_MODE_CLKEN_OVERRIDE BIT(2) #define SDHCI_TEGRA_VENDOR_SYS_SW_CTRL 0x104 #define SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE BIT(31) #define SDHCI_TEGRA_VENDOR_CAP_OVERRIDES 0x10c #define SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_MASK 0x00003f00 #define SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_SHIFT 8 #define SDHCI_TEGRA_VENDOR_MISC_CTRL 0x120 #define SDHCI_MISC_CTRL_ENABLE_SDR104 0x8 #define SDHCI_MISC_CTRL_ENABLE_SDR50 0x10 #define SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300 0x20 #define SDHCI_MISC_CTRL_ENABLE_DDR50 0x200 #define SDHCI_TEGRA_VENDOR_DLLCAL_CFG 0x1b0 #define SDHCI_TEGRA_DLLCAL_CALIBRATE BIT(31) #define SDHCI_TEGRA_VENDOR_DLLCAL_STA 0x1bc #define SDHCI_TEGRA_DLLCAL_STA_ACTIVE BIT(31) #define SDHCI_VNDR_TUN_CTRL0_0 0x1c0 #define SDHCI_VNDR_TUN_CTRL0_TUN_HW_TAP 0x20000 #define SDHCI_TEGRA_AUTO_CAL_CONFIG 0x1e4 #define SDHCI_AUTO_CAL_START BIT(31) #define SDHCI_AUTO_CAL_ENABLE BIT(29) #define SDHCI_AUTO_CAL_PDPU_OFFSET_MASK 0x0000ffff #define SDHCI_TEGRA_SDMEM_COMP_PADCTRL 0x1e0 #define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_MASK 0x0000000f #define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_VAL 0x7 #define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD BIT(31) #define SDHCI_TEGRA_AUTO_CAL_STATUS 0x1ec #define SDHCI_TEGRA_AUTO_CAL_ACTIVE BIT(31) #define NVQUIRK_FORCE_SDHCI_SPEC_200 BIT(0) #define NVQUIRK_ENABLE_BLOCK_GAP_DET BIT(1) #define NVQUIRK_ENABLE_SDHCI_SPEC_300 BIT(2) #define NVQUIRK_ENABLE_SDR50 BIT(3) #define NVQUIRK_ENABLE_SDR104 BIT(4) #define NVQUIRK_ENABLE_DDR50 BIT(5) #define NVQUIRK_HAS_PADCALIB BIT(6) #define NVQUIRK_NEEDS_PAD_CONTROL BIT(7) #define NVQUIRK_DIS_CARD_CLK_CONFIG_TAP BIT(8) struct sdhci_tegra_soc_data { const struct sdhci_pltfm_data *pdata; u32 nvquirks; }; /* Magic pull up and pull down pad calibration offsets */ struct sdhci_tegra_autocal_offsets { u32 pull_up_3v3; u32 pull_down_3v3; u32 pull_up_3v3_timeout; u32 pull_down_3v3_timeout; u32 pull_up_1v8; u32 pull_down_1v8; u32 pull_up_1v8_timeout; u32 pull_down_1v8_timeout; u32 pull_up_sdr104; u32 pull_down_sdr104; u32 pull_up_hs400; u32 pull_down_hs400; }; struct sdhci_tegra { const struct sdhci_tegra_soc_data *soc_data; struct gpio_desc *power_gpio; bool ddr_signaling; bool pad_calib_required; bool pad_control_available; struct reset_control *rst; struct pinctrl *pinctrl_sdmmc; struct pinctrl_state *pinctrl_state_3v3; struct pinctrl_state *pinctrl_state_1v8; struct sdhci_tegra_autocal_offsets autocal_offsets; ktime_t last_calib; u32 default_tap; u32 default_trim; u32 dqs_trim; }; static u16 tegra_sdhci_readw(struct sdhci_host *host, int reg) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; if (unlikely((soc_data->nvquirks & NVQUIRK_FORCE_SDHCI_SPEC_200) && (reg == SDHCI_HOST_VERSION))) { /* Erratum: Version register is invalid in HW. */ return SDHCI_SPEC_200; } return readw(host->ioaddr + reg); } static void tegra_sdhci_writew(struct sdhci_host *host, u16 val, int reg) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); switch (reg) { case SDHCI_TRANSFER_MODE: /* * Postpone this write, we must do it together with a * command write that is down below. */ pltfm_host->xfer_mode_shadow = val; return; case SDHCI_COMMAND: writel((val << 16) | pltfm_host->xfer_mode_shadow, host->ioaddr + SDHCI_TRANSFER_MODE); return; } writew(val, host->ioaddr + reg); } static void tegra_sdhci_writel(struct sdhci_host *host, u32 val, int reg) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; /* Seems like we're getting spurious timeout and crc errors, so * disable signalling of them. In