Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Prabhakar Kushwaha | 3852 | 72.09% | 8 | 12.50% |
Boris Brezillon | 718 | 13.44% | 25 | 39.06% |
Kim Phillips | 193 | 3.61% | 1 | 1.56% |
Kurt Kanzenbach | 127 | 2.38% | 2 | 3.12% |
Jaiprakash Singh | 93 | 1.74% | 1 | 1.56% |
Jagdish Gediya | 68 | 1.27% | 4 | 6.25% |
Miquel Raynal | 64 | 1.20% | 4 | 6.25% |
Raghav Dogra | 63 | 1.18% | 1 | 1.56% |
Mike Dunn | 34 | 0.64% | 1 | 1.56% |
Aaron Sierra | 25 | 0.47% | 2 | 3.12% |
Brian Norris | 22 | 0.41% | 3 | 4.69% |
Jane Wan | 16 | 0.30% | 1 | 1.56% |
Joe Schultz | 14 | 0.26% | 1 | 1.56% |
Mark Marshall | 12 | 0.22% | 1 | 1.56% |
Rafał Miłecki | 8 | 0.15% | 1 | 1.56% |
Luis de Bethencourt | 7 | 0.13% | 1 | 1.56% |
Nicholas Mc Guire | 6 | 0.11% | 1 | 1.56% |
Frans Klaver | 6 | 0.11% | 1 | 1.56% |
Scott Wood | 6 | 0.11% | 1 | 1.56% |
Rob Herring | 3 | 0.06% | 1 | 1.56% |
Josh Wu | 3 | 0.06% | 1 | 1.56% |
Sachin Kamat | 2 | 0.04% | 1 | 1.56% |
Shreeya Patel | 1 | 0.02% | 1 | 1.56% |
Total | 5343 | 64 |
/* * Freescale Integrated Flash Controller NAND driver * * Copyright 2011-2012 Freescale Semiconductor, Inc * * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/mtd/nand_ecc.h> #include <linux/fsl_ifc.h> #include <linux/iopoll.h> #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ #define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for IFC NAND Machine */ struct fsl_ifc_ctrl; /* mtd information per set */ struct fsl_ifc_mtd { struct nand_chip chip; struct fsl_ifc_ctrl *ctrl; struct device *dev; int bank; /* Chip select bank number */ unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ u8 __iomem *vbase; /* Chip select base virtual address */ }; /* overview of the fsl ifc controller */ struct fsl_ifc_nand_ctrl { struct nand_controller controller; struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; void __iomem *addr; /* Address of assigned IFC buffer */ unsigned int page; /* Last page written to / read from */ unsigned int read_bytes;/* Number of bytes read during command */ unsigned int column; /* Saved column from SEQIN */ unsigned int index; /* Pointer to next byte to 'read' */ unsigned int oob; /* Non zero if operating on OOB data */ unsigned int eccread; /* Non zero for a full-page ECC read */ unsigned int counter; /* counter for the initializations */ unsigned int max_bitflips; /* Saved during READ0 cmd */ }; static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; /* * Generic flash bbt descriptors */ static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 2, /* 0 on 8-bit small page */ .len = 4, .veroffs = 6, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 2, /* 0 on 8-bit small page */ .len = 4, .veroffs = 6, .maxblocks = 4, .pattern = mirror_pattern, }; static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section) return -ERANGE; oobregion->offset = 8; oobregion->length = chip->ecc.total; return 0; } static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section > 1) return -ERANGE; if (mtd->writesize == 512 && !(chip->options & NAND_BUSWIDTH_16)) { if (!section) { oobregion->offset = 0; oobregion->length = 5; } else { oobregion->offset = 6; oobregion->length = 2; } return 0; } if (!section) { oobregion->offset = 2; oobregion->length = 6; } else { oobregion->offset = chip->ecc.total + 8; oobregion->length = mtd->oobsize - oobregion->offset; } return 0; } static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = { .ecc = fsl_ifc_ooblayout_ecc, .free = fsl_ifc_ooblayout_free, }; /* * Set up the IFC hardware block and page address fields, and the ifc nand * structure addr field to point to the correct IFC buffer in memory */ static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; int buf_num; ifc_nand_ctrl->page = page_addr; /* Program ROW0/COL0 */ ifc_out32(page_addr, &ifc->ifc_nand.row0); ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); buf_num = page_addr & priv->bufnum_mask; ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); ifc_nand_ctrl->index = column; /* for OOB data point to the second half of the buffer */ if (oob) ifc_nand_ctrl->index += mtd->writesize; } /* returns nonzero if entire page is blank */ static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, u32 eccstat, unsigned int bufnum) { return (eccstat >> ((3 - bufnum % 4) * 8)) & 15; } /* * execute IFC NAND command and wait for it to complete */ static void fsl_ifc_run_command(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; u32 