Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guennadi Liakhovetski | 8561 | 96.55% | 2 | 15.38% |
Lars Persson | 260 | 2.93% | 2 | 15.38% |
Rabin Vincent | 30 | 0.34% | 4 | 30.77% |
Julia Lawall | 12 | 0.14% | 2 | 15.38% |
Wolfram Sang | 2 | 0.02% | 1 | 7.69% |
Kirill A. Shutemov | 1 | 0.01% | 1 | 7.69% |
Geliang Tang | 1 | 0.01% | 1 | 7.69% |
Total | 8867 | 13 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd. * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/highmem.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/log2.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/sd.h> #include <linux/mmc/sdio.h> #include <linux/module.h> #include <linux/pagemap.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <linux/string.h> #include <linux/time.h> #include <linux/virtio.h> #include <linux/workqueue.h> #define USDHI6_SD_CMD 0x0000 #define USDHI6_SD_PORT_SEL 0x0004 #define USDHI6_SD_ARG 0x0008 #define USDHI6_SD_STOP 0x0010 #define USDHI6_SD_SECCNT 0x0014 #define USDHI6_SD_RSP10 0x0018 #define USDHI6_SD_RSP32 0x0020 #define USDHI6_SD_RSP54 0x0028 #define USDHI6_SD_RSP76 0x0030 #define USDHI6_SD_INFO1 0x0038 #define USDHI6_SD_INFO2 0x003c #define USDHI6_SD_INFO1_MASK 0x0040 #define USDHI6_SD_INFO2_MASK 0x0044 #define USDHI6_SD_CLK_CTRL 0x0048 #define USDHI6_SD_SIZE 0x004c #define USDHI6_SD_OPTION 0x0050 #define USDHI6_SD_ERR_STS1 0x0058 #define USDHI6_SD_ERR_STS2 0x005c #define USDHI6_SD_BUF0 0x0060 #define USDHI6_SDIO_MODE 0x0068 #define USDHI6_SDIO_INFO1 0x006c #define USDHI6_SDIO_INFO1_MASK 0x0070 #define USDHI6_CC_EXT_MODE 0x01b0 #define USDHI6_SOFT_RST 0x01c0 #define USDHI6_VERSION 0x01c4 #define USDHI6_HOST_MODE 0x01c8 #define USDHI6_SDIF_MODE 0x01cc #define USDHI6_SD_CMD_APP 0x0040 #define USDHI6_SD_CMD_MODE_RSP_AUTO 0x0000 #define USDHI6_SD_CMD_MODE_RSP_NONE 0x0300 #define USDHI6_SD_CMD_MODE_RSP_R1 0x0400 /* Also R5, R6, R7 */ #define USDHI6_SD_CMD_MODE_RSP_R1B 0x0500 /* R1b */ #define USDHI6_SD_CMD_MODE_RSP_R2 0x0600 #define USDHI6_SD_CMD_MODE_RSP_R3 0x0700 /* Also R4 */ #define USDHI6_SD_CMD_DATA 0x0800 #define USDHI6_SD_CMD_READ 0x1000 #define USDHI6_SD_CMD_MULTI 0x2000 #define USDHI6_SD_CMD_CMD12_AUTO_OFF 0x4000 #define USDHI6_CC_EXT_MODE_SDRW BIT(1) #define USDHI6_SD_INFO1_RSP_END BIT(0) #define USDHI6_SD_INFO1_ACCESS_END BIT(2) #define USDHI6_SD_INFO1_CARD_OUT BIT(3) #define USDHI6_SD_INFO1_CARD_IN BIT(4) #define USDHI6_SD_INFO1_CD BIT(5) #define USDHI6_SD_INFO1_WP BIT(7) #define USDHI6_SD_INFO1_D3_CARD_OUT BIT(8) #define USDHI6_SD_INFO1_D3_CARD_IN BIT(9) #define USDHI6_SD_INFO2_CMD_ERR BIT(0) #define USDHI6_SD_INFO2_CRC_ERR BIT(1) #define USDHI6_SD_INFO2_END_ERR BIT(2) #define USDHI6_SD_INFO2_TOUT BIT(3) #define USDHI6_SD_INFO2_IWA_ERR BIT(4) #define USDHI6_SD_INFO2_IRA_ERR BIT(5) #define USDHI6_SD_INFO2_RSP_TOUT BIT(6) #define USDHI6_SD_INFO2_SDDAT0 BIT(7) #define USDHI6_SD_INFO2_BRE BIT(8) #define USDHI6_SD_INFO2_BWE BIT(9) #define USDHI6_SD_INFO2_SCLKDIVEN BIT(13) #define USDHI6_SD_INFO2_CBSY BIT(14) #define USDHI6_SD_INFO2_ILA BIT(15) #define USDHI6_SD_INFO1_CARD_INSERT (USDHI6_SD_INFO1_CARD_IN | USDHI6_SD_INFO1_D3_CARD_IN) #define USDHI6_SD_INFO1_CARD_EJECT (USDHI6_SD_INFO1_CARD_OUT | USDHI6_SD_INFO1_D3_CARD_OUT) #define USDHI6_SD_INFO1_CARD (USDHI6_SD_INFO1_CARD_INSERT | USDHI6_SD_INFO1_CARD_EJECT) #define USDHI6_SD_INFO1_CARD_CD (USDHI6_SD_INFO1_CARD_IN | USDHI6_SD_INFO1_CARD_OUT) #define USDHI6_SD_INFO2_ERR (USDHI6_SD_INFO2_CMD_ERR | \ USDHI6_SD_INFO2_CRC_ERR | USDHI6_SD_INFO2_END_ERR | \ USDHI6_SD_INFO2_TOUT | USDHI6_SD_INFO2_IWA_ERR | \ USDHI6_SD_INFO2_IRA_ERR | USDHI6_SD_INFO2_RSP_TOUT | \ USDHI6_SD_INFO2_ILA) #define USDHI6_SD_INFO1_IRQ (USDHI6_SD_INFO1_RSP_END | USDHI6_SD_INFO1_ACCESS_END | \ USDHI6_SD_INFO1_CARD) #define USDHI6_SD_INFO2_IRQ (USDHI6_SD_INFO2_ERR | USDHI6_SD_INFO2_BRE | \ USDHI6_SD_INFO2_BWE | 0x0800 | USDHI6_SD_INFO2_ILA) #define USDHI6_SD_CLK_CTRL_SCLKEN BIT(8) #define USDHI6_SD_STOP_STP BIT(0) #define USDHI6_SD_STOP_SEC BIT(8) #define USDHI6_SDIO_INFO1_IOIRQ BIT(0) #define USDHI6_SDIO_INFO1_EXPUB52 BIT(14) #define USDHI6_SDIO_INFO1_EXWT BIT(15) #define USDHI6_SD_ERR_STS1_CRC_NO_ERROR BIT(13) #define USDHI6_SOFT_RST_RESERVED (BIT(1) | BIT(2)) #define USDHI6_SOFT_RST_RESET BIT(0) #define USDHI6_SD_OPTION_TIMEOUT_SHIFT 4 #define USDHI6_SD_OPTION_TIMEOUT_MASK (0xf << USDHI6_SD_OPTION_TIMEOUT_SHIFT) #define USDHI6_SD_OPTION_WIDTH_1 BIT(15) #define USDHI6_SD_PORT_SEL_PORTS_SHIFT 8 #define USDHI6_SD_CLK_CTRL_DIV_MASK 0xff #define USDHI6_SDIO_INFO1_IRQ (USDHI6_SDIO_INFO1_IOIRQ | 3 | \ USDHI6_SDIO_INFO1_EXPUB52 | USDHI6_SDIO_INFO1_EXWT) #define USDHI6_MIN_DMA 64 enum usdhi6_wait_for { USDHI6_WAIT_FOR_REQUEST, USDHI6_WAIT_FOR_CMD, USDHI6_WAIT_FOR_MREAD, USDHI6_WAIT_FOR_MWRITE, USDHI6_WAIT_FOR_READ, USDHI6_WAIT_FOR_WRITE, USDHI6_WAIT_FOR_DATA_END, USDHI6_WAIT_FOR_STOP, USDHI6_WAIT_FOR_DMA, }; struct usdhi6_page { struct page *page; void *mapped; /* mapped page */ }; struct usdhi6_host { struct mmc_host *mmc; struct mmc_request *mrq; void __iomem *base; struct clk *clk; /* SG memory handling */ /* Common for multiple and single block requests */ struct usdhi6_page pg; /* current page from an SG */ void *blk_page; /* either a mapped page, or the bounce buffer */ size_t offset; /* offset within a page, including sg->offset */ /* Blocks, crossing a page boundary */ size_t head_len; struct usdhi6_page head_pg; /* A bounce buffer for unaligned blocks or blocks, crossing a page boundary */ struct scatterlist bounce_sg; u8 bounce_buf[512]; /* Multiple block requests only */ struct scatterlist *sg; /* current SG segment */ int page_idx; /* page index within an SG segment */ enum usdhi6_wait_for wait; u32 status_mask; u32 status2_mask; u32 sdio_mask; u32 io_error; u32 irq_status; unsigned long imclk; unsigned long rate; bool app_cmd; /* Timeout handling */ struct delayed_work