case of real errors software * timers should take care of eventually detecting them. */ if (unlikely(reg == SDHCI_SIGNAL_ENABLE)) val &= ~(SDHCI_INT_TIMEOUT|SDHCI_INT_CRC); writel(val, host->ioaddr + reg); if (unlikely((soc_data->nvquirks & NVQUIRK_ENABLE_BLOCK_GAP_DET) && (reg == SDHCI_INT_ENABLE))) { /* Erratum: Must enable block gap interrupt detection */ u8 gap_ctrl = readb(host->ioaddr + SDHCI_BLOCK_GAP_CONTROL); if (val & SDHCI_INT_CARD_INT) gap_ctrl |= 0x8; else gap_ctrl &= ~0x8; writeb(gap_ctrl, host->ioaddr + SDHCI_BLOCK_GAP_CONTROL); } } static bool tegra_sdhci_configure_card_clk(struct sdhci_host *host, bool enable) { bool status; u32 reg; reg = sdhci_readw(host, SDHCI_CLOCK_CONTROL); status = !!(reg & SDHCI_CLOCK_CARD_EN); if (status == enable) return status; if (enable) reg |= SDHCI_CLOCK_CARD_EN; else reg &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL); return status; } static void tegra210_sdhci_writew(struct sdhci_host *host, u16 val, int reg) { bool is_tuning_cmd = 0; bool clk_enabled; u8 cmd; if (reg == SDHCI_COMMAND) { cmd = SDHCI_GET_CMD(val); is_tuning_cmd = cmd == MMC_SEND_TUNING_BLOCK || cmd == MMC_SEND_TUNING_BLOCK_HS200; } if (is_tuning_cmd) clk_enabled = tegra_sdhci_configure_card_clk(host, 0); writew(val, host->ioaddr + reg); if (is_tuning_cmd) { udelay(1); tegra_sdhci_configure_card_clk(host, clk_enabled); } } static unsigned int tegra_sdhci_get_ro(struct sdhci_host *host) { return mmc_gpio_get_ro(host->mmc); } static bool tegra_sdhci_is_pad_and_regulator_valid(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); int has_1v8, has_3v3; /* * The SoCs which have NVQUIRK_NEEDS_PAD_CONTROL require software pad * voltage configuration in order to perform voltage switching. This * means that valid pinctrl info is required on SDHCI instances capable * of performing voltage switching. Whether or not an SDHCI instance is * capable of voltage switching is determined based on the regulator. */ if (!(tegra_host->soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL)) return true; if (IS_ERR(host->mmc->supply.vqmmc)) return false; has_1v8 = regulator_is_supported_voltage(host->mmc->supply.vqmmc, 1700000, 1950000); has_3v3 = regulator_is_supported_voltage(host->mmc->supply.vqmmc, 2700000, 3600000); if (has_1v8 == 1 && has_3v3 == 1) return tegra_host->pad_control_available; /* Fixed voltage, no pad control required. */ return true; } static void tegra_sdhci_set_tap(struct sdhci_host *host, unsigned int tap) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; bool card_clk_enabled = false; u32 reg; /* * Touching the tap values is a bit tricky on some SoC generations. * The quirk enables a workaround for a glitch that sometimes occurs if * the tap values are changed. */ if (soc_data->nvquirks & NVQUIRK_DIS_CARD_CLK_CONFIG_TAP) card_clk_enabled = tegra_sdhci_configure_card_clk(host, false); reg = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL); reg &= ~SDHCI_CLOCK_CTRL_TAP_MASK; reg |= tap << SDHCI_CLOCK_CTRL_TAP_SHIFT; sdhci_writel(host, reg, SDHCI_TEGRA_VENDOR_CLOCK_CTRL); if (soc_data->nvquirks & NVQUIRK_DIS_CARD_CLK_CONFIG_TAP && card_clk_enabled) { udelay(1); sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); tegra_sdhci_configure_card_clk(host, card_clk_enabled); } } static void tegra_sdhci_hs400_enhanced_strobe(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); u32 val; val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_SYS_SW_CTRL); if (ios->enhanced_strobe) val |= SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE; else val &= ~SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE; sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_SYS_SW_CTRL); } static void tegra_sdhci_reset(struct sdhci_host *host, u8 mask) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; u32 misc_ctrl, clk_ctrl, pad_ctrl; sdhci_reset(host, mask); if (!