eccstat; int i; /* set the chip select for NAND Transaction */ ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT, &ifc->ifc_nand.nand_csel); dev_vdbg(priv->dev, "%s: fir0=%08x fcr0=%08x\n", __func__, ifc_in32(&ifc->ifc_nand.nand_fir0), ifc_in32(&ifc->ifc_nand.nand_fcr0)); ctrl->nand_stat = 0; /* start read/write seq */ ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); /* wait for command complete flag or timeout */ wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, msecs_to_jiffies(IFC_TIMEOUT_MSECS)); /* ctrl->nand_stat will be updated from IRQ context */ if (!ctrl->nand_stat) dev_err(priv->dev, "Controller is not responding\n"); if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) dev_err(priv->dev, "NAND Flash Timeout Error\n"); if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) dev_err(priv->dev, "NAND Flash Write Protect Error\n"); nctrl->max_bitflips = 0; if (nctrl->eccread) { int errors; int bufnum = nctrl->page & priv->bufnum_mask; int sector_start = bufnum * chip->ecc.steps; int sector_end = sector_start + chip->ecc.steps - 1; __be32 __iomem *eccstat_regs; eccstat_regs = ifc->ifc_nand.nand_eccstat; eccstat = ifc_in32(&eccstat_regs[sector_start / 4]); for (i = sector_start; i <= sector_end; i++) { if (i != sector_start && !(i % 4)) eccstat = ifc_in32(&eccstat_regs[i / 4]); errors = check_read_ecc(mtd, ctrl, eccstat, i); if (errors == 15) { /* * Uncorrectable error. * We'll check for blank pages later. * * We disable ECCER reporting due to... * erratum IFC-A002770 -- so report it now if we * see an uncorrectable error in ECCSTAT. */ ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER; continue; } mtd->ecc_stats.corrected += errors; nctrl->max_bitflips = max_t(unsigned int, nctrl->max_bitflips, errors); } nctrl->eccread = 0; } } static void fsl_ifc_do_read(struct nand_chip *chip, int oob, struct mtd_info *mtd) { struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ if (mtd->writesize > 512) { ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), &ifc->ifc_nand.nand_fir0); ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), &ifc->ifc_nand.nand_fcr0); } else { ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), &ifc->ifc_nand.nand_fir0); ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); if (oob) ifc_out32(NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT, &ifc->ifc_nand.nand_fcr0); else ifc_out32(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT, &ifc->ifc_nand.nand_fcr0); } } /* cmdfunc send commands to the IFC NAND Machine */ static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command, int column, int page_addr) { struct mtd_info *mtd = nand_to_mtd(chip); struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; /* clear the read buffer */ ifc_nand_ctrl->read_bytes = 0; if (command != NAND_CMD_PAGEPROG) ifc_nand_ctrl->index = 0; switch (command) { /* READ0 read the entire buffer to use hardware ECC. */ case NAND_CMD_READ0: ifc_out32(0, &ifc->ifc_nand.nand_fbcr); set_addr(mtd, 0, page_addr, 0); ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; ifc_nand_ctrl->index += column; if (chip->ecc.mode == NAND_ECC_HW) ifc_nand_ctrl->eccread = 1; fsl_ifc_do_read(chip, 0, mtd); fsl_ifc_run_command(mtd); return; /* READOOB reads only the OOB because no ECC is performed. */ case NAND_CMD_READOOB: ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); set_addr(mtd, column, page_addr, 1); ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; fsl_ifc_do_read(chip, 1, mtd); fsl_ifc_run_command(mtd); return; case NAND_CMD_READID: case NAND_CMD_PARAM: { /* * For READID, read 8 bytes that are currently used. * For PARAM, read all 3 copies of 256-bytes pages. */ int len = 8; int timing = IFC_FIR_OP_RB; if (command == NAND_CMD_PARAM) { timing = IFC_FIR_OP_RBCD; len = 256 * 3; } ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | (timing << IFC_NAND_FIR0_OP2_SHIFT), &ifc->ifc_nand.nand_fir0); ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT, &ifc->ifc_nand.nand_fcr0); ifc_out32(column, &ifc->ifc_nand.row3); ifc_out32(len, &ifc->ifc_nand.nand_fbcr); ifc_nand_ctrl->read_bytes = len; set_addr(mtd, 0, 0, 0); fsl_ifc_run_command(mtd); return; } /* ERASE1 stores the block and page address */ case NAND_CMD_ERASE1: set_addr(mtd, 0, page_addr, 0); return; /* ERASE2 uses the block and page address from ERASE1 */ case NAND_CMD_ERASE2: ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), &ifc->ifc_nand.nand_fir0); ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), &ifc->ifc_nand.nand_fcr0); ifc_out32(0, &ifc->ifc_nand.nand_fbcr); ifc_nand_ctrl->read_bytes = 0; fsl_ifc_run_command(mtd); return; /* SEQIN sets up the addr buffer and all registers except the length */ case NAND_CMD_SEQIN: { u32 nand_fcr0; ifc_nand_ctrl->column = column; ifc_nand_ctrl->oob = 0; if (mtd->writesize > 512) { nand_fcr0 = (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); ifc_out32( (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT), &ifc->ifc_nand.nand_fir0); ifc_out32( (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) | (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT), &ifc->ifc_nand.nand_fir1); } else { nand_fcr0 = ((NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT) | (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD2_SHIFT) | (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD3_SHIFT)); ifc_out32( (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), &ifc->ifc_nand.nand_fir0); ifc_out32( (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) | (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT), &ifc->ifc_nand.nand_fir1); if (column >= mtd->writesize) nand_fcr0 |= NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; else nand_fcr0 |= NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; } if (column >= mtd->writesize) { /* OOB area --> READOOB */ column -= mtd->writesize; ifc_nand_ctrl->oob = 1; } ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0); set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); return; } /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ case NAND_CMD_PAGEPROG: { if (ifc_nand_ctrl->oob) { ifc_out32(ifc_nand_ctrl->index - ifc_nand_ctrl->column, &ifc->ifc_nand.nand_fbcr); } else { ifc_out32(0, &ifc->ifc_nand.nand_fbcr); } fsl_ifc_run_command(mtd); return; } case NAND_CMD_STATUS: { void __iomem *addr; ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), &ifc->ifc_nand.nand_fir0); ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, &ifc->ifc_nand.nand_fcr0); ifc_out32(1, &ifc->ifc_nand.nand_fbcr); set_addr(mtd, 0, 0, 0); ifc_nand_ctrl->read_bytes = 1; fsl_ifc_run_command(mtd); /* * The chip always seems to report that it is * write-protected, even when it is not. */ addr = ifc_nand_ctrl->addr; if (chip->options & NAND_BUSWIDTH_16) ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr); else ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr); return; } case NAND_CMD_RESET: ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, &ifc->ifc_nand.nand_fir0); ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, &ifc->ifc_nand.nand_fcr0); fsl_ifc_run_command(mtd); return; default: dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", __func__, command); } } static void fsl_ifc_select_chip(struct nand_chip *chip, int cs) { /* The hardware does not seem to support multiple * chips per bank. */ } /* * Write buf to the IFC NAND Controller Data Buffer */ static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len) { struct mtd_info *mtd = nand_to_mtd(chip); struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); unsigned int bufsize = mtd->writesize + mtd->oobsize; if (len <= 0) { dev_err(priv->dev, "%s: len %d bytes", __func__, len); return; } if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { dev_err(priv->dev, "%s: beyond end of buffer (%d requested, %u available)\n", __func__, len, bufsize - ifc_nand_ctrl->index); len = bufsize - ifc_nand_ctrl->index; } memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len); ifc_nand_ctrl->index += len; } /* * Read a byte from either the IFC hardware buffer * read function for 8-bit buswidth */ static uint8_t fsl_ifc_read_byte(struct nand_chip *chip) { struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); unsigned int offset; /* * If there are still bytes in the IFC buffer, then use the * next byte. */ if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { offset = ifc_nand_ctrl->index++; return ifc_in8(ifc_nand_ctrl->addr + offset); } dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); return ERR_BYTE; } /* * Read two bytes from the IFC hardware buffer * read function for 16-bit buswith */ static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip) { struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); uint16_t data; /* * If there are still