timeout_work; unsigned long timeout; /* DMA support */ struct dma_chan *chan_rx; struct dma_chan *chan_tx; bool dma_active; /* Pin control */ struct pinctrl *pinctrl; struct pinctrl_state *pins_default; struct pinctrl_state *pins_uhs; }; /* I/O primitives */ static void usdhi6_write(struct usdhi6_host *host, u32 reg, u32 data) { iowrite32(data, host->base + reg); dev_vdbg(mmc_dev(host->mmc), "%s(0x%p + 0x%x) = 0x%x\n", __func__, host->base, reg, data); } static void usdhi6_write16(struct usdhi6_host *host, u32 reg, u16 data) { iowrite16(data, host->base + reg); dev_vdbg(mmc_dev(host->mmc), "%s(0x%p + 0x%x) = 0x%x\n", __func__, host->base, reg, data); } static u32 usdhi6_read(struct usdhi6_host *host, u32 reg) { u32 data = ioread32(host->base + reg); dev_vdbg(mmc_dev(host->mmc), "%s(0x%p + 0x%x) = 0x%x\n", __func__, host->base, reg, data); return data; } static u16 usdhi6_read16(struct usdhi6_host *host, u32 reg) { u16 data = ioread16(host->base + reg); dev_vdbg(mmc_dev(host->mmc), "%s(0x%p + 0x%x) = 0x%x\n", __func__, host->base, reg, data); return data; } static void usdhi6_irq_enable(struct usdhi6_host *host, u32 info1, u32 info2) { host->status_mask = USDHI6_SD_INFO1_IRQ & ~info1; host->status2_mask = USDHI6_SD_INFO2_IRQ & ~info2; usdhi6_write(host, USDHI6_SD_INFO1_MASK, host->status_mask); usdhi6_write(host, USDHI6_SD_INFO2_MASK, host->status2_mask); } static void usdhi6_wait_for_resp(struct usdhi6_host *host) { usdhi6_irq_enable(host, USDHI6_SD_INFO1_RSP_END | USDHI6_SD_INFO1_ACCESS_END | USDHI6_SD_INFO1_CARD_CD, USDHI6_SD_INFO2_ERR); } static void usdhi6_wait_for_brwe(struct usdhi6_host *host, bool read) { usdhi6_irq_enable(host, USDHI6_SD_INFO1_ACCESS_END | USDHI6_SD_INFO1_CARD_CD, USDHI6_SD_INFO2_ERR | (read ? USDHI6_SD_INFO2_BRE : USDHI6_SD_INFO2_BWE)); } static void usdhi6_only_cd(struct usdhi6_host *host) { /* Mask all except card hotplug */ usdhi6_irq_enable(host, USDHI6_SD_INFO1_CARD_CD, 0); } static void usdhi6_mask_all(struct usdhi6_host *host) { usdhi6_irq_enable(host, 0, 0); } static int usdhi6_error_code(struct usdhi6_host *host) { u32 err; usdhi6_write(host, USDHI6_SD_STOP, USDHI6_SD_STOP_STP); if (host->io_error & (USDHI6_SD_INFO2_RSP_TOUT | USDHI6_SD_INFO2_TOUT)) { u32 rsp54 = usdhi6_read(host, USDHI6_SD_RSP54); int opc = host->mrq ? host->mrq->cmd->opcode : -1; err = usdhi6_read(host, USDHI6_SD_ERR_STS2); /* Response timeout is often normal, don't spam the log */ if (host->wait == USDHI6_WAIT_FOR_CMD) dev_dbg(mmc_dev(host->mmc), "T-out sts 0x%x, resp 0x%x, state %u, CMD%d\n", err, rsp54, host->wait, opc); else dev_warn(mmc_dev(host->mmc), "T-out sts 0x%x, resp 0x%x, state %u, CMD%d\n", err, rsp54, host->wait, opc); return -ETIMEDOUT; } err = usdhi6_read(host, USDHI6_SD_ERR_STS1); if (err != USDHI6_SD_ERR_STS1_CRC_NO_ERROR) dev_warn(mmc_dev(host->mmc), "Err sts 0x%x, state %u, CMD%d\n", err, host->wait, host->mrq ? host->mrq->cmd->opcode : -1); if (host->io_error & USDHI6_SD_INFO2_ILA) return -EILSEQ; return -EIO; } /* Scatter-Gather management */ /* * In PIO mode we have to map each page separately, using kmap(). That way * adjacent pages are mapped to non-adjacent virtual addresses. That's why we * have to use a bounce buffer for blocks, crossing page boundaries. Such blocks * have been observed with an SDIO WiFi card (b43 driver). */ static void usdhi6_blk_bounce(struct usdhi6_host *host, struct scatterlist *sg) { struct mmc_data *data = host->mrq->data; size_t blk_head = host->head_len; dev_dbg(mmc_dev(host->mmc), "%s(): CMD%u of %u SG: %ux%u @ 0x%x\n", __func__, host->mrq->cmd->opcode, data->sg_len, data->blksz, data->blocks, sg->offset); host->head_pg.page = host->pg.page; host->head_pg.mapped = host->pg.mapped; host->pg.page = nth_page(host->pg.page, 1); host->pg.mapped = kmap(host->pg.page); host->blk_page = host->bounce_buf; host->offset = 0; if (data->flags & MMC_DATA_READ) return; memcpy(host->bounce_buf, host->head_pg.mapped + PAGE_SIZE - blk_head, blk_head); memcpy(host->bounce_buf + blk_head, host->pg.mapped, data->blksz - blk_head); } /* Only called for multiple block IO */ static void usdhi6_sg_prep(struct usdhi6_host *host) { struct mmc_request *mrq = host->mrq; struct mmc_data *data = mrq->data; usdhi6_write(host, USDHI6_SD_SECCNT, data->blocks); host->sg = data->sg; /* TODO: if we always map, this is redundant */ host->offset = host->sg->offset; } /* Map the first page in an SG segment: common for multiple and single block IO */ static void *usdhi6_sg_map(struct usdhi6_host *host) { struct mmc_data *data = host->mrq->data; struct scatterlist *sg = data->sg_len > 1 ? host->sg : data->sg; size_t head = PAGE_SIZE - sg->offset; size_t blk_head = head % data->blksz; WARN(host->pg.page, "%p not properly unmapped!\n", host->pg.page); if (WARN(sg_dma_len(sg) % data->blksz, "SG size %u isn't a multiple of block size %u\n", sg_dma_len(sg), data->blksz)) return NULL; host->pg.page = sg_page(sg); host->pg.mapped = kmap(host->pg.page); host->offset = sg->offset; /* * Block size must be a power of 2 for multi-block transfers, * therefore blk_head is equal for all pages in this SG */ host->head_len = blk_head; if (head < data->blksz) /* * The first block in the SG crosses a page boundary. * Max blksz = 512, so blocks can only span 2 pages */ usdhi6_blk_bounce(host, sg); else host->blk_page = host->pg.mapped; dev_dbg(mmc_dev(host->mmc), "Mapped %p (%lx) at %p + %u for CMD%u @ 0x%p\n", host->pg.page, page_to_pfn(host->pg.page), host->pg.mapped, sg->offset, host->mrq->cmd->opcode, host->mrq); return host->blk_page + host->offset; } /* Unmap the current page: common for multiple and single block IO */ static void usdhi6_sg_unmap(struct usdhi6_host *host, bool force) { struct mmc_data *data = host->mrq->data; struct page *page = host->head_pg.page; if (page) { /* Previous block was cross-page boundary */ struct scatterlist *sg = data->sg_len > 1 ? host->sg : data->sg; size_t blk_head = host->head_len; if (!data->error && data->flags & MMC_DATA_READ) { memcpy(host->head_pg.mapped + PAGE_SIZE - blk_head, host->bounce_buf, blk_head); memcpy(host->pg.mapped, host->bounce_buf + blk_head, data->blksz - blk_head); } flush_dcache_page(page); kunmap(page); host->head_pg.page = NULL; if (!force && sg_dma_len(sg) + sg->offset > (host->page_idx << PAGE_SHIFT) + data->blksz - blk_head) /* More blocks in this SG, don't unmap the next page */ return; } page = host->pg.page; if (!page) return; flush_dcache_page(page); kunmap(page); host->pg.page = NULL; } /* Called from MMC_WRITE_MULTIPLE_BLOCK or MMC_READ_MULTIPLE_BLOCK */ static void usdhi6_sg_advance(struct usdhi6_host *host) { struct mmc_data *data = host->mrq->data; size_t done, total; /* New offset: set at the end of the previous block */ if (host->head_pg.page) { /* Finished a cross-page block, jump to the new page */ host->page_idx++; host->offset = data->blksz - host->head_len; host->blk_page = host->pg.mapped; usdhi6_sg_unmap(host, false); } else { host->offset += data->blksz; /* The completed block didn't cross a page boundary */ if (host->offset == PAGE_SIZE) { /* If required, we'll map the page below */ host->offset = 0; host->page_idx++; } } /* * Now host->blk_page + host->offset point at the end of our last block * and host->page_idx is the index of the page, in which our new block * is located, if any */ done = (host->page_idx << PAGE_SHIFT) + host->offset; total = host->sg->offset + sg_dma_len(host->sg); dev_dbg(mmc_dev(host->mmc), "%s(): %zu of %zu @ %zu\n", __func__, done, total, host->offset); if (done < total && host->offset) { /* More blocks in this page */ if (host->offset + data->blksz > PAGE_SIZE) /* We approached at a block, that spans 2 pages */ usdhi6_blk_bounce(host, host->sg); return; } /* Finished current page or an SG segment */ usdhi6_sg_unmap(host, false); if (done == total) { /* * End of an SG segment or the complete SG: jump to the next * segment, we'll map it later in usdhi6_blk_read() or * usdhi6_blk_write() */ struct scatterlist *next = sg_next(host->sg); host->page_idx = 0; if (!next) host->wait = USDHI6_WAIT_FOR_DATA_END; host->sg = next; if (WARN(next && sg_dma_len(next) % data->blksz, "SG size %u isn't a multiple of block size %u\n", sg_dma_len(next), data->blksz)) data->error = -EINVAL; return; } /* We cannot get here after crossing a page border */ /* Next page in the same SG */ host->pg.page = nth_page(sg_page(host->sg), host->page_idx); host->pg.mapped = kmap(host->pg.page); host->blk_page = host->pg.mapped; dev_dbg(mmc_dev(host->mmc), "Mapped %p (%lx) at %p for CMD%u @ 0x%p\n", host->pg.page, page_to_pfn(host->pg.page), host->pg.mapped, host->mrq->cmd->opcode, host->mrq); } /* DMA handling */ static void usdhi6_dma_release(struct usdhi6_host *host) { host->dma_active = false; if (host->chan_tx) { struct dma_chan *chan = host->chan_tx; host->chan_tx = NULL; dma_release_channel(chan); } if (host->chan_rx) { struct dma_chan *chan = host->chan_rx; host->chan_rx = NULL; dma_release_channel(chan); } } static void usdhi6_dma_stop_unmap(struct usdhi6_host *host) { struct mmc_data *data = host->mrq->data; if (!host->dma_active) return; usdhi6_write(host, USDHI6_CC_EXT_MODE, 0); host->dma_active = false; if (data->flags & MMC_DATA_READ) dma_unmap_sg(host->chan_rx->device->dev, data->sg, data->sg_len, DMA_FROM_DEVICE); else dma_unmap_sg(host->chan_tx->device->dev, data->sg, data->sg_len, DMA_TO_DEVICE); } static void usdhi6_dma_complete(void *arg) { struct usdhi6_host *host = arg; struct mmc_request *mrq = host->mrq; if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion for %p!\n", dev_name(mmc_dev(host->mmc)), mrq)) return; dev_dbg(mmc_dev(host->mmc), "%s(): CMD%u DMA completed\n", __func__, mrq->cmd->opcode); usdhi6_dma_stop_unmap(host); usdhi6_wait_for_brwe(host, mrq->data->flags & MMC_DATA_READ); } static int usdhi6_dma_setup(struct usdhi6_host *host, struct dma_chan *chan, enum dma_transfer_direction dir) { struct mmc_data *data = host->mrq->data; struct scatterlist *sg = data->sg; struct dma_async_tx_descriptor *desc = NULL; dma_cookie_t cookie = -EINVAL; enum dma_data_direction data_dir; int ret; switch (dir) { case DMA_MEM_TO_DEV: data_dir = DMA_TO_DEVICE; break; case DMA_DEV_TO_MEM: data_dir = DMA_FROM_DEVICE; break; default: return -EINVAL; } ret = dma_map_sg(chan->device->dev, sg, data->sg_len, data_dir); if (ret > 0) { host->dma_active = true; desc = dmaengine_prep_slave_sg(chan, sg, ret, dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } if (desc) { desc->callback = usdhi6_dma_complete; desc->callback_param = host; cookie = dmaengine_submit(desc); } dev_dbg(mmc_dev(host->mmc), "%s(): mapped %d -> %d, cookie %d @ %p\n", __func__, data->sg_len, ret, cookie, desc); if (cookie < 0) { /* DMA failed, fall back to PIO */ if (ret >= 0) ret = cookie; usdhi6_dma_release(host); dev_warn(mmc_dev(host->mmc), "DMA failed: %d, falling back to PIO\n", ret); } return cookie; } static int usdhi6_dma_start(struct usdhi6_host *host) { if (!host->chan_rx || !host->chan_tx) return -ENODEV; if (host->mrq->data->flags & MMC_DATA_READ) return usdhi6_dma_setup(host, host->chan_rx, DMA_DEV_TO_MEM); return usdhi6_dma_setup(host, host->chan_tx, DMA_MEM_TO_DEV); } static void usdhi6_dma_kill(struct usdhi6_host *host) { struct mmc_data *data = host->mrq->data; dev_dbg(mmc_dev(host->mmc), "%s(): SG of %u: %ux%u\n", __func__, data->sg_len, data->blocks, data->blksz); /* Abort DMA */ if (data->flags & MMC_DATA_READ) dmaengine_terminate_all(host->chan_rx); else dmaengine_terminate_all(host->chan_tx); } static void usdhi6_dma_check_error(struct usdhi6_host *host) { struct mmc_data *data = host->mrq->data; dev_dbg(mmc_dev(host->mmc), "%s(): IO error %d, status 0x%x\n", __func__, host->io_error, usdhi6_read(host, USDHI6_SD_INFO1)); if (host->io_error) { data->error = usdhi6_error_code(host); data->bytes_xfered = 0; usdhi6_dma_kill(host); usdhi6_dma_release(host); dev_warn(mmc_dev(host->mmc), "DMA failed: %d, falling back to PIO\n", data->error); return; } /* * The datasheet tells us to check a response from the card, whereas * responses only come after the command phase, not after the data * phase. Let's check anyway. */ if (host->irq_status & USDHI6_SD_INFO1_RSP_END) dev_warn(mmc_dev(host->mmc), "Unexpected response received!