(mask & SDHCI_RESET_ALL)) return; tegra_sdhci_set_tap(host, tegra_host->default_tap); misc_ctrl = sdhci_readl(host, SDHCI_TEGRA_VENDOR_MISC_CTRL); clk_ctrl = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL); misc_ctrl &= ~(SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300 | SDHCI_MISC_CTRL_ENABLE_SDR50 | SDHCI_MISC_CTRL_ENABLE_DDR50 | SDHCI_MISC_CTRL_ENABLE_SDR104); clk_ctrl &= ~(SDHCI_CLOCK_CTRL_TRIM_MASK | SDHCI_CLOCK_CTRL_SPI_MODE_CLKEN_OVERRIDE); if (tegra_sdhci_is_pad_and_regulator_valid(host)) { /* Erratum: Enable SDHCI spec v3.00 support */ if (soc_data->nvquirks & NVQUIRK_ENABLE_SDHCI_SPEC_300) misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300; /* Advertise UHS modes as supported by host */ if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR50) misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDR50; if (soc_data->nvquirks & NVQUIRK_ENABLE_DDR50) misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_DDR50; if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR104) misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDR104; if (soc_data->nvquirks & SDHCI_MISC_CTRL_ENABLE_SDR50) clk_ctrl |= SDHCI_CLOCK_CTRL_SDR50_TUNING_OVERRIDE; } clk_ctrl |= tegra_host->default_trim << SDHCI_CLOCK_CTRL_TRIM_SHIFT; sdhci_writel(host, misc_ctrl, SDHCI_TEGRA_VENDOR_MISC_CTRL); sdhci_writel(host, clk_ctrl, SDHCI_TEGRA_VENDOR_CLOCK_CTRL); if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB) { pad_ctrl = sdhci_readl(host, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); pad_ctrl &= ~SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_MASK; pad_ctrl |= SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_VAL; sdhci_writel(host, pad_ctrl, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); tegra_host->pad_calib_required = true; } tegra_host->ddr_signaling = false; } static void tegra_sdhci_configure_cal_pad(struct sdhci_host *host, bool enable) { u32 val; /* * Enable or disable the additional I/O pad used by the drive strength * calibration process. */ val = sdhci_readl(host, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); if (enable) val |= SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD; else val &= ~SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD; sdhci_writel(host, val, SDHCI_TEGRA_SDMEM_COMP_PADCTRL); if (enable) usleep_range(1, 2); } static void tegra_sdhci_set_pad_autocal_offset(struct sdhci_host *host, u16 pdpu) { u32 reg; reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG); reg &= ~SDHCI_AUTO_CAL_PDPU_OFFSET_MASK; reg |= pdpu; sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG); } static void tegra_sdhci_pad_autocalib(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); struct sdhci_tegra_autocal_offsets offsets = tegra_host->autocal_offsets; struct mmc_ios *ios = &host->mmc->ios; bool card_clk_enabled; u16 pdpu; u32 reg; int ret; switch (ios->timing) { case MMC_TIMING_UHS_SDR104: pdpu = offsets.pull_down_sdr104 << 8 | offsets.pull_up_sdr104; break; case MMC_TIMING_MMC_HS400: pdpu = offsets.pull_down_hs400 << 8 | offsets.pull_up_hs400; break; default: if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) pdpu = offsets.pull_down_1v8 << 8 | offsets.pull_up_1v8; else pdpu = offsets.pull_down_3v3 << 8 | offsets.pull_up_3v3; } tegra_sdhci_set_pad_autocal_offset(host, pdpu); card_clk_enabled = tegra_sdhci_configure_card_clk(host, false); tegra_sdhci_configure_cal_pad(host, true); reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG); reg |= SDHCI_AUTO_CAL_ENABLE | SDHCI_AUTO_CAL_START; sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG); usleep_range(1, 2); /* 10 ms timeout */ ret = readl_poll_timeout(host->ioaddr + SDHCI_TEGRA_AUTO_CAL_STATUS, reg, !