bytes in the IFC buffer, then use the * next byte. */ if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index); ifc_nand_ctrl->index += 2; return (uint8_t) data; } dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); return ERR_BYTE; } /* * Read from the IFC Controller Data Buffer */ static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len) { struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); int avail; if (len < 0) { dev_err(priv->dev, "%s: len %d bytes", __func__, len); return; } avail = min((unsigned int)len, ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail); ifc_nand_ctrl->index += avail; if (len > avail) dev_err(priv->dev, "%s: beyond end of buffer (%d requested, %d available)\n", __func__, len, avail); } /* * This function is called after Program and Erase Operations to * check for success or failure. */ static int fsl_ifc_wait(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; u32 nand_fsr; int status; /* Use READ_STATUS command, but wait for the device to be ready */ ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), &ifc->ifc_nand.nand_fir0); ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, &ifc->ifc_nand.nand_fcr0); ifc_out32(1, &ifc->ifc_nand.nand_fbcr); set_addr(mtd, 0, 0, 0); ifc_nand_ctrl->read_bytes = 1; fsl_ifc_run_command(mtd); nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr); status = nand_fsr >> 24; /* * The chip always seems to report that it is * write-protected, even when it is not. */ return status | NAND_STATUS_WP; } /* * The controller does not check for bitflips in erased pages, * therefore software must check instead. */ static int check_erased_page(struct nand_chip *chip, u8 *buf) { struct mtd_info *mtd = nand_to_mtd(chip); u8 *ecc = chip->oob_poi; const int ecc_size = chip->ecc.bytes; const int pkt_size = chip->ecc.size; int i, res, bitflips = 0; struct mtd_oob_region oobregion = { }; mtd_ooblayout_ecc(mtd, 0, &oobregion); ecc += oobregion.offset; for (i = 0; i < chip->ecc.steps; ++i) { res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size, NULL, 0, chip->ecc.strength); if (res < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += res; bitflips = max(res, bitflips); buf += pkt_size; ecc += ecc_size; } return bitflips; } static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; nand_read_page_op(chip, page, 0, buf, mtd->writesize); if (oob_required) fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize); if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) { if (!oob_required) fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize); return check_erased_page(chip, buf); } if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) mtd->ecc_stats.failed++; return nctrl->max_bitflips; } /* ECC will be calculated automatically, and errors will be detected in * waitfunc. */ static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize); return nand_prog_page_end_op(chip); } static int fsl_ifc_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, chip->numchips); dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, chip->chipsize); dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, chip->pagemask); dev_dbg(priv->dev, "%s: nand->legacy.chip_delay = %d\n", __func__, chip->legacy.chip_delay); dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, chip->badblockpos); dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, chip->chip_shift); dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, chip->page_shift); dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, chip->phys_erase_shift); dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, chip->ecc.mode); dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, chip->ecc.steps); dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, chip->ecc.bytes); dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, chip->ecc.total); dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__, mtd->ooblayout); dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, mtd->erasesize); dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, mtd->writesize); dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, mtd->oobsize); return 0; } static const struct nand_controller_ops fsl_ifc_controller_ops = { .attach_chip = fsl_ifc_attach_chip, }; static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) { struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; uint32_t csor = 0, csor_8k = 0, csor_ext = 0; uint32_t cs = priv->bank; if (ctrl->version < FSL_IFC_VERSION_1_1_0) return 0; if (ctrl->version > FSL_IFC_VERSION_1_1_0) { u32 ncfgr, status; int ret; /* Trigger auto initialization */ ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr); ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr); /* Wait until done */ ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr, status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN), 10, IFC_TIMEOUT_MSECS * 1000); if (ret) dev_err(priv->dev, "Failed to initialize SRAM!