\n"); } static void usdhi6_dma_kick(struct usdhi6_host *host) { if (host->mrq->data->flags & MMC_DATA_READ) dma_async_issue_pending(host->chan_rx); else dma_async_issue_pending(host->chan_tx); } static void usdhi6_dma_request(struct usdhi6_host *host, phys_addr_t start) { struct dma_slave_config cfg = { .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, }; int ret; host->chan_tx = dma_request_slave_channel(mmc_dev(host->mmc), "tx"); dev_dbg(mmc_dev(host->mmc), "%s: TX: got channel %p\n", __func__, host->chan_tx); if (!host->chan_tx) return; cfg.direction = DMA_MEM_TO_DEV; cfg.dst_addr = start + USDHI6_SD_BUF0; cfg.dst_maxburst = 128; /* 128 words * 4 bytes = 512 bytes */ cfg.src_addr = 0; ret = dmaengine_slave_config(host->chan_tx, &cfg); if (ret < 0) goto e_release_tx; host->chan_rx = dma_request_slave_channel(mmc_dev(host->mmc), "rx"); dev_dbg(mmc_dev(host->mmc), "%s: RX: got channel %p\n", __func__, host->chan_rx); if (!host->chan_rx) goto e_release_tx; cfg.direction = DMA_DEV_TO_MEM; cfg.src_addr = cfg.dst_addr; cfg.src_maxburst = 128; /* 128 words * 4 bytes = 512 bytes */ cfg.dst_addr = 0; ret = dmaengine_slave_config(host->chan_rx, &cfg); if (ret < 0) goto e_release_rx; return; e_release_rx: dma_release_channel(host->chan_rx); host->chan_rx = NULL; e_release_tx: dma_release_channel(host->chan_tx); host->chan_tx = NULL; } /* API helpers */ static void usdhi6_clk_set(struct usdhi6_host *host, struct mmc_ios *ios) { unsigned long rate = ios->clock; u32 val; unsigned int i; for (i = 1000; i; i--) { if (usdhi6_read(host, USDHI6_SD_INFO2) & USDHI6_SD_INFO2_SCLKDIVEN) break; usleep_range(10, 100); } if (!i) { dev_err(mmc_dev(host->mmc), "SD bus busy, clock set aborted\n"); return; } val = usdhi6_read(host, USDHI6_SD_CLK_CTRL) & ~USDHI6_SD_CLK_CTRL_DIV_MASK; if (rate) { unsigned long new_rate; if (host->imclk <= rate) { if (ios->timing != MMC_TIMING_UHS_DDR50) { /* Cannot have 1-to-1 clock in DDR mode */ new_rate = host->imclk; val |= 0xff; } else { new_rate = host->imclk / 2; } } else { unsigned long div = roundup_pow_of_two(DIV_ROUND_UP(host->imclk, rate)); val |= div >> 2; new_rate = host->imclk / div; } if (host->rate == new_rate) return; host->rate = new_rate; dev_dbg(mmc_dev(host->mmc), "target %lu, div %u, set %lu\n", rate, (val & 0xff) << 2, new_rate); } /* * if old or new rate is equal to input rate, have to switch the clock * off before changing and on after */ if (host->imclk == rate || host->imclk == host->rate || !rate) usdhi6_write(host, USDHI6_SD_CLK_CTRL, val & ~USDHI6_SD_CLK_CTRL_SCLKEN); if (!rate) { host->rate = 0; return; } usdhi6_write(host, USDHI6_SD_CLK_CTRL, val); if (host->imclk == rate || host->imclk == host->rate || !(val & USDHI6_SD_CLK_CTRL_SCLKEN)) usdhi6_write(host, USDHI6_SD_CLK_CTRL, val | USDHI6_SD_CLK_CTRL_SCLKEN); } static void usdhi6_set_power(struct usdhi6_host *host, struct mmc_ios *ios) { struct mmc_host *mmc = host->mmc; if (!IS_ERR(mmc->supply.vmmc)) /* Errors ignored... */ mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->power_mode ? ios->vdd : 0); } static int usdhi6_reset(struct usdhi6_host *host) { int i; usdhi6_write(host, USDHI6_SOFT_RST, USDHI6_SOFT_RST_RESERVED); cpu_relax(); usdhi6_write(host, USDHI6_SOFT_RST, USDHI6_SOFT_RST_RESERVED | USDHI6_SOFT_RST_RESET); for (i = 1000; i; i--) if (usdhi6_read(host, USDHI6_SOFT_RST) & USDHI6_SOFT_RST_RESET) break; return i ? 0 : -ETIMEDOUT; } static void usdhi6_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct usdhi6_host *host = mmc_priv(mmc); u32 option, mode; int ret; dev_dbg(mmc_dev(mmc), "%uHz, OCR: %u, power %u, bus-width %u, timing %u\n", ios->clock, ios->vdd, ios->power_mode, ios->bus_width, ios->timing); switch (ios->power_mode) { case MMC_POWER_OFF: usdhi6_set_power(host, ios); usdhi6_only_cd(host); break; case MMC_POWER_UP: /* * We only also touch USDHI6_SD_OPTION from .request(), which * cannot race with MMC_POWER_UP */ ret = usdhi6_reset(host); if (ret < 0) { dev_err(mmc_dev(mmc), "Cannot reset the interface!\n"); } else { usdhi6_set_power(host, ios); usdhi6_only_cd(host); } break; case MMC_POWER_ON: option = usdhi6_read(host, USDHI6_SD_OPTION); /* * The eMMC standard only allows 4 or 8 bits in the DDR mode, * the same probably holds for SD cards. We check here anyway, * since the datasheet explicitly requires 4 bits for DDR. */ if (ios->bus_width == MMC_BUS_WIDTH_1) { if (ios->timing == MMC_TIMING_UHS_DDR50) dev_err(mmc_dev(mmc), "4 bits are required for DDR\n"); option |= USDHI6_SD_OPTION_WIDTH_1; mode = 0; } else { option &= ~USDHI6_SD_OPTION_WIDTH_1; mode = ios->timing == MMC_TIMING_UHS_DDR50; } usdhi6_write(host, USDHI6_SD_OPTION, option); usdhi6_write(host, USDHI6_SDIF_MODE, mode); break; } if (host->rate != ios->clock) usdhi6_clk_set(host, ios); } /* This is data timeout. Response timeout is fixed to 640 clock cycles */ static void usdhi6_timeout_set(struct usdhi6_host *host) { struct mmc_request *mrq = host->mrq; u32 val; unsigned long ticks; if (!mrq->data) ticks = host->rate / 1000 * mrq->cmd->busy_timeout; else ticks = host->rate / 1000000 * (mrq->data->timeout_ns / 1000) + mrq->data->timeout_clks; if (!ticks || ticks > 1 << 27) /* Max timeout */ val = 14; else if (ticks < 1 << 13) /* Min timeout */ val = 0; else val = order_base_2(ticks) - 13; dev_dbg(mmc_dev(host->mmc), "Set %s timeout %lu ticks @ %lu Hz\n", mrq->data ? "data" : "cmd", ticks, host->rate); /* Timeout Counter mask: 0xf0 */ usdhi6_write(host, USDHI6_SD_OPTION, (val << USDHI6_SD_OPTION_TIMEOUT_SHIFT) | (usdhi6_read(host, USDHI6_SD_OPTION) & ~USDHI6_SD_OPTION_TIMEOUT_MASK)); } static void usdhi6_request_done(struct usdhi6_host *host) { struct mmc_request *mrq = host->mrq; struct mmc_data *data = mrq->data; if (WARN(host->pg.page || host->head_pg.page, "Page %p or %p not unmapped: wait %u, CMD%d(%c) @ +0x%zx %ux%u in SG%u!