(reg & SDHCI_TEGRA_AUTO_CAL_ACTIVE), 1000, 10000); tegra_sdhci_configure_cal_pad(host, false); tegra_sdhci_configure_card_clk(host, card_clk_enabled); if (ret) { dev_err(mmc_dev(host->mmc), "Pad autocal timed out\n"); if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) pdpu = offsets.pull_down_1v8_timeout << 8 | offsets.pull_up_1v8_timeout; else pdpu = offsets.pull_down_3v3_timeout << 8 | offsets.pull_up_3v3_timeout; /* Disable automatic calibration and use fixed offsets */ reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG); reg &= ~SDHCI_AUTO_CAL_ENABLE; sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG); tegra_sdhci_set_pad_autocal_offset(host, pdpu); } } static void tegra_sdhci_parse_pad_autocal_dt(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); struct sdhci_tegra_autocal_offsets *autocal = &tegra_host->autocal_offsets; int err; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-up-offset-3v3", &autocal->pull_up_3v3); if (err) autocal->pull_up_3v3 = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-down-offset-3v3", &autocal->pull_down_3v3); if (err) autocal->pull_down_3v3 = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-up-offset-1v8", &autocal->pull_up_1v8); if (err) autocal->pull_up_1v8 = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-down-offset-1v8", &autocal->pull_down_1v8); if (err) autocal->pull_down_1v8 = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-up-offset-3v3-timeout", &autocal->pull_up_3v3_timeout); if (err) autocal->pull_up_3v3_timeout = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-down-offset-3v3-timeout", &autocal->pull_down_3v3_timeout); if (err) autocal->pull_down_3v3_timeout = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-up-offset-1v8-timeout", &autocal->pull_up_1v8_timeout); if (err) autocal->pull_up_1v8_timeout = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-down-offset-1v8-timeout", &autocal->pull_down_1v8_timeout); if (err) autocal->pull_down_1v8_timeout = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-up-offset-sdr104", &autocal->pull_up_sdr104); if (err) autocal->pull_up_sdr104 = autocal->pull_up_1v8; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-down-offset-sdr104", &autocal->pull_down_sdr104); if (err) autocal->pull_down_sdr104 = autocal->pull_down_1v8; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-up-offset-hs400", &autocal->pull_up_hs400); if (err) autocal->pull_up_hs400 = autocal->pull_up_1v8; err = device_property_read_u32(host->mmc->parent, "nvidia,pad-autocal-pull-down-offset-hs400", &autocal->pull_down_hs400); if (err) autocal->pull_down_hs400 = autocal->pull_down_1v8; } static void tegra_sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); ktime_t since_calib = ktime_sub(ktime_get(), tegra_host->last_calib); /* 100 ms calibration interval is specified in the TRM */ if (ktime_to_ms(since_calib) > 100) { tegra_sdhci_pad_autocalib(host); tegra_host->last_calib = ktime_get(); } sdhci_request(mmc, mrq); } static void tegra_sdhci_parse_tap_and_trim(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); int err; err = device_property_read_u32(host->mmc->parent, "nvidia,default-tap", &tegra_host->default_tap); if (err) tegra_host->default_tap = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,default-trim", &tegra_host->default_trim); if (err) tegra_host->default_trim = 0; err = device_property_read_u32(host->mmc->parent, "nvidia,dqs-trim", &tegra_host->dqs_trim); if (err) tegra_host->dqs_trim = 0x11; } static void tegra_sdhci_set_clock(struct sdhci_host *host, unsigned int clock) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); unsigned long host_clk; if (!clock) return sdhci_set_clock(host, clock); /* * In DDR50/52 modes the Tegra SDHCI controllers require the SDHCI * divider to be configured to divided the host clock by two. The SDHCI * clock divider is calculated as part of sdhci_set_clock() by * sdhci_calc_clk(). The divider is calculated from host->max_clk and * the requested clock rate. * * By setting the host->max_clk to clock * 2 the divider calculation * will always result in the correct value for DDR50/52 modes, * regardless of clock rate rounding, which may happen if the value * from clk_get_rate() is used. */ host_clk = tegra_host->ddr_signaling ? clock * 2 : clock; clk_set_rate(pltfm_host->clk, host_clk); if (tegra_host->ddr_signaling) host->max_clk = host_clk; else host->max_clk = clk_get_rate(pltfm_host->clk); sdhci_set_clock(host, clock); if (tegra_host->pad_calib_required) { tegra_sdhci_pad_autocalib(host); tegra_host->pad_calib_required = false; } } static unsigned int tegra_sdhci_get_max_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); return clk_round_rate(pltfm_host->clk, UINT_MAX); } static void tegra_sdhci_set_dqs_trim(struct sdhci_host *host, u8 trim) { u32 val; val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CAP_OVERRIDES); val &= ~SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_MASK; val |= trim << SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_SHIFT; sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_CAP_OVERRIDES); } static void tegra_sdhci_hs400_dll_cal(struct sdhci_host *host) { u32 reg; int err; reg = sdhci_readl(host, SDHCI_TEGRA_VENDOR_DLLCAL_CFG); reg |= SDHCI_TEGRA_DLLCAL_CALIBRATE; sdhci_writel(host, reg, SDHCI_TEGRA_VENDOR_DLLCAL_CFG); /* 1 ms sleep, 5 ms timeout */ err = readl_poll_timeout(host->ioaddr + SDHCI_TEGRA_VENDOR_DLLCAL_STA, reg, !(reg & SDHCI_TEGRA_DLLCAL_STA_ACTIVE), 1000, 5000); if (err) dev_err(mmc_dev(host->mmc), "HS400 delay line calibration timed out\n"); } static void tegra_sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); bool set_default_tap = false; bool set_dqs_trim = false; bool do_hs400_dll_cal = false; switch (timing) { case MMC_TIMING_UHS_SDR50: case MMC_TIMING_UHS_SDR104: case MMC_TIMING_MMC_HS200: /* Don't set default tap on tunable modes. */ break; case MMC_TIMING_MMC_HS400: set_dqs_trim = true; do_hs400_dll_cal = true; break; case MMC_TIMING_MMC_DDR52: case MMC_TIMING_UHS_DDR50: tegra_host->ddr_signaling = true; set_default_tap = true; break; default: set_default_tap = true; break; } sdhci_set_uhs_signaling(host, timing); tegra_sdhci_pad_autocalib(host); if (set_default_tap) tegra_sdhci_set_tap(host, tegra_host->default_tap); if (set_dqs_trim) tegra_sdhci_set_dqs_trim(host, tegra_host->dqs_trim); if (do_hs400_dll_cal) tegra_sdhci_hs400_dll_cal(host); } static int tegra_sdhci_execute_tuning(struct sdhci_host *host, u32 opcode) { unsigned int min, max; /* * Start search for minimum tap value at 10, as smaller values are * may wrongly be reported as working but fail at higher speeds, * according to the TRM. */ min = 10; while (min < 255) { tegra_sdhci_set_tap(host, min); if (!mmc_send_tuning(host->mmc, opcode, NULL)) break; min++; } /* Find the maximum tap value that still passes. */ max = min + 1; while (max < 255) { tegra_sdhci_set_tap(host, max); if (mmc_send_tuning(host->mmc, opcode, NULL)) { max--; break; } max++; } /* The TRM states the ideal tap value is at 75% in the passing range. */ tegra_sdhci_set_tap(host, min + ((max - min) * 3 / 4)); return mmc_send_tuning(host->mmc, opcode, NULL); } static int tegra_sdhci_set_padctrl(struct sdhci_host *host, int voltage) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); int ret; if (!tegra_host->pad_control_available) return 0; if (voltage == MMC_SIGNAL_VOLTAGE_180) { ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc, tegra_host->pinctrl_state_1v8); if (ret < 0) dev_err(mmc_dev(host->mmc), "setting 1.8V failed, ret: %d\n", ret); } else { ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc, tegra_host->pinctrl_state_3v3); if (ret < 0) dev_err(mmc_dev(host->mmc), "setting 3.3V failed, ret: %d\n", ret); } return ret; } static int sdhci_tegra_start_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); int ret = 0; if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) { ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage); if (ret < 0) return ret; ret = sdhci_start_signal_voltage_switch(mmc, ios); } else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) { ret = sdhci_start_signal_voltage_switch(mmc, ios); if (ret < 0) return ret; ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage); } if (tegra_host->pad_calib_required) tegra_sdhci_pad_autocalib(host); return ret; } static int tegra_sdhci_init_pinctrl_info(struct device *dev, struct sdhci_tegra *tegra_host) { tegra_host->pinctrl_sdmmc = devm_pinctrl_get(dev); if (IS_ERR(tegra_host->pinctrl_sdmmc)) { dev_dbg(dev, "No pinctrl info, err: %ld\n", PTR_ERR(tegra_host->pinctrl_sdmmc)); return -1; } tegra_host->pinctrl_state_3v3 = pinctrl_lookup_state(tegra_host->pinctrl_sdmmc, "sdmmc-3v3"); if (IS_ERR(tegra_host->pinctrl_state_3v3)) { dev_warn(dev, "Missing 3.3V pad state, err: %ld\n", PTR_ERR(tegra_host->pinctrl_state_3v3)); return -1; } tegra_host->pinctrl_state_1v8 = pinctrl_lookup_state(tegra_host->pinctrl_sdmmc, "sdmmc-1v8"); if (IS_ERR(tegra_host->pinctrl_state_1v8)) { dev_warn(dev, "Missing 1.8V pad state, err: %ld\n", PTR_ERR(tegra_host->pinctrl_state_1v8)); return -1; } tegra_host->pad_control_available = true; return 0; } static void tegra_sdhci_voltage_switch(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data; if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB) tegra_host->pad_calib_required = true; } static const struct sdhci_ops tegra_sdhci_ops = { .get_ro = tegra_sdhci_get_ro, .read_w = tegra_sdhci_readw, .write_l = tegra_sdhci_writel, .set_clock = tegra_sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .reset = tegra_sdhci_reset, .platform_execute_tuning = tegra_sdhci_execute_tuning, .set_uhs_signaling = tegra_sdhci_set_uhs_signaling, .voltage_switch = tegra_sdhci_voltage_switch, .get_max_clock = tegra_sdhci_get_max_clock, }; static const struct sdhci_pltfm_data sdhci_tegra20_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .ops = &tegra_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra20 = { .pdata = &sdhci_tegra20_pdata, .nvquirks = NVQUIRK_FORCE_SDHCI_SPEC_200 | NVQUIRK_ENABLE_BLOCK_GAP_DET, }; static const struct sdhci_pltfm_data sdhci_tegra30_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_BROKEN_HS200 | /* * Auto-CMD23 leads to "Got command interrupt 0x00010000 even * though no command operation was in progress." * * The exact reason is unknown, as the same hardware seems * to support Auto CMD23 on a downstream 3.1 kernel. */ SDHCI_QUIRK2_ACMD23_BROKEN, .ops = &tegra_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra30 = { .pdata = &sdhci_tegra30_pdata, .nvquirks = NVQUIRK_ENABLE_SDHCI_SPEC_300 | NVQUIRK_ENABLE_SDR50 | NVQUIRK_ENABLE_SDR104 | NVQUIRK_HAS_PADCALIB, }; static const struct sdhci_ops tegra114_sdhci_ops = { .get_ro = tegra_sdhci_get_ro, .read_w = tegra_sdhci_readw, .write_w = tegra_sdhci_writew, .write_l = tegra_sdhci_writel, .set_clock = tegra_sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .reset = tegra_sdhci_reset, .platform_execute_tuning = tegra_sdhci_execute_tuning, .set_uhs_signaling = tegra_sdhci_set_uhs_signaling, .voltage_switch = tegra_sdhci_voltage_switch, .get_max_clock = tegra_sdhci_get_max_clock, }; static const struct sdhci_pltfm_data sdhci_tegra114_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .ops = &tegra114_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra114 = { .pdata = &sdhci_tegra114_pdata, }; static const struct sdhci_pltfm_data sdhci_tegra124_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | /* * The TRM states that the SD/MMC controller found on * Tegra124 can address 34 bits (the maximum supported by * the Tegra memory controller), but tests show that DMA * to or from above 4 GiB doesn't work. This is possibly * caused by missing programming, though it's not obvious * what sequence is required. Mark 64-bit DMA broken for * now to fix this for existing users (e.g. Nyan boards). */ SDHCI_QUIRK2_BROKEN_64_BIT_DMA, .ops = &tegra114_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra124 = { .pdata = &sdhci_tegra124_pdata, }; static const struct sdhci_ops tegra210_sdhci_ops = { .get_ro = tegra_sdhci_get_ro, .read_w = tegra_sdhci_readw, .write_w = tegra210_sdhci_writew, .write_l = tegra_sdhci_writel, .set_clock = tegra_sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .reset = tegra_sdhci_reset, .set_uhs_signaling = tegra_sdhci_set_uhs_signaling, .voltage_switch = tegra_sdhci_voltage_switch, .get_max_clock = tegra_sdhci_get_max_clock, }; static const struct sdhci_pltfm_data sdhci_tegra210_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .ops = &tegra210_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra210 = { .pdata = &sdhci_tegra210_pdata, .nvquirks = NVQUIRK_NEEDS_PAD_CONTROL | NVQUIRK_HAS_PADCALIB | NVQUIRK_DIS_CARD_CLK_CONFIG_TAP | NVQUIRK_ENABLE_SDR50 | NVQUIRK_ENABLE_SDR104, }; static const struct sdhci_ops tegra186_sdhci_ops = { .get_ro = tegra_sdhci_get_ro, .read_w = tegra_sdhci_readw, .write_l = tegra_sdhci_writel, .set_clock = tegra_sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .reset = tegra_sdhci_reset, .set_uhs_signaling = tegra_sdhci_set_uhs_signaling, .voltage_switch = tegra_sdhci_voltage_switch, .get_max_clock = tegra_sdhci_get_max_clock, }; static const struct sdhci_pltfm_data sdhci_tegra186_pdata = { .quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_NO_HISPD_BIT | SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | /* SDHCI controllers on Tegra186 support 40-bit addressing. * IOVA addresses are 48-bit wide on Tegra186. * With 64-bit dma mask used for SDHCI, accesses can * be broken. Disable 64-bit dma, which would fall back * to 32-bit dma mask. Ideally 40-bit dma mask would work, * But it is not supported as of now. */ SDHCI_QUIRK2_BROKEN_64_BIT_DMA, .ops = &tegra186_sdhci_ops, }; static const struct sdhci_tegra_soc_data soc_data_tegra186 = { .pdata = &sdhci_tegra186_pdata, .nvquirks = NVQUIRK_NEEDS_PAD_CONTROL | NVQUIRK_HAS_PADCALIB | NVQUIRK_DIS_CARD_CLK_CONFIG_TAP | NVQUIRK_ENABLE_SDR50 | NVQUIRK_ENABLE_SDR104, }; static const struct of_device_id sdhci_tegra_dt_match[] = { { .compatible = "nvidia,tegra186-sdhci", .data = &soc_data_tegra186 }, { .compatible = "nvidia,tegra210-sdhci", .data = &soc_data_tegra210 }, { .compatible = "nvidia,tegra124-sdhci", .data = &soc_data_tegra124 }, { .compatible = "nvidia,tegra114-sdhci", .data = &soc_data_tegra114 }, { .compatible = "nvidia,tegra30-sdhci", .data = &soc_data_tegra30 }, { .compatible = "nvidia,tegra20-sdhci", .data = &soc_data_tegra20 }, {} }; MODULE_DEVICE_TABLE(of, sdhci_tegra_dt_match); static int sdhci_tegra_probe(struct platform_device *pdev) { const struct of_device_id *match; const struct sdhci_tegra_soc_data *soc_data; struct sdhci_host *host; struct sdhci_pltfm_host *pltfm_host; struct sdhci_tegra *tegra_host; struct clk *clk; int rc; match = of_match_device(sdhci_tegra_dt_match, &pdev->dev); if (!match) return -EINVAL; soc_data = match->data; host = sdhci_pltfm_init(pdev, soc_data->pdata, sizeof(*tegra_host)); if (IS_ERR(host)) return PTR_ERR(host); pltfm_host = sdhci_priv(host); tegra_host = sdhci_pltfm_priv(pltfm_host); tegra_host->ddr_signaling = false; tegra_host->pad_calib_required = false; tegra_host->pad_control_available = false; tegra_host->soc_data = soc_data; if (soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL) { rc = tegra_sdhci_init_pinctrl_info(&pdev->dev, tegra_host); if (rc == 0) host->mmc_host_ops.start_signal_voltage_switch = sdhci_tegra_start_signal_voltage_switch; } /* Hook to periodically rerun pad calibration */ if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB) host->mmc_host_ops.request = tegra_sdhci_request; host->mmc_host_ops.hs400_enhanced_strobe = tegra_sdhci_hs400_enhanced_strobe; rc = mmc_of_parse(host->mmc); if (rc) goto err_parse_dt; if (tegra_host->soc_data->nvquirks & NVQUIRK_ENABLE_DDR50) host->mmc->caps |= MMC_CAP_1_8V_DDR; tegra_sdhci_parse_pad_autocal_dt(host); tegra_sdhci_parse_tap_and_trim(host); tegra_host->power_gpio = devm_gpiod_get_optional(&pdev->dev, "power", GPIOD_OUT_HIGH); if (IS_ERR(tegra_host->power_gpio)) { rc = PTR_ERR(tegra_host->power_gpio); goto err_power_req; } clk = devm_clk_get(mmc_dev(host->mmc), NULL); if (IS_ERR(clk)) { dev_err(mmc_dev(host->mmc), "clk err\n"); rc = PTR_ERR(clk); goto err_clk_get; } clk_prepare_enable(clk); pltfm_host->clk = clk; tegra_host->rst = devm_reset_control_get_exclusive(&pdev->dev, "sdhci"); if (IS_ERR(tegra_host->rst)) { rc = PTR_ERR(tegra_host->rst); dev_err(&pdev->dev, "failed to get reset control: %d\n", rc); goto err_rst_get; } rc = reset_control_assert(tegra_host->rst); if (rc) goto err_rst_get; usleep_range(2000, 4000); rc = reset_control_deassert(tegra_host->rst); if (rc) goto err_rst_get; usleep_range(2000, 4000); rc = sdhci_add_host(host); if (rc) goto err_add_host; return 0; err_add_host: reset_control_assert(tegra_host->rst); err_rst_get: clk_disable_unprepare(pltfm_host->clk); err_clk_get: err_power_req: err_parse_dt: sdhci_pltfm_free(pdev); return rc; } static int sdhci_tegra_remove(struct platform_device *pdev) { struct sdhci_host *host = platform_get_drvdata(pdev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host); sdhci_remove_host(host, 0); reset_control_assert(tegra_host->rst); usleep_range(2000, 4000); clk_disable_unprepare(pltfm_host->clk); sdhci_pltfm_free(pdev); return 0; } static struct platform_driver sdhci_tegra_driver = { .driver = { .name = "sdhci-tegra", .of_match_table = sdhci_tegra_dt_match, .pm = &sdhci_pltfm_pmops, }, .probe = sdhci_tegra_probe, .remove = sdhci_tegra_remove, }; module_platform_driver(sdhci_tegra_driver); MODULE_DESCRIPTION("SDHCI driver for Tegra"); MODULE_AUTHOR("Google, Inc."); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1