\n"); return ret; } /* Save CSOR and CSOR_ext */ csor = ifc_in32(&ifc_global->csor_cs[cs].csor); csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext); /* chage PageSize 8K and SpareSize 1K*/ csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor); ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext); /* READID */ ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), &ifc_runtime->ifc_nand.nand_fir0); ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, &ifc_runtime->ifc_nand.nand_fcr0); ifc_out32(0x0, &ifc_runtime->ifc_nand.row3); ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr); /* Program ROW0/COL0 */ ifc_out32(0x0, &ifc_runtime->ifc_nand.row0); ifc_out32(0x0, &ifc_runtime->ifc_nand.col0); /* set the chip select for NAND Transaction */ ifc_out32(cs << IFC_NAND_CSEL_SHIFT, &ifc_runtime->ifc_nand.nand_csel); /* start read seq */ ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc_runtime->ifc_nand.nandseq_strt); /* wait for command complete flag or timeout */ wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, msecs_to_jiffies(IFC_TIMEOUT_MSECS)); if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) { pr_err("fsl-ifc: Failed to Initialise SRAM\n"); return -ETIMEDOUT; } /* Restore CSOR and CSOR_ext */ ifc_out32(csor, &ifc_global->csor_cs[cs].csor); ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext); return 0; } static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) { struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; struct nand_chip *chip = &priv->chip; struct mtd_info *mtd = nand_to_mtd(&priv->chip); u32 csor; int ret; /* Fill in fsl_ifc_mtd structure */ mtd->dev.parent = priv->dev; nand_set_flash_node(chip, priv->dev->of_node); /* fill in nand_chip structure */ /* set up function call table */ if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16) chip->legacy.read_byte = fsl_ifc_read_byte16; else chip->legacy.read_byte = fsl_ifc_read_byte; chip->legacy.write_buf = fsl_ifc_write_buf; chip->legacy.read_buf = fsl_ifc_read_buf; chip->legacy.select_chip = fsl_ifc_select_chip; chip->legacy.cmdfunc = fsl_ifc_cmdfunc; chip->legacy.waitfunc = fsl_ifc_wait; chip->legacy.set_features = nand_get_set_features_notsupp; chip->legacy.get_features = nand_get_set_features_notsupp; chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr); /* set up nand options */ chip->bbt_options = NAND_BBT_USE_FLASH; chip->options = NAND_NO_SUBPAGE_WRITE; if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) { chip->legacy.read_byte = fsl_ifc_read_byte16; chip->options |= NAND_BUSWIDTH_16; } else { chip->legacy.read_byte = fsl_ifc_read_byte; } chip->controller = &ifc_nand_ctrl->controller; nand_set_controller_data(chip, priv); chip->ecc.read_page = fsl_ifc_read_page; chip->ecc.write_page = fsl_ifc_write_page; csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor); switch (csor & CSOR_NAND_PGS_MASK) { case CSOR_NAND_PGS_512: if (!(chip->options & NAND_BUSWIDTH_16)) { /* Avoid conflict with bad block marker */ bbt_main_descr.offs = 0; bbt_mirror_descr.offs = 0; } priv->bufnum_mask = 15; break; case CSOR_NAND_PGS_2K: priv->bufnum_mask = 3; break; case CSOR_NAND_PGS_4K: priv->bufnum_mask = 1; break; case CSOR_NAND_PGS_8K: priv->bufnum_mask = 0; break; default: dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); return -ENODEV; } /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ if (csor & CSOR_NAND_ECC_DEC_EN) { chip->ecc.mode = NAND_ECC_HW; mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops); /* Hardware generates ECC per 512 Bytes */ chip->ecc.size = 512; if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) { chip->ecc.bytes = 8; chip->ecc.strength = 4; } else { chip->ecc.bytes = 16; chip->ecc.strength = 8; } } else { chip->ecc.mode = NAND_ECC_SOFT; chip->ecc.algo = NAND_ECC_HAMMING; } ret = fsl_ifc_sram_init(priv); if (ret) return ret; /* * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older * versions which had 8KB. Hence bufnum mask needs to be updated. */ if (ctrl->version >= FSL_IFC_VERSION_2_0_0) priv->bufnum_mask = (priv->bufnum_mask * 2) + 1; return 0; } static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) { struct mtd_info *mtd = nand_to_mtd(&priv->chip); kfree(mtd->name); if (priv->vbase) iounmap(priv->vbase); ifc_nand_ctrl->chips[priv->bank] = NULL; return 0; } static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank, phys_addr_t addr) { u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr); if (!