\n", host->pg.page, host->head_pg.page, host->wait, mrq->cmd->opcode, data ? (data->flags & MMC_DATA_READ ? 'R' : 'W') : '-', data ? host->offset : 0, data ? data->blocks : 0, data ? data->blksz : 0, data ? data->sg_len : 0)) usdhi6_sg_unmap(host, true); if (mrq->cmd->error || (data && data->error) || (mrq->stop && mrq->stop->error)) dev_dbg(mmc_dev(host->mmc), "%s(CMD%d: %ux%u): err %d %d %d\n", __func__, mrq->cmd->opcode, data ? data->blocks : 0, data ? data->blksz : 0, mrq->cmd->error, data ? data->error : 1, mrq->stop ? mrq->stop->error : 1); /* Disable DMA */ usdhi6_write(host, USDHI6_CC_EXT_MODE, 0); host->wait = USDHI6_WAIT_FOR_REQUEST; host->mrq = NULL; mmc_request_done(host->mmc, mrq); } static int usdhi6_cmd_flags(struct usdhi6_host *host) { struct mmc_request *mrq = host->mrq; struct mmc_command *cmd = mrq->cmd; u16 opc = cmd->opcode; if (host->app_cmd) { host->app_cmd = false; opc |= USDHI6_SD_CMD_APP; } if (mrq->data) { opc |= USDHI6_SD_CMD_DATA; if (mrq->data->flags & MMC_DATA_READ) opc |= USDHI6_SD_CMD_READ; if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK || cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK || (cmd->opcode == SD_IO_RW_EXTENDED && mrq->data->blocks > 1)) { opc |= USDHI6_SD_CMD_MULTI; if (!mrq->stop) opc |= USDHI6_SD_CMD_CMD12_AUTO_OFF; } switch (mmc_resp_type(cmd)) { case MMC_RSP_NONE: opc |= USDHI6_SD_CMD_MODE_RSP_NONE; break; case MMC_RSP_R1: opc |= USDHI6_SD_CMD_MODE_RSP_R1; break; case MMC_RSP_R1B: opc |= USDHI6_SD_CMD_MODE_RSP_R1B; break; case MMC_RSP_R2: opc |= USDHI6_SD_CMD_MODE_RSP_R2; break; case MMC_RSP_R3: opc |= USDHI6_SD_CMD_MODE_RSP_R3; break; default: dev_warn(mmc_dev(host->mmc), "Unknown response type %d\n", mmc_resp_type(cmd)); return -EINVAL; } } return opc; } static int usdhi6_rq_start(struct usdhi6_host *host) { struct mmc_request *mrq = host->mrq; struct mmc_command *cmd = mrq->cmd; struct mmc_data *data = mrq->data; int opc = usdhi6_cmd_flags(host); int i; if (opc < 0) return opc; for (i = 1000; i; i--) { if (!(usdhi6_read(host, USDHI6_SD_INFO2) & USDHI6_SD_INFO2_CBSY)) break; usleep_range(10, 100); } if (!i) { dev_dbg(mmc_dev(host->mmc), "Command active, request aborted\n"); return -EAGAIN; } if (data) { bool use_dma; int ret = 0; host->page_idx = 0; if (cmd->opcode == SD_IO_RW_EXTENDED && data->blocks > 1) { switch (data->blksz) { case 512: break; case 32: case 64: case 128: case 256: if (mrq->stop) ret = -EINVAL; break; default: ret = -EINVAL; } } else if ((cmd->opcode == MMC_READ_MULTIPLE_BLOCK || cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK) && data->blksz != 512) { ret = -EINVAL; } if (ret < 0) { dev_warn(mmc_dev(host->mmc), "%s(): %u blocks of %u bytes\n", __func__, data->blocks, data->blksz); return -EINVAL; } if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK || cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK || (cmd->opcode == SD_IO_RW_EXTENDED && data->blocks > 1)) usdhi6_sg_prep(host); usdhi6_write(host, USDHI6_SD_SIZE, data->blksz); if ((data->blksz >= USDHI6_MIN_DMA || data->blocks > 1) && (data->blksz % 4 || data->sg->offset % 4)) dev_dbg(mmc_dev(host->mmc), "Bad SG of %u: %ux%u @ %u\n", data->sg_len, data->blksz, data->blocks, data->sg->offset); /* Enable DMA for USDHI6_MIN_DMA bytes or more */ use_dma = data->blksz >= USDHI6_MIN_DMA && !(data->blksz % 4) && usdhi6_dma_start(host) >= DMA_MIN_COOKIE; if (use_dma) usdhi6_write(host, USDHI6_CC_EXT_MODE, USDHI6_CC_EXT_MODE_SDRW); dev_dbg(mmc_dev(host->mmc), "%s(): request opcode %u, %u blocks of %u bytes in %u segments, %s %s @+0x%x%s\n", __func__, cmd->opcode, data->blocks, data->blksz, data->sg_len, use_dma ? "DMA" : "PIO", data->flags & MMC_DATA_READ ? "read" : "write", data->sg->offset, mrq->stop ? " + stop" : ""); } else { dev_dbg(mmc_dev(host->mmc), "%s(): request opcode %u\n", __func__, cmd->opcode); } /* We have to get a command completion interrupt with DMA too */ usdhi6_wait_for_resp(host); host->wait = USDHI6_WAIT_FOR_CMD; schedule_delayed_work(&host->timeout_work, host->timeout); /* SEC bit is required to enable block counting by the core */ usdhi6_write(host, USDHI6_SD_STOP, data && data->blocks > 1 ? USDHI6_SD_STOP_SEC : 0); usdhi6_write(host, USDHI6_SD_ARG, cmd->arg); /* Kick command execution */ usdhi6_write(host, USDHI6_SD_CMD, opc); return 0; } static void usdhi6_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct usdhi6_host *host = mmc_priv(mmc); int ret; cancel_delayed_work_sync(&host->timeout_work); host->mrq = mrq; host->sg = NULL; usdhi6_timeout_set(host); ret = usdhi6_rq_start(host); if (ret < 0) { mrq->cmd->error = ret; usdhi6_request_done(host); } } static int usdhi6_get_cd(struct mmc_host *mmc) { struct usdhi6_host *host = mmc_priv(mmc); /* Read is atomic, no need to lock */ u32 status = usdhi6_read(host, USDHI6_SD_INFO1) & USDHI6_SD_INFO1_CD; /* * level status.CD CD_ACTIVE_HIGH card present * 1 0 0 0 * 1 0 1 1 * 0 1 0 1 * 0 1 1 0 */ return !status ^ !(mmc->caps2 & MMC_CAP2_CD_ACTIVE_HIGH); } static int usdhi6_get_ro(struct mmc_host *mmc) { struct usdhi6_host *host = mmc_priv(mmc); /* No locking as above */ u32 status = usdhi6_read(host, USDHI6_SD_INFO1) & USDHI6_SD_INFO1_WP; /* * level status.WP RO_ACTIVE_HIGH card read-only * 1 0 0 0 * 1 0 1 1 * 0 1 0 1 * 0 1 1 0 */ return !status ^ !(mmc->caps2 & MMC_CAP2_RO_ACTIVE_HIGH); } static void usdhi6_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct usdhi6_host *host = mmc_priv(mmc); dev_dbg(mmc_dev(mmc), "%s(): %sable\n", __func__, enable ? "en" : "dis"); if (enable) { host->sdio_mask = USDHI6_SDIO_INFO1_IRQ & ~USDHI6_SDIO_INFO1_IOIRQ; usdhi6_write(host, USDHI6_SDIO_INFO1_MASK, host->sdio_mask); usdhi6_write(host, USDHI6_SDIO_MODE, 1); } else { usdhi6_write(host, USDHI6_SDIO_MODE, 0); usdhi6_write(host, USDHI6_SDIO_INFO1_MASK, USDHI6_SDIO_INFO1_IRQ); host->sdio_mask = USDHI6_SDIO_INFO1_IRQ; } } static int usdhi6_set_pinstates(struct usdhi6_host *host, int voltage) { if (IS_ERR(host->pins_uhs)) return 0; switch (voltage) { case MMC_SIGNAL_VOLTAGE_180: case MMC_SIGNAL_VOLTAGE_120: return pinctrl_select_state(host->pinctrl, host->pins_uhs); default: return pinctrl_select_state(host->pinctrl, host->pins_default); } } static int usdhi6_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) { int ret; ret = mmc_regulator_set_vqmmc(mmc, ios); if (ret < 0) return ret; ret = usdhi6_set_pinstates(mmc_priv(mmc), ios->signal_voltage); if (ret) dev_warn_once(mmc_dev(mmc), "Failed to set pinstate err=%d\n", ret); return ret; } static const struct mmc_host_ops usdhi6_ops = { .request = usdhi6_request, .set_ios = usdhi6_set_ios, .get_cd = usdhi6_get_cd, .get_ro = usdhi6_get_ro, .enable_sdio_irq = usdhi6_enable_sdio_irq, .start_signal_voltage_switch = usdhi6_sig_volt_switch, }; /* State machine handlers */ static void usdhi6_resp_cmd12(struct usdhi6_host *host) { struct mmc_command *cmd = host->mrq->stop; cmd->resp[0] = usdhi6_read(host, USDHI6_SD_RSP10); } static void usdhi6_resp_read(struct usdhi6_host *host) { struct mmc_command *cmd = host->mrq->cmd; u32 *rsp = cmd->resp, tmp = 0; int i; /* * RSP10 39-8 * RSP32 71-40 * RSP54 103-72 * RSP76 127-104 * R2-type response: * resp[0] = r[127..96] * resp[1] = r[95..64] * resp[2] = r[63..32] * resp[3] = r[31..0] * Other responses: * resp[0] = r[39..8] */ if (mmc_resp_type(cmd) == MMC_RSP_NONE) return; if (!(host->irq_status & USDHI6_SD_INFO1_RSP_END)) { dev_err(mmc_dev(host->mmc), "CMD%d: response expected but is missing!\n", cmd->opcode); return; } if (mmc_resp_type(cmd) & MMC_RSP_136) for (i = 0; i < 4; i++) { if (i) rsp[3 - i] = tmp >> 24; tmp = usdhi6_read(host, USDHI6_SD_RSP10 + i * 8); rsp[3 - i] |= tmp << 8; } else if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK || cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK) /* Read RSP54 to avoid conflict with auto CMD12 */ rsp[0] = usdhi6_read(host, USDHI6_SD_RSP54); else rsp[0] = usdhi6_read(host, USDHI6_SD_RSP10); dev_dbg(mmc_dev(host->mmc), "Response 0x%x\n", rsp[0]); } static int usdhi6_blk_read(struct usdhi6_host *host) { struct mmc_data *data = host->mrq->data; u32 *p; int i, rest; if (host->io_error) { data->error = usdhi6_error_code(host); goto error; } if (host->pg.page) { p = host->blk_page + host->offset; } else { p = usdhi6_sg_map(host); if (!p) { data->error = -ENOMEM; goto error; } } for (i = 0; i < data->blksz / 4; i++, p++) *p = usdhi6_read(host, USDHI6_SD_BUF0); rest = data->blksz % 4; for (i = 0; i < (rest + 1) / 2; i++) { u16 d = usdhi6_read16(host, USDHI6_SD_BUF0); ((u8 *)p)[2 * i] = ((u8 *)&d)[0]; if (rest > 1 && !i) ((u8 *)p)[2 * i + 1] = ((u8 *)&d)[1]; } return 0; error: dev_dbg(mmc_dev(host->mmc), "%s(): %d\n", __func__, data->error); host->wait = USDHI6_WAIT_FOR_REQUEST; return data->error; } static int usdhi6_blk_write(struct usdhi6_host *host) { struct mmc_data *data = host->mrq->data; u32 *p; int i, rest; if (host->io_error) { data->error = usdhi6_error_code(host); goto error; } if (host->pg.page) { p = host->blk_page + host->offset; } else { p = usdhi6_sg_map(host); if (!p) { data->error = -ENOMEM; goto error; } } for (i = 0; i < data->blksz / 4; i++, p++) usdhi6_write(host, USDHI6_SD_BUF0, *p); rest = data->blksz % 4; for (i = 0; i < (rest + 1) / 2; i++) { u16 d; ((u8 *)&d)[0] = ((u8 *)p)[2 * i]; if (rest > 1 && !i) ((u8 *)&d)[1] = ((u8 *)p)[2 * i + 1]; else ((u8 *)&d)[1] = 0; usdhi6_write16(host, USDHI6_SD_BUF0, d); } return 0; error: dev_dbg(mmc_dev(host->mmc), "%s(): %d\n", __func__, data->error); host->wait = USDHI6_WAIT_FOR_REQUEST; return data->error; } static int usdhi6_stop_cmd(struct usdhi6_host *host) { struct mmc_request *mrq = host->mrq; switch (mrq->cmd->opcode) { case MMC_READ_MULTIPLE_BLOCK: case MMC_WRITE_MULTIPLE_BLOCK: if (mrq->stop->opcode == MMC_STOP_TRANSMISSION) { host->wait = USDHI6_WAIT_FOR_STOP; return 0; } /* Unsupported STOP command */ default: dev_err(mmc_dev(host->mmc), "unsupported stop CMD%d for CMD%d\n", mrq->stop->opcode, mrq->cmd->opcode); mrq->stop->error = -EOPNOTSUPP; } return -EOPNOTSUPP; } static bool usdhi6_end_cmd(struct usdhi6_host *host) { struct mmc_request *mrq = host->mrq; struct mmc_command *cmd = mrq->cmd; if (host->io_error) { cmd->error = usdhi6_error_code(host); return false; } usdhi6_resp_read(host); if (!mrq->data) return false; if (host->dma_active) { usdhi6_dma_kick(host); if (!mrq->stop) host->wait = USDHI6_WAIT_FOR_DMA; else if (usdhi6_stop_cmd(host) < 0) return false; } else if (mrq->data->flags & MMC_DATA_READ) { if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK || (cmd->opcode == SD_IO_RW_EXTENDED && mrq->data->blocks > 1)) host->wait = USDHI6_WAIT_FOR_MREAD; else host->wait = USDHI6_WAIT_FOR_READ; } else { if (cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK || (cmd->opcode == SD_IO_RW_EXTENDED && mrq->data->blocks > 1)) host->wait = USDHI6_WAIT_FOR_MWRITE; else host->wait = USDHI6_WAIT_FOR_WRITE; } return true; } static bool usdhi6_read_block(struct usdhi6_host *host) { /* ACCESS_END IRQ is already unmasked */ int ret = usdhi6_blk_read(host); /* * Have to force unmapping both pages: the single block could have been * cross-page, in which case for single-block IO host->page_idx == 0. * So, if we don't force, the second page won't be unmapped. */ usdhi6_sg_unmap(host, true); if (ret < 0) return false; host->wait = USDHI6_WAIT_FOR_DATA_END; return true; } static bool usdhi6_mread_block(struct usdhi6_host *host) { int ret = usdhi6_blk_read(host); if (ret < 0) return false; usdhi6_sg_advance(host); return !host->mrq->data->error && (host->wait != USDHI6_WAIT_FOR_DATA_END || !host->mrq->stop); } static bool usdhi6_write_block(struct usdhi6_host *host) { int ret = usdhi6_blk_write(host); /* See comment in usdhi6_read_block() */ usdhi6_sg_unmap(host, true); if (ret < 0) return false; host->wait = USDHI6_WAIT_FOR_DATA_END; return true; } static bool usdhi6_mwrite_block(struct usdhi6_host *host) { int ret = usdhi6_blk_write(host); if (ret < 0) return false; usdhi6_sg_advance(host); return !host->mrq->data->error && (host->wait != USDHI6_WAIT_FOR_DATA_END || !host->mrq->stop); } /* Interrupt & timeout handlers */ static irqreturn_t usdhi6_sd_bh(int irq, void *dev_id) { struct usdhi6_host *host = dev_id; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; bool io_wait = false; cancel_delayed_work_sync(&host->timeout_work); mrq = host->mrq; if (!mrq) return IRQ_HANDLED; cmd = mrq->cmd; data = mrq->data; switch (host->wait) { case USDHI6_WAIT_FOR_REQUEST: /* We're too late, the timeout has already kicked in */ return IRQ_HANDLED; case USDHI6_WAIT_FOR_CMD: /* Wait for data? */ io_wait = usdhi6_end_cmd(host); break; case USDHI6_WAIT_FOR_MREAD: /* Wait for more data? */ io_wait = usdhi6_mread_block(host); break; case USDHI6_WAIT_FOR_READ: /* Wait for data end? */ io_wait = usdhi6_read_block(host); break; case USDHI6_WAIT_FOR_MWRITE: /* Wait data to write? */ io_wait = usdhi6_mwrite_block(host); break; case USDHI6_WAIT_FOR_WRITE: /* Wait for data end? */ io_wait = usdhi6_write_block(host); break; case USDHI6_WAIT_FOR_DMA: usdhi6_dma_check_error(host); break; case USDHI6_WAIT_FOR_STOP: usdhi6_write(host, USDHI6_SD_STOP, 0); if (host->io_error) { int ret = usdhi6_error_code(host); if (mrq->stop) mrq->stop->error = ret; else mrq->data->error = ret; dev_warn(mmc_dev(host->mmc), "%s(): %d\n", __func__, ret); break; } usdhi6_resp_cmd12(host); mrq->stop->error = 0; break; case USDHI6_WAIT_FOR_DATA_END: if (host->io_error) { mrq->data->error = usdhi6_error_code(host); dev_warn(mmc_dev(host->mmc), "%s(): %d\n", __func__, mrq->data->error); } break; default: cmd->error = -EFAULT; dev_err(mmc_dev(host->mmc), "Invalid state %u\n", host->wait); usdhi6_request_done(host); return IRQ_HANDLED; } if (io_wait) { schedule_delayed_work(&host->timeout_work, host->timeout); /* Wait for more data or ACCESS_END */ if (!host->dma_active) usdhi6_wait_for_brwe(host, mrq->data->flags & MMC_DATA_READ); return IRQ_HANDLED; } if (!cmd->error) { if (data) { if (!data->error) { if (host->wait != USDHI6_WAIT_FOR_STOP && host->mrq->stop && !host->mrq->stop->error && !usdhi6_stop_cmd(host)) { /* Sending STOP */ usdhi6_wait_for_resp(host); schedule_delayed_work(&host->timeout_work, host->timeout); return IRQ_HANDLED; } data->bytes_xfered = data->blocks * data->blksz; } else { /* Data error: might need to unmap the last page */ dev_warn(mmc_dev(host->mmc), "%s(): data error %d\n", __func__, data->error); usdhi6_sg_unmap(host, true); } } else if (cmd->opcode == MMC_APP_CMD) { host->app_cmd = true; } } usdhi6_request_done(host); return IRQ_HANDLED; } static irqreturn_t usdhi6_sd(int irq, void *dev_id) { struct usdhi6_host *host = dev_id; u16 status, status2, error; status = usdhi6_read(host, USDHI6_SD_INFO1) & ~host->status_mask & ~USDHI6_SD_INFO1_CARD; status2 = usdhi6_read(host, USDHI6_SD_INFO2) & ~host->status2_mask; usdhi6_only_cd(host); dev_dbg(mmc_dev(host->mmc), "IRQ status = 0x%08x, status2 = 0x%08x\n", status, status2); if (!status && !status2) return IRQ_NONE; error = status2 & USDHI6_SD_INFO2_ERR; /* Ack / clear interrupts */ if (USDHI6_SD_INFO1_IRQ & status) usdhi6_write(host, USDHI6_SD_INFO1, 0xffff & ~(USDHI6_SD_INFO1_IRQ & status)); if (USDHI6_SD_INFO2_IRQ & status2) { if (error) /* In error cases BWE and BRE aren't cleared automatically */ status2 |= USDHI6_SD_INFO2_BWE | USDHI6_SD_INFO2_BRE; usdhi6_write(host, USDHI6_SD_INFO2, 0xffff & ~(USDHI6_SD_INFO2_IRQ & status2)); } host->io_error = error; host->irq_status = status; if (error) { /* Don't pollute the log with unsupported command timeouts */ if (host->wait != USDHI6_WAIT_FOR_CMD || error != USDHI6_SD_INFO2_RSP_TOUT) dev_warn(mmc_dev(host->mmc), "%s(): INFO2 error bits 0x%08x\n", __func__, error); else dev_dbg(mmc_dev(host->mmc), "%s(): INFO2 error bits 0x%08x\n", __func__, error); } return IRQ_WAKE_THREAD; } static irqreturn_t usdhi6_sdio(int irq, void *dev_id) { struct usdhi6_host *host = dev_id; u32 status = usdhi6_read(host, USDHI6_SDIO_INFO1) & ~host->sdio_mask; dev_dbg(mmc_dev(host->mmc), "%s(): status 0x%x\n", __func__, status); if (!status) return IRQ_NONE; usdhi6_write(host, USDHI6_SDIO_INFO1, ~status); mmc_signal_sdio_irq(host->mmc); return IRQ_HANDLED; } static irqreturn_t usdhi6_cd(int irq, void *dev_id) { struct usdhi6_host *host = dev_id; struct mmc_host *mmc = host->mmc; u16 status; /* We're only interested in hotplug events here */ status = usdhi6_read(host, USDHI6_SD_INFO1) & ~host->status_mask & USDHI6_SD_INFO1_CARD; if (!status) return IRQ_NONE; /* Ack */ usdhi6_write(host, USDHI6_SD_INFO1, ~status); if (!work_pending(&mmc->detect.work) && (((status & USDHI6_SD_INFO1_CARD_INSERT) && !mmc->card) || ((status & USDHI6_SD_INFO1_CARD_EJECT) && mmc->card))) mmc_detect_change(mmc, msecs_to_jiffies(100)); return IRQ_HANDLED; } /* * Actually this should not be needed, if the built-in timeout works reliably in * the both PIO cases and DMA never fails. But if DMA does fail, a timeout * handler might be the only way to catch the error. */ static void usdhi6_timeout_work(struct work_struct *work) { struct delayed_work *d = to_delayed_work(work); struct usdhi6_host *host = container_of(d, struct usdhi6_host, timeout_work); struct mmc_request *mrq = host->mrq; struct mmc_data *data = mrq ? mrq->data : NULL; struct scatterlist *sg; dev_warn(mmc_dev(host->mmc), "%s timeout wait %u CMD%d: IRQ 0x%08x:0x%08x, last IRQ 0x%08x\n", host->dma_active ? "DMA" : "PIO", host->wait, mrq ? mrq->cmd->opcode : -1, usdhi6_read(host, USDHI6_SD_INFO1), usdhi6_read(host, USDHI6_SD_INFO2), host->irq_status); if (host->dma_active) { usdhi6_dma_kill(host); usdhi6_dma_stop_unmap(host); } switch (host->wait) { default: dev_err(mmc_dev(host->mmc), "Invalid state %u\n", host->wait); /* mrq can be NULL in this actually impossible case */ case USDHI6_WAIT_FOR_CMD: usdhi6_error_code(host); if (mrq) mrq->cmd->error = -ETIMEDOUT; break; case USDHI6_WAIT_FOR_STOP: usdhi6_error_code(host); mrq->stop->error = -ETIMEDOUT; break; case USDHI6_WAIT_FOR_DMA: case USDHI6_WAIT_FOR_MREAD: case USDHI6_WAIT_FOR_MWRITE: case USDHI6_WAIT_FOR_READ: case USDHI6_WAIT_FOR_WRITE: sg = host->sg ?: data->sg; dev_dbg(mmc_dev(host->mmc), "%c: page #%u @ +0x%zx %ux%u in SG%u. Current SG %u bytes @ %u\n", data->flags & MMC_DATA_READ ? 'R' : 'W', host->page_idx, host->offset, data->blocks, data->blksz, data->sg_len, sg_dma_len(sg), sg->offset); usdhi6_sg_unmap(host, true); /* * If USDHI6_WAIT_FOR_DATA_END times out, we have already unmapped * the page */ case USDHI6_WAIT_FOR_DATA_END: usdhi6_error_code(host); data->error = -ETIMEDOUT; } if (mrq) usdhi6_request_done(host); } /* Probe / release */ static const struct of_device_id usdhi6_of_match[] = { {.compatible = "renesas,usdhi6rol0"}, {} }; MODULE_DEVICE_TABLE(of, usdhi6_of_match); static int usdhi6_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mmc_host *mmc; struct usdhi6_host *host; struct resource *res; int irq_cd, irq_sd, irq_sdio; u32 version; int ret; if (!dev->of_node) return -ENODEV; irq_cd = platform_get_irq_byname(pdev, "card detect"); irq_sd = platform_get_irq_byname(pdev, "data"); irq_sdio = platform_get_irq_byname(pdev, "SDIO"); if (irq_sd < 0 || irq_sdio < 0) return -ENODEV; mmc = mmc_alloc_host(sizeof(struct usdhi6_host), dev); if (!mmc) return -ENOMEM; ret = mmc_regulator_get_supply(mmc); if (ret) goto e_free_mmc; ret = mmc_of_parse(mmc); if (ret < 0) goto e_free_mmc; host = mmc_priv(mmc); host->mmc = mmc; host->wait = USDHI6_WAIT_FOR_REQUEST; host->timeout = msecs_to_jiffies(4000); host->pinctrl = devm_pinctrl_get(&pdev->dev); if (IS_ERR(host->pinctrl)) { ret = PTR_ERR(host->pinctrl); goto e_free_mmc; } host->pins_uhs = pinctrl_lookup_state(host->pinctrl, "state_uhs"); if (!IS_ERR(host->pins_uhs)) { host->pins_default = pinctrl_lookup_state(host->pinctrl, PINCTRL_STATE_DEFAULT); if (IS_ERR(host->pins_default)) { dev_err(dev, "UHS pinctrl requires a default pin state.\n"); ret = PTR_ERR(host->pins_default); goto e_free_mmc; } } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); host->base = devm_ioremap_resource(dev, res); if (IS_ERR(host->base)) { ret = PTR_ERR(host->base); goto e_free_mmc; } host->clk = devm_clk_get(dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); goto e_free_mmc; } host->imclk = clk_get_rate(host->clk); ret = clk_prepare_enable(host->clk); if (ret < 0) goto e_free_mmc; version = usdhi6_read(host, USDHI6_VERSION); if ((version & 0xfff) != 0xa0d) { dev_err(dev, "Version not recognized %x\n", version); goto e_clk_off; } dev_info(dev, "A USDHI6ROL0 SD host detected with %d ports\n", usdhi6_read(host, USDHI6_SD_PORT_SEL) >> USDHI6_SD_PORT_SEL_PORTS_SHIFT); usdhi6_mask_all(host); if (irq_cd >= 0) { ret = devm_request_irq(dev, irq_cd, usdhi6_cd, 0, dev_name(dev), host); if (ret < 0) goto e_clk_off; } else { mmc->caps |= MMC_CAP_NEEDS_POLL; } ret = devm_request_threaded_irq(dev, irq_sd, usdhi6_sd, usdhi6_sd_bh, 0, dev_name(dev), host); if (ret < 0) goto e_clk_off; ret = devm_request_irq(dev, irq_sdio, usdhi6_sdio, 0, dev_name(dev), host); if (ret < 0) goto e_clk_off; INIT_DELAYED_WORK(&host->timeout_work, usdhi6_timeout_work); usdhi6_dma_request(host, res->start); mmc->ops = &usdhi6_ops; mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SDIO_IRQ; /* Set .max_segs to some random number. Feel free to adjust. */ mmc->max_segs = 32; mmc->max_blk_size = 512; mmc->max_req_size = PAGE_SIZE * mmc->max_segs; mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size; /* * Setting .max_seg_size to 1 page would simplify our page-mapping code, * But OTOH, having large segments makes DMA more efficient. We could * check, whether we managed to get DMA and fall back to 1 page * segments, but if we do manage to obtain DMA and then it fails at * run-time and we fall back to PIO, we will continue getting large * segments. So, we wouldn't be able to get rid of the code anyway. */ mmc->max_seg_size = mmc->max_req_size; if (!mmc->f_max) mmc->f_max = host->imclk; mmc->f_min = host->imclk / 512; platform_set_drvdata(pdev, host); ret = mmc_add_host(mmc); if (ret < 0) goto e_clk_off; return 0; e_clk_off: clk_disable_unprepare(host->clk); e_free_mmc: mmc_free_host(mmc); return ret; } static int usdhi6_remove(struct platform_device *pdev) { struct usdhi6_host *host = platform_get_drvdata(pdev); mmc_remove_host(host->mmc); usdhi6_mask_all(host); cancel_delayed_work_sync(&host->timeout_work); usdhi6_dma_release(host); clk_disable_unprepare(host->clk); mmc_free_host(host->mmc); return 0; } static struct platform_driver usdhi6_driver = { .probe = usdhi6_probe, .remove = usdhi6_remove, .driver = { .name = "usdhi6rol0", .of_match_table = usdhi6_of_match, }, }; module_platform_driver(usdhi6_driver); MODULE_DESCRIPTION("Renesas usdhi6rol0 SD/SDIO host driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:usdhi6rol0"); MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1