(cspr & CSPR_V)) return 0; if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) return 0; return (cspr & CSPR_BA) == convert_ifc_address(addr); } static DEFINE_MUTEX(fsl_ifc_nand_mutex); static int fsl_ifc_nand_probe(struct platform_device *dev) { struct fsl_ifc_runtime __iomem *ifc; struct fsl_ifc_mtd *priv; struct resource res; static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", "ofpart", NULL }; int ret; int bank; struct device_node *node = dev->dev.of_node; struct mtd_info *mtd; if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs) return -ENODEV; ifc = fsl_ifc_ctrl_dev->rregs; /* get, allocate and map the memory resource */ ret = of_address_to_resource(node, 0, &res); if (ret) { dev_err(&dev->dev, "%s: failed to get resource\n", __func__); return ret; } /* find which chip select it is connected to */ for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) { if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start)) break; } if (bank >= fsl_ifc_ctrl_dev->banks) { dev_err(&dev->dev, "%s: address did not match any chip selects\n", __func__); return -ENODEV; } priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; mutex_lock(&fsl_ifc_nand_mutex); if (!fsl_ifc_ctrl_dev->nand) { ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); if (!ifc_nand_ctrl) { mutex_unlock(&fsl_ifc_nand_mutex); return -ENOMEM; } ifc_nand_ctrl->read_bytes = 0; ifc_nand_ctrl->index = 0; ifc_nand_ctrl->addr = NULL; fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; nand_controller_init(&ifc_nand_ctrl->controller); } else { ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; } mutex_unlock(&fsl_ifc_nand_mutex); ifc_nand_ctrl->chips[bank] = priv; priv->bank = bank; priv->ctrl = fsl_ifc_ctrl_dev; priv->dev = &dev->dev; priv->vbase = ioremap(res.start, resource_size(&res)); if (!priv->vbase) { dev_err(priv->dev, "%s: failed to map chip region\n", __func__); ret = -ENOMEM; goto err; } dev_set_drvdata(priv->dev, priv); ifc_out32(IFC_NAND_EVTER_EN_OPC_EN | IFC_NAND_EVTER_EN_FTOER_EN | IFC_NAND_EVTER_EN_WPER_EN, &ifc->ifc_nand.nand_evter_en); /* enable NAND Machine Interrupts */ ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN | IFC_NAND_EVTER_INTR_FTOERIR_EN | IFC_NAND_EVTER_INTR_WPERIR_EN, &ifc->ifc_nand.nand_evter_intr_en); mtd = nand_to_mtd(&priv->chip); mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); if (!mtd->name) { ret = -ENOMEM; goto err; } ret = fsl_ifc_chip_init(priv); if (ret) goto err; priv->chip.controller->ops = &fsl_ifc_controller_ops; ret = nand_scan(&priv->chip, 1); if (ret) goto err; /* First look for RedBoot table or partitions on the command * line, these take precedence over device tree information */ ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); if (ret) goto cleanup_nand; dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", (unsigned long long)res.start, priv->bank); return 0; cleanup_nand: nand_cleanup(&priv->chip); err: fsl_ifc_chip_remove(priv); return ret; } static int fsl_ifc_nand_remove(struct platform_device *dev) { struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); nand_release(&priv->chip); fsl_ifc_chip_remove(priv); mutex_lock(&fsl_ifc_nand_mutex); ifc_nand_ctrl->counter--; if (!ifc_nand_ctrl->counter) { fsl_ifc_ctrl_dev->nand = NULL; kfree(ifc_nand_ctrl); } mutex_unlock(&fsl_ifc_nand_mutex); return 0; } static const struct of_device_id fsl_ifc_nand_match[] = { { .compatible = "fsl,ifc-nand", }, {} }; MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match); static struct platform_driver fsl_ifc_nand_driver = { .driver = { .name = "fsl,ifc-nand", .of_match_table = fsl_ifc_nand_match, }, .probe = fsl_ifc_nand_probe, .remove = fsl_ifc_nand_remove, }; module_platform_driver(fsl_ifc_